Datasets:
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
Place Recognition
License:
Upload MMS-VPR_croissant.json
Browse files- MMS-VPR_croissant.json +191 -0
MMS-VPR_croissant.json
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"@context": {
|
3 |
+
"@vocab": "https://schema.org/",
|
4 |
+
"mlcommons": "https://mlcommons.org/schemas/",
|
5 |
+
"mlc": "https://mlcommons.org/croissant/",
|
6 |
+
"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
|
7 |
+
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
|
8 |
+
"xsd": "http://www.w3.org/2001/XMLSchema#",
|
9 |
+
"ml": "http://mlcommons.org/schemas/"
|
10 |
+
},
|
11 |
+
"@type": "Dataset",
|
12 |
+
"@id": "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset",
|
13 |
+
"name": "Multimodal_Street-level_Place_Recognition_Dataset",
|
14 |
+
"description": "A comprehensive multimodal dataset designed for advanced visual place recognition in pedestrian-centric urban environments. The dataset encompasses over 78,000 high-resolution images and video frames, meticulously annotated with 207 unique place classes. Collected across a ~70,800 m² open-air commercial district in Chengdu, China, this dataset provides rich geospatial and contextual information. Data was captured using smartphones, incorporating precise GPS coordinates, timestamps, and extensive metadata to support advanced machine learning research.",
|
15 |
+
"url": "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset",
|
16 |
+
"homepage": "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset",
|
17 |
+
"version": "1.0.0",
|
18 |
+
"keywords": [
|
19 |
+
"Place Recognition",
|
20 |
+
"Visual Localization",
|
21 |
+
"Multimodal Dataset",
|
22 |
+
"Urban Scene Understanding",
|
23 |
+
"Pedestrian Navigation",
|
24 |
+
"Geospatial Data",
|
25 |
+
"Computer Vision",
|
26 |
+
"Machine Learning"
|
27 |
+
],
|
28 |
+
"license": "https://creativecommons.org/licenses/by/4.0/",
|
29 |
+
"distribution": [
|
30 |
+
{
|
31 |
+
"@type": "https://schema.org/FileObject",
|
32 |
+
"id": "raw-files-part1",
|
33 |
+
"name": "Raw_Files.part01.tar.gz",
|
34 |
+
"description": "Raw media files collected in the urban environment (part 1)",
|
35 |
+
"contentUrl": "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset/resolve/main/Raw_Files.part01.tar.gz",
|
36 |
+
"encodingFormat": "application/x-tar+gzip",
|
37 |
+
"sha256": "e39e615792f6d6eda90b2bdebf9ebe3e3be9484cf1dca0f8aa6658a86e0b5c5c"
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"@type": "https://schema.org/FileObject",
|
41 |
+
"id": "raw-files-part2",
|
42 |
+
"name": "Raw_Files.part02.tar.gz",
|
43 |
+
"description": "Raw media files collected in the urban environment (part 2)",
|
44 |
+
"contentUrl": "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset/resolve/main/Raw_Files.part02.tar.gz",
|
45 |
+
"encodingFormat": "application/x-tar+gzip",
|
46 |
+
"sha256": "dfc8803a538ad8bc9876507f025f808df30a001c21cd92173a56cd3c6047b855"
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"@type": "https://schema.org/FileObject",
|
50 |
+
"id": "raw-files-part3",
|
51 |
+
"name": "Raw_Files.part03.tar.gz",
|
52 |
+
"description": "Raw media files collected in the urban environment (part 3)",
|
53 |
+
"contentUrl": "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset/resolve/main/Raw_Files.part03.tar.gz",
|
54 |
+
"encodingFormat": "application/x-tar+gzip",
|
55 |
+
"sha256": "9e34679558f3958e9d066fbd87d7047a58206e1e91e9ed70ab30151d4c340e1c"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"@type": "https://schema.org/FileObject",
|
59 |
+
"id": "annotated-dataset",
|
60 |
+
"name": "Annotated_Resized.tar.gz",
|
61 |
+
"description": "A 4GB downsampled version of the full dataset optimized for machine learning research",
|
62 |
+
"contentUrl": "https://huggingface.co/datasets/Yiwei-Ou/Multimodal_Street-level_Place_Recognition_Dataset/resolve/main/Annotated_Resized.tar.gz",
|
63 |
+
"encodingFormat": "application/x-tar+gzip",
|
64 |
+
"sha256": "0dfdfb57ba79417fecf767b4799564a3defb949710bbf8c7e224c06b0f76758a",
|
65 |
+
"hasPart": [
|
66 |
+
{
|
67 |
+
"@type": "https://schema.org/FileSet",
|
68 |
+
"name": "DatasetImages",
|
69 |
+
"description": "High-resolution images of urban street-level scenes",
|
