--- dataset_info: features: - name: id dtype: string - name: image dtype: image - name: texts sequence: string - name: bboxes_block sequence: sequence: float64 - name: bboxes_line sequence: sequence: float64 - name: categories sequence: int64 - name: page_hash dtype: string - name: original_filename dtype: string - name: page_no dtype: int64 - name: num_pages dtype: int64 - name: image_width dtype: int64 - name: image_height dtype: int64 - name: collection dtype: string - name: doc_category dtype: string splits: - name: train num_bytes: 166529577.0 num_examples: 400 download_size: 162656888 dataset_size: 166529577.0 license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - image-segmentation --- **Please see paper & code for more information:** - https://github.com/mbzuai-oryx/KITAB-Bench - https://arxiv.org/abs/2502.14949 KITAB-Bench is a comprehensive multi-domain benchmark for Arabic OCR and document understanding. It includes tasks such as text recognition (OCR), layout detection, line detection and recognition, table recognition, PDF-to-markdown conversion, chart-to-dataframe conversion, diagram-to-JSON conversion, and visual question answering (VQA). The dataset contains a wide range of document types from various domains, with high-quality human-labeled annotations. See the [project website](https://mbzuai-oryx.github.io/KITAB-Bench/) for more details.