WhiteAiZ's picture
Upload 1592 files
25fad07 verified
from collections import namedtuple
from copy import copy
from itertools import permutations, chain
import random
import csv
import os.path
from io import StringIO
from PIL import Image
import numpy as np
import gc
import modules.scripts as scripts
import gradio as gr
from modules import images, sd_samplers, processing, sd_models, sd_vae, sd_schedulers, errors
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, state
import modules.shared as shared
import modules.sd_samplers
import modules.sd_models
import modules.sd_vae
import re
from modules.ui_components import ToolButton
fill_values_symbol = "\U0001f4d2" # 📒
AxisInfo = namedtuple('AxisInfo', ['axis', 'values'])
def apply_field(field):
def fun(p, x, xs):
setattr(p, field, x)
return fun
def apply_prompt(p, x, xs):
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
def apply_order(p, x, xs):
token_order = []
# Initially grab the tokens from the prompt, so they can be replaced in order of earliest seen
for token in x:
token_order.append((p.prompt.find(token), token))
token_order.sort(key=lambda t: t[0])
prompt_parts = []
# Split the prompt up, taking out the tokens
for _, token in token_order:
n = p.prompt.find(token)
prompt_parts.append(p.prompt[0:n])
p.prompt = p.prompt[n + len(token):]
# Rebuild the prompt with the tokens in the order we want
prompt_tmp = ""
for idx, part in enumerate(prompt_parts):
prompt_tmp += part
prompt_tmp += x[idx]
p.prompt = prompt_tmp + p.prompt
def confirm_samplers(p, xs):
for x in xs:
if x.lower() not in sd_samplers.samplers_map:
raise RuntimeError(f"Unknown sampler: {x}")
def apply_checkpoint(p, x, xs):
info = modules.sd_models.get_closet_checkpoint_match(x)
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
p.override_settings['sd_model_checkpoint'] = info.name
def confirm_checkpoints(p, xs):
for x in xs:
if modules.sd_models.get_closet_checkpoint_match(x) is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
def confirm_checkpoints_or_none(p, xs):
for x in xs:
if x in (None, "", "None", "none"):
continue
if modules.sd_models.get_closet_checkpoint_match(x) is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
def confirm_range(min_val, max_val, axis_label):
"""Generates a AxisOption.confirm() function that checks all values are within the specified range."""
def confirm_range_fun(p, xs):
for x in xs:
if not (max_val >= x >= min_val):
raise ValueError(f'{axis_label} value "{x}" out of range [{min_val}, {max_val}]')
return confirm_range_fun
def apply_size(p, x: str, xs) -> None:
try:
width, _, height = x.partition('x')
width = int(width.strip())
height = int(height.strip())
p.width = width
p.height = height
except ValueError:
print(f"Invalid size in XYZ plot: {x}")
def find_vae(name: str):
if (name := name.strip().lower()) in ('auto', 'automatic'):
return 'Automatic'
elif name == 'none':
return 'None'
return next((k for k in modules.sd_vae.vae_dict if k.lower() == name), print(f'No VAE found for {name}; using Automatic') or 'Automatic')
def apply_vae(p, x, xs):
p.override_settings['sd_vae'] = find_vae(x)
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(','))
def apply_uni_pc_order(p, x, xs):
p.override_settings['uni_pc_order'] = min(x, p.steps - 1)
def apply_face_restore(p, opt, x):
opt = opt.lower()
if opt == 'codeformer':
is_active = True
p.face_restoration_model = 'CodeFormer'
elif opt == 'gfpgan':
is_active = True
p.face_restoration_model = 'GFPGAN'
else:
is_active = opt in ('true', 'yes', 'y', '1')
p.restore_faces = is_active
def apply_override(field, boolean: bool = False):
def fun(p, x, xs):
if boolean:
x = True if x.lower() == "true" else False
p.override_settings[field] = x
return fun
def boolean_choice(reverse: bool = False):
def choice():
return ["False", "True"] if reverse else ["True", "False"]
return choice
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
return f"{opt.label}: {x}"
def format_value(p, opt, x):
if type(x) == float:
x = round(x, 8)
return x
def format_value_join_list(p, opt, x):
return ", ".join(x)
def do_nothing(p, x, xs):
pass
def format_nothing(p, opt, x):
return ""
def format_remove_path(p, opt, x):
return os.path.basename(x)
def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
return x
def list_to_csv_string(data_list):
with StringIO() as o:
csv.writer(o).writerow(data_list)
return o.getvalue().strip()
def csv_string_to_list_strip(data_str):
return list(map(str.strip, chain.from_iterable(csv.reader(StringIO(data_str), skipinitialspace=True))))
class AxisOption:
def __init__(self, label, type, apply, format_value=format_value_add_label, confirm=None, cost=0.0, choices=None, prepare=None):
self.label = label
self.type = type
self.apply = apply
self.format_value = format_value
self.confirm = confirm
self.cost = cost
self.prepare = prepare
self.choices = choices
class AxisOptionImg2Img(AxisOption):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_img2img = True