70 |
+
"includedPaths": [
|
71 |
+
"03 Annotated_Resized/Dataset_Full/Images/*/*.jpg",
|
72 |
+
"03 Annotated_Resized/Dataset_Full/Images/*/*.jpeg",
|
73 |
+
"03 Annotated_Resized/Dataset_Full/Images/*/*.png"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"@type": "https://schema.org/FileSet",
|
78 |
+
"name": "DatasetVideos",
|
79 |
+
"description": "Video clips of street-level urban environments",
|
80 |
+
"includedPaths": [
|
81 |
+
"03 Annotated_Resized/Dataset_Full/Videos/*/*.mp4"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"@type": "https://schema.org/FileSet",
|
86 |
+
"name": "DatasetTexts",
|
87 |
+
"description": "Supplementary annotation and metadata text files",
|
88 |
+
"includedPaths": [
|
89 |
+
"03 Annotated_Resized/Dataset_Full/Texts/*.xlsx"
|
90 |
+
]
|
91 |
+
}
|
92 |
+
]
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"recordSet": [
|
96 |
+
{
|
97 |
+
"@type": "mlc:RecordSet",
|
98 |
+
"id": "multimodal-place-recognition",
|
99 |
+
"name": "Multimodal Place Recognition Records",
|
100 |
+
"description": "Comprehensive records containing geolocated images, videos, and rich contextual metadata for urban place recognition",
|
101 |
+
"fields": [
|
102 |
+
{
|
103 |
+
"@type": "mlc:Field",
|
104 |
+
"id": "image-path",
|
105 |
+
"name": "Image Path",
|
106 |
+
"description": "Filesystem path to the high-resolution street-level image",
|
107 |
+
"dataType": "Text",
|
108 |
+
"source": {
|
109 |
+
"fileSet": "annotated-dataset",
|
110 |
+
"extract": {
|
111 |
+
"fileProperty": "filepath"
|
112 |
+
},
|
113 |
+
"transforms": [
|
114 |
+
{
|
115 |
+
"regex": ".*\\.(jpg|jpeg|png)$"
|
116 |
+
}
|
117 |
+
]
|
118 |
+
}
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"@type": "mlc:Field",
|
122 |
+
"id": "video-path",
|
123 |
+
"name": "Video Path",
|
124 |
+
"description": "Filesystem path to the corresponding street-level video clip",
|
125 |
+
"dataType": "Text",
|
126 |
+
"source": {
|
127 |
+
"fileSet": "annotated-dataset",
|
128 |
+
"extract": {
|
129 |
+
"fileProperty": "filepath"
|
130 |
+
},
|
131 |
+
"transforms": [
|
132 |
+
{
|
133 |
+
"regex": ".*\\.mp4$"
|
134 |
+
}
|
135 |
+
]
|
136 |
+
}
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"@type": "mlc:Field",
|
140 |
+
"id": "spatial-type",
|
141 |
+
"name": "Spatial Typology",
|
142 |
+
"description": "Categorical classification of urban spatial structure (Edge-Horizontal, Edge-Vertical, Node, Square)",
|
143 |
+
"dataType": "Text",
|
144 |
+
"source": {
|
145 |
+
"fileSet": "annotated-dataset",
|
146 |
+
"extract": {
|
147 |
+
"filePath": "03 Annotated_Resized/Dataset_Full/Texts/Annotations.xlsx",
|
148 |
+
"column": "Type"
|
149 |
+
}
|
150 |
+
}
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"@type": "mlc:Field",
|
154 |
+
"id": "location-code",
|
155 |
+
"name": "Location Identifier",
|
156 |
+
"description": "Unique alphanumeric code representing the specific urban location",
|
157 |
+
"dataType": "Text",
|
158 |
+
"source": {
|
159 |
+
"fileSet": "annotated-dataset",
|
160 |
+
"extract": {
|
161 |
+
"filePath": "03 Annotated_Resized/Dataset_Full/Texts/Annotations.xlsx",
|
162 |
+
"column": "Code"
|
163 |
+
}
|
164 |
+
}
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"@type": "mlc:Field",
|
168 |
+
"id": "urban-context",
|
169 |
+
"name": "Urban Context",
|
170 |
+
"description": "Comprehensive description of street-level commercial environment including store names and visible signage",
|
171 |
+
"dataType": "Text",
|
172 |
+
"source": {
|
173 |
+
"fileSet": "annotated-dataset",
|
174 |
+
"extract": {
|
175 |
+
"filePath": "03 Annotated_Resized/Dataset_Full/Texts/Annotations.xlsx",
|
176 |
+
"column": "List of Store Names and Signs"
|
177 |
+
}
|
178 |
+
}
|
179 |
+
}
|
180 |
+
]
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"citation": "@inproceedings{ou2025multimodal,\n title={Multimodal Street-level Place Recognition Dataset},\n author={Ou, Yiwei},\n year={2025},\n booktitle={NeurIPS Datasets and Benchmarks Track}\n}",
|
184 |
+
"datePublished": "2025-05-13",
|
185 |
+
"creator": {
|
186 |
+
"@type": "Person",
|
187 |
+
"name": "Yiwei Ou",
|
188 |
+
"email": "[email protected]",
|
189 |
+
"identifier": "https://huggingface.co/Yiwei-Ou"
|
190 |
+
}
|
191 |
+
}
|