Update Reforge
Browse files
ldm_patched/k_diffusion/sampling.py
CHANGED
|
@@ -1054,6 +1054,51 @@ def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=Non
|
|
| 1054 |
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
|
| 1055 |
return x
|
| 1056 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1057 |
@torch.no_grad()
|
| 1058 |
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
| 1059 |
"""DPM-Solver++ (stochastic)."""
|
|
|
|
| 1054 |
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
|
| 1055 |
return x
|
| 1056 |
|
| 1057 |
+
@torch.no_grad()
|
| 1058 |
+
def sample_dpmpp_sde_classic(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
| 1059 |
+
"""DPM-Solver++ (stochastic)."""
|
| 1060 |
+
# Older and faster DPM++ SDE version.
|
| 1061 |
+
eta = modules.shared.opts.dpmpp_sde_og_eta
|
| 1062 |
+
s_noise = modules.shared.opts.dpmpp_sde_og_s_noise
|
| 1063 |
+
r = modules.shared.opts.dpmpp_sde_og_r
|
| 1064 |
+
|
| 1065 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
| 1066 |
+
seed = extra_args.get("seed", None)
|
| 1067 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
| 1068 |
+
extra_args = {} if extra_args is None else extra_args
|
| 1069 |
+
s_in = x.new_ones([x.shape[0]])
|
| 1070 |
+
sigma_fn = lambda t: t.neg().exp()
|
| 1071 |
+
t_fn = lambda sigma: sigma.log().neg()
|
| 1072 |
+
|
| 1073 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
| 1074 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
| 1075 |
+
if callback is not None:
|
| 1076 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 1077 |
+
if sigmas[i + 1] == 0:
|
| 1078 |
+
# Euler method
|
| 1079 |
+
d = to_d(x, sigmas[i], denoised)
|
| 1080 |
+
dt = sigmas[i + 1] - sigmas[i]
|
| 1081 |
+
x = x + d * dt
|
| 1082 |
+
else:
|
| 1083 |
+
# DPM-Solver++
|
| 1084 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
| 1085 |
+
h = t_next - t
|
| 1086 |
+
s = t + h * r
|
| 1087 |
+
fac = 1 / (2 * r)
|
| 1088 |
+
# Step 1
|
| 1089 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
|
| 1090 |
+
s_ = t_fn(sd)
|
| 1091 |
+
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
|
| 1092 |
+
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
|
| 1093 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
| 1094 |
+
# Step 2
|
| 1095 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
|
| 1096 |
+
t_next_ = t_fn(sd)
|
| 1097 |
+
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
| 1098 |
+
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
|
| 1099 |
+
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
|
| 1100 |
+
return x
|
| 1101 |
+
|
| 1102 |
@torch.no_grad()
|
| 1103 |
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
| 1104 |
"""DPM-Solver++ (stochastic)."""
|
modules/sd_models.py
CHANGED
|
@@ -1149,7 +1149,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, forced_relo
|
|
| 1149 |
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename).tuple()
|
| 1150 |
sd_vae.load_vae(sd_model, vae_file, vae_source)
|
| 1151 |
timer.record("load VAE")
|
| 1152 |
-
validate_and_fix_vae(sd_model)
|
| 1153 |
timer.record("load textual inversion embeddings")
|
| 1154 |
|
| 1155 |
script_callbacks.model_loaded_callback(sd_model)
|
|
|
|
| 1149 |
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename).tuple()
|
| 1150 |
sd_vae.load_vae(sd_model, vae_file, vae_source)
|
| 1151 |
timer.record("load VAE")
|
| 1152 |
+
# validate_and_fix_vae(sd_model) # comment it for now, go back if any issue happens.
|
| 1153 |
timer.record("load textual inversion embeddings")
|
| 1154 |
|
| 1155 |
script_callbacks.model_loaded_callback(sd_model)
|
modules_forge/forge_alter_samplers.py
CHANGED
|
@@ -79,6 +79,7 @@ class AlterSampler(sd_samplers_kdiffusion.KDiffusionSampler):
|
|
| 79 |
'SEEDS_3': k_diffusion_sampling.sample_seeds_3,
|
| 80 |
'SA-Solver': k_diffusion_sampling.sample_sa_solver,
|
| 81 |
'SA-Solver-Pece': k_diffusion_sampling.sample_sa_solver_pece,
|
|
|
|
| 82 |
}
|
| 83 |
|
| 84 |
sampler_function = sampler_functions.get(sampler_name)
|
|
@@ -214,6 +215,7 @@ def build_constructor(sampler_name):
|
|
| 214 |
return constructor
|
| 215 |
|
| 216 |
samplers_data_alter = [
|
|
|
|
| 217 |
sd_samplers_common.SamplerData('ER SDE', build_constructor(sampler_name='ER SDE'), ['ER SDE'], {}),
|
| 218 |
sd_samplers_common.SamplerData('Kohaku_LoNyu_Yog', build_constructor(sampler_name='Kohaku_LoNyu_Yog'), ['Kohaku_LoNyu_Yog'], {}),
|
| 219 |
sd_samplers_common.SamplerData('Euler CFG++', build_constructor(sampler_name='euler_cfg_pp'), ['euler_cfg_pp'], {}),
|
|
|
|
| 79 |
'SEEDS_3': k_diffusion_sampling.sample_seeds_3,
|
| 80 |
'SA-Solver': k_diffusion_sampling.sample_sa_solver,
|
| 81 |
'SA-Solver-Pece': k_diffusion_sampling.sample_sa_solver_pece,
|
| 82 |
+
'dpmpp_sde_classic': k_diffusion_sampling.sample_dpmpp_sde_classic,
|
| 83 |
}
|
| 84 |
|
| 85 |
sampler_function = sampler_functions.get(sampler_name)
|
|
|
|
| 215 |
return constructor
|
| 216 |
|
| 217 |
samplers_data_alter = [
|
| 218 |
+
sd_samplers_common.SamplerData('DPM++ SDE Classic', build_constructor(sampler_name='dpmpp_sde_classic'), ['dpmpp_sde_classic'], {}),
|
| 219 |
sd_samplers_common.SamplerData('ER SDE', build_constructor(sampler_name='ER SDE'), ['ER SDE'], {}),
|
| 220 |
sd_samplers_common.SamplerData('Kohaku_LoNyu_Yog', build_constructor(sampler_name='Kohaku_LoNyu_Yog'), ['Kohaku_LoNyu_Yog'], {}),
|
| 221 |
sd_samplers_common.SamplerData('Euler CFG++', build_constructor(sampler_name='euler_cfg_pp'), ['euler_cfg_pp'], {}),
|