class AxisOptionTxt2Img(AxisOption):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_img2img = False
axis_options = [
AxisOption("Nothing", str, do_nothing, format_value=format_nothing),
AxisOption("Seed", int, apply_field("seed")),
AxisOption("Var. seed", int, apply_field("subseed")),
AxisOption("Var. strength", float, apply_field("subseed_strength")),
AxisOption("Steps", int, apply_field("steps")),
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers if x.name not in opts.hide_samplers]),
AxisOptionTxt2Img("Hires sampler", str, apply_field("hr_sampler_name"), confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img if x.name not in opts.hide_samplers]),
AxisOptionImg2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img if x.name not in opts.hide_samplers]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_remove_path, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
AxisOption("Sigma noise", float, apply_field("s_noise")),
AxisOption("Schedule type", str, apply_field("scheduler"), choices=lambda: [x.label for x in sd_schedulers.schedulers]),
AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
AxisOption("Schedule rho", float, apply_override("rho")),
AxisOption("Skip Early CFG", float, apply_override('skip_early_cond')),
AxisOption("Beta schedule alpha", float, apply_override("beta_dist_alpha")),
AxisOption("Beta schedule beta", float, apply_override("beta_dist_beta")),
AxisOption("Eta", float, apply_field("eta")),
AxisOption("Clip skip", int, apply_override('CLIP_stop_at_last_layers')),
AxisOption("Denoising", float, apply_field("denoising_strength")),
AxisOption("Initial noise multiplier", float, apply_field("initial_noise_multiplier")),
AxisOption("Extra noise", float, apply_override("img2img_extra_noise")),
AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['Automatic', 'None'] + list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
AxisOption("Token merging ratio", float, apply_override('token_merging_ratio')),
AxisOption("Token merging ratio high-res", float, apply_override('token_merging_ratio_hr')),
AxisOption("Always discard next-to-last sigma", str, apply_override('always_discard_next_to_last_sigma', boolean=True), choices=boolean_choice(reverse=True)),
AxisOption("SGM noise multiplier", str, apply_override('sgm_noise_multiplier', boolean=True), choices=boolean_choice(reverse=True)),
AxisOption("Refiner checkpoint", str, apply_field('refiner_checkpoint'), format_value=format_remove_path, confirm=confirm_checkpoints_or_none, cost=1.0, choices=lambda: ['None'] + sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Refiner switch at", float, apply_field('refiner_switch_at')),
AxisOption("RNG source", str, apply_override("randn_source"), choices=lambda: ["GPU", "CPU", "NV"]),
AxisOption("FP8 mode", str, apply_override("fp8_storage"), cost=0.9, choices=lambda: ["Disable", "Enable for SDXL", "Enable"]),
AxisOption("Size", str, apply_size),
]
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, draw_individual_labels, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
list_size = (len(xs) * len(ys) * len(zs))
processed_result = None
state.job_count = list_size * p.n_iter
@staticmethod
def draw_label_on_image(image, text):
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(image)
try:
font = ImageFont.truetype("arial.ttf", 20)
except:
font = ImageFont.load_default()
margin = 10
# Split text into lines and calculate maximum width
lines = text.split('\n')
max_width = 0
total_height = 0
# Calculate total size needed for all lines
for line in lines:
try:
left, top, right, bottom = draw.textbbox((margin, margin), line, font=font)
width = right - left
height = bottom - top
except AttributeError:
width = len(line) * 10
height = 20
max_width = max(max_width, width)
total_height += height
# Draw background rectangle for all lines
draw.rectangle([(margin, margin), (margin + max_width, margin + total_height)], fill='black')
# Draw each line of text
current_height = margin
for line in lines:
draw.text((margin, current_height), line, fill='white', font=font)
try:
left, top, right, bottom = draw.textbbox((margin, margin), line, font=font)
height = bottom - top
except AttributeError:
height = 20
current_height += height
def process_cell(x, y, z, ix, iy, iz):
nonlocal processed_result
def index(ix, iy, iz):
return ix + iy * len(xs) + iz * len(xs) * len(ys)
state.job = f"{index(ix, iy, iz) + 1} out of {list_size}"
processed: Processed = cell(x, y, z, ix, iy, iz)
if processed_result is None:
# Use our first processed result object as a template container to hold our full results
processed_result = copy(processed)
processed_result.images = [None] * list_size
processed_result.all_prompts = [None] * list_size
processed_result.all_seeds = [None] * list_size
processed_result.infotexts = [None] * list_size
processed_result.index_of_first_image = 1
idx = index(ix, iy, iz)
if processed.images:
# Non-empty list indicates some degree of success.
process_image = processed.images[0] # Store reference to image
if draw_individual_labels:
# Add labels to a copy of the image
process_image = process_image.copy() # Make a copy before drawing
label = f"X: {x_labels[ix]}\nY: {y_labels[iy]}\nZ: {z_labels[iz]}"
draw_label_on_image(process_image, label)
processed_result.images[idx] = process_image
processed_result.all_prompts[idx] = processed.prompt
processed_result.all_seeds[idx] = processed.seed
processed_result.infotexts[idx] = processed.infotexts[0]
else:
cell_mode = "P"
cell_size = (processed_result.width, processed_result.height)
if processed_result.images[0] is not None:
cell_mode = processed_result.images[0].mode
# This corrects size in case of batches:
cell_size = processed_result.images[0].size
processed_result.images[idx] = Image.new(cell_mode, cell_size)
if first_axes_processed == 'x':
for ix, x in enumerate(xs):
if second_axes_processed == 'y':
for iy, y in enumerate(ys):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'y':
for iy, y in enumerate(ys):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'z':
for iz, z in enumerate(zs):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
else:
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
if not processed_result:
print("Unexpected error: Processing could not begin, you may need to refresh the tab or restart the service.")
return Processed(p, [])
elif not any(processed_result.images):
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
return Processed(p, [])
z_count = len(zs)
for i in range(z_count):
start_index = (i * len(xs) * len(ys)) + i
end_index = start_index + len(xs) * len(ys)
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
if draw_legend:
grid_max_w, grid_max_h = map(max, zip(*(img.size for img in processed_result.images[start_index:end_index])))
grid = images.draw_grid_annotations(grid, grid_max_w, grid_max_h, hor_texts, ver_texts, margin_size)
processed_result.images.insert(i, grid)
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
z_sub_grid_max_w, z_sub_grid_max_h = map(max, zip(*(img.size for img in processed_result.images[:z_count])))
if draw_legend:
z_grid = images.draw_grid_annotations(z_grid, z_sub_grid_max_w, z_sub_grid_max_h, title_texts, [[images.GridAnnotation()]])
processed_result.images.insert(0, z_grid)
processed_result.infotexts.insert(0, processed_result.infotexts[0])
return processed_result
class SharedSettingsStackHelper(object):
def __enter__(self):
pass
def __exit__(self, exc_type, exc_value, tb):
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*])?\s*")
class Script(scripts.Script):
def title(self):
return "X/Y/Z plot"
def ui(self, is_img2img):
self.current_axis_options = [x for x in axis_options if type(x) == AxisOption or x.is_img2img == is_img2img]
with gr.Row():
with gr.Column(scale=19):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
x_values_dropdown = gr.Dropdown(label="X values", visible=False, multiselect=True, interactive=True)
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
y_values_dropdown = gr.Dropdown(label="Y values", visible=False, multiselect=True, interactive=True)
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
z_values_dropdown = gr.Dropdown(label="Z values", visible=False, multiselect=True, interactive=True)
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"):
with gr.Column():
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
draw_individual_labels = gr.Checkbox(label='Draw individual labels', value=False, elem_id=self.elem_id("draw_individual_labels"))
skip_grid = gr.Checkbox(label='Skip final grid generation', value=False, elem_id=self.elem_id("skip_grid"))
items_per_grid = gr.Slider(label='Items per grid (0 = default), for sequential grid generation.', value=0, minimum=0, maximum=200, step=1, elem_id=self.elem_id("items_per_grid"))
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
with gr.Row():
vary_seeds_x = gr.Checkbox(label='Vary seeds for X', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_x"), tooltip="Use different seeds for images along X axis.")
vary_seeds_y = gr.Checkbox(label='Vary seeds for Y', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_y"), tooltip="Use different seeds for images along Y axis.")
vary_seeds_z = gr.Checkbox(label='Vary seeds for Z', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_z"), tooltip="Use different seeds for images along Z axis.")
with gr.Column():
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False, elem_id=self.elem_id("csv_mode"))
with gr.Column():
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
# Add dependency for skip_grid to force include_lone_images
def update_include_lone_images(skip_grid):
return gr.update(value=True if skip_grid else include_lone_images.value, interactive=not skip_grid)
skip_grid.change(
fn=update_include_lone_images,
inputs