WhiteAiZ commited on
Commit
253a8e9
·
verified ·
1 Parent(s): e038e18

Update Reforge

Browse files
ldm_patched/k_diffusion/sampling.py CHANGED
@@ -1054,6 +1054,51 @@ def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=Non
1054
  # logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
1055
  return x
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
  @torch.no_grad()
1058
  def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
1059
  """DPM-Solver++ (stochastic)."""
 
1054
  # logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
1055
  return x
1056
 
1057
+ @torch.no_grad()
1058
+ def sample_dpmpp_sde_classic(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
1059
+ """DPM-Solver++ (stochastic)."""
1060
+ # Older and faster DPM++ SDE version.
1061
+ eta = modules.shared.opts.dpmpp_sde_og_eta
1062
+ s_noise = modules.shared.opts.dpmpp_sde_og_s_noise
1063
+ r = modules.shared.opts.dpmpp_sde_og_r
1064
+
1065
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
1066
+ seed = extra_args.get("seed", None)
1067
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
1068
+ extra_args = {} if extra_args is None else extra_args
1069
+ s_in = x.new_ones([x.shape[0]])
1070
+ sigma_fn = lambda t: t.neg().exp()
1071
+ t_fn = lambda sigma: sigma.log().neg()
1072
+
1073
+ for i in trange(len(sigmas) - 1, disable=disable):
1074
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1075
+ if callback is not None:
1076
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1077
+ if sigmas[i + 1] == 0:
1078
+ # Euler method
1079
+ d = to_d(x, sigmas[i], denoised)
1080
+ dt = sigmas[i + 1] - sigmas[i]
1081
+ x = x + d * dt
1082
+ else:
1083
+ # DPM-Solver++
1084
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
1085
+ h = t_next - t
1086
+ s = t + h * r
1087
+ fac = 1 / (2 * r)
1088
+ # Step 1
1089
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
1090
+ s_ = t_fn(sd)
1091
+ x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
1092
+ x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
1093
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
1094
+ # Step 2
1095
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
1096
+ t_next_ = t_fn(sd)
1097
+ denoised_d = (1 - fac) * denoised + fac * denoised_2
1098
+ x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
1099
+ x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
1100
+ return x
1101
+
1102
  @torch.no_grad()
1103
  def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
1104
  """DPM-Solver++ (stochastic)."""
modules/sd_models.py CHANGED
@@ -1149,7 +1149,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, forced_relo
1149
  vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename).tuple()
1150
  sd_vae.load_vae(sd_model, vae_file, vae_source)
1151
  timer.record("load VAE")
1152
- validate_and_fix_vae(sd_model)
1153
  timer.record("load textual inversion embeddings")
1154
 
1155
  script_callbacks.model_loaded_callback(sd_model)
 
1149
  vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename).tuple()
1150
  sd_vae.load_vae(sd_model, vae_file, vae_source)
1151
  timer.record("load VAE")
1152
+ # validate_and_fix_vae(sd_model) # comment it for now, go back if any issue happens.
1153
  timer.record("load textual inversion embeddings")
1154
 
1155
  script_callbacks.model_loaded_callback(sd_model)
modules_forge/forge_alter_samplers.py CHANGED
@@ -79,6 +79,7 @@ class AlterSampler(sd_samplers_kdiffusion.KDiffusionSampler):
79
  'SEEDS_3': k_diffusion_sampling.sample_seeds_3,
80
  'SA-Solver': k_diffusion_sampling.sample_sa_solver,
81
  'SA-Solver-Pece': k_diffusion_sampling.sample_sa_solver_pece,
 
82
  }
83
 
84
  sampler_function = sampler_functions.get(sampler_name)
@@ -214,6 +215,7 @@ def build_constructor(sampler_name):
214
  return constructor
215
 
216
  samplers_data_alter = [
 
217
  sd_samplers_common.SamplerData('ER SDE', build_constructor(sampler_name='ER SDE'), ['ER SDE'], {}),
218
  sd_samplers_common.SamplerData('Kohaku_LoNyu_Yog', build_constructor(sampler_name='Kohaku_LoNyu_Yog'), ['Kohaku_LoNyu_Yog'], {}),
219
  sd_samplers_common.SamplerData('Euler CFG++', build_constructor(sampler_name='euler_cfg_pp'), ['euler_cfg_pp'], {}),
 
79
  'SEEDS_3': k_diffusion_sampling.sample_seeds_3,
80
  'SA-Solver': k_diffusion_sampling.sample_sa_solver,
81
  'SA-Solver-Pece': k_diffusion_sampling.sample_sa_solver_pece,
82
+ 'dpmpp_sde_classic': k_diffusion_sampling.sample_dpmpp_sde_classic,
83
  }
84
 
85
  sampler_function = sampler_functions.get(sampler_name)
 
215
  return constructor
216
 
217
  samplers_data_alter = [
218
+ sd_samplers_common.SamplerData('DPM++ SDE Classic', build_constructor(sampler_name='dpmpp_sde_classic'), ['dpmpp_sde_classic'], {}),
219
  sd_samplers_common.SamplerData('ER SDE', build_constructor(sampler_name='ER SDE'), ['ER SDE'], {}),
220
  sd_samplers_common.SamplerData('Kohaku_LoNyu_Yog', build_constructor(sampler_name='Kohaku_LoNyu_Yog'), ['Kohaku_LoNyu_Yog'], {}),
221
  sd_samplers_common.SamplerData('Euler CFG++', build_constructor(sampler_name='euler_cfg_pp'), ['euler_cfg_pp'], {}),