Add task category and license to metadata
Browse filesThis PR adds the `task_categories` field to the metadata, specifying `image-segmentation` as the relevant task. It also adds the license information. This improves discoverability and categorization of the dataset on the Hugging Face Hub.
README.md
CHANGED
@@ -37,13 +37,18 @@ dataset_info:
|
|
37 |
num_examples: 400
|
38 |
download_size: 162656888
|
39 |
dataset_size: 166529577.0
|
|
|
40 |
configs:
|
41 |
- config_name: default
|
42 |
data_files:
|
43 |
- split: train
|
44 |
path: data/train-*
|
|
|
|
|
45 |
---
|
46 |
|
47 |
**Please see paper & code for more information:**
|
48 |
- https://github.com/mbzuai-oryx/KITAB-Bench
|
49 |
-
- https://arxiv.org/abs/2502.14949
|
|
|
|
|
|
37 |
num_examples: 400
|
38 |
download_size: 162656888
|
39 |
dataset_size: 166529577.0
|
40 |
+
license: apache-2.0
|
41 |
configs:
|
42 |
- config_name: default
|
43 |
data_files:
|
44 |
- split: train
|
45 |
path: data/train-*
|
46 |
+
task_categories:
|
47 |
+
- image-segmentation
|
48 |
---
|
49 |
|
50 |
**Please see paper & code for more information:**
|
51 |
- https://github.com/mbzuai-oryx/KITAB-Bench
|
52 |
+
- https://arxiv.org/abs/2502.14949
|
53 |
+
|
54 |
+
KITAB-Bench is a comprehensive multi-domain benchmark for Arabic OCR and document understanding. It includes tasks such as text recognition (OCR), layout detection, line detection and recognition, table recognition, PDF-to-markdown conversion, chart-to-dataframe conversion, diagram-to-JSON conversion, and visual question answering (VQA). The dataset contains a wide range of document types from various domains, with high-quality human-labeled annotations. See the [project website](https://mbzuai-oryx.github.io/KITAB-Bench/) for more details.
|