import os import pandas as pd from pathlib import Path import datasets _CITATION = """ @inproceedings{your_neurips_submission, title={Multimodal Street-level Place Recognition Dataset}, author={Ou, Yiwei}, year={2025}, booktitle={NeurIPS Datasets and Benchmarks Track} } """ _DESCRIPTION = """ Multimodal Street-level Place Recognition Dataset (Resized version). This version loads images, videos, and associated annotations for place recognition tasks, including GPS, camera metadata, and temporal information. """ _HOMEPAGE = "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset" _LICENSE = "cc-by-4.0" class MultimodalPlaceRecognition(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "image_path": datasets.Value("string"), "video_path": datasets.Value("string"), "location_code": datasets.Value("string"), "spatial_type": datasets.Value("string"), "index": datasets.Value("int32"), "shop_names": datasets.Value("string"), "sign_text": datasets.Value("string"), "image_metadata": datasets.Value("string"), "video_metadata": datasets.Value("string"), }), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): archive_path = dl_manager.download_and_extract( "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset/resolve/main/Annotated_Resized.tar.gz" ) base_dir = os.path.join(archive_path, "03 Annotated_Resized", "Dataset_Full") image_dir = os.path.join(base_dir, "Images") video_dir = os.path.join(base_dir, "Videos") text_dir = os.path.join(base_dir, "Texts") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "image_dir": image_dir, "video_dir": video_dir, "annotations_path": os.path.join(text_dir, "Annotations.xlsx"), "image_meta_path": os.path.join(text_dir, "Media_Metadata-Images.xlsx"), "video_meta_path": os.path.join(text_dir, "Media_Metadata-Videos.xlsx"), }, ) ] def _generate_examples(self, image_dir, video_dir, annotations_path, image_meta_path, video_meta_path): id_ = 0 annotations_df = pd.read_excel(annotations_path, engine="openpyxl") annotations_dict = { str(row["Code"]).strip(): { "spatial_type": str(row["Type"]).strip(), "index": int(row["Index"]), "shop_names": str(row["List of Store Names and Signs"]) if not pd.isna(row["List of Store Names and Signs"]) else "", "sign_text": "", # Not explicitly available } for _, row in annotations_df.iterrows() } image_meta_df = pd.read_excel(image_meta_path, engine="openpyxl") image_meta_dict = { str(row["Filename"]).strip(): row.drop("Filename").dropna().to_dict() for _, row in image_meta_df.iterrows() } video_meta_df = pd.read_excel(video_meta_path, engine="openpyxl") video_meta_dict = { str(row["Filename"]).strip(): row.drop("Filename").dropna().to_dict() for _, row in video_meta_df.iterrows() } for spatial_type in os.listdir(image_dir): spatial_path = os.path.join(image_dir, spatial_type) if not os.path.isdir(spatial_path): continue for location_code in os.listdir(spatial_path): loc_img_path = os.path.join(spatial_path, location_code) if not os.path.isdir(loc_img_path): continue loc_vid_path = os.path.join(video_dir, spatial_type, location_code) if os.path.exists(os.path.join(video_dir, spatial_type, location_code)) else None vid_files = set(os.listdir(loc_vid_path)) if loc_vid_path else set() for file_name in os.listdir(loc_img_path): if file_name.lower().endswith((".jpg", ".jpeg", ".png")): base_name = os.path.splitext(file_name)[0] video_match = [v for v in vid_files if v.startswith(base_name) and v.endswith(".mp4")] video_file = video_match[0] if video_match else "" video_path = os.path.join(loc_vid_path, video_file) if video_file else "" meta = annotations_dict.get(location_code, { "spatial_type": spatial_type, "index": -1, "shop_names": "", "sign_text": "", }) img_meta = image_meta_dict.get(file_name, {}) vid_meta = video_meta_dict.get(video_file, {}) if video_file else {} yield id_, { "image_path": os.path.join(loc_img_path, file_name), "video_path": video_path, "location_code": location_code, "spatial_type": meta["spatial_type"], "index": meta["index"], "shop_names": meta["shop_names"], "sign_text": meta["sign_text"], "image_metadata": str(img_meta), "video_metadata": str(vid_meta), } id_ += 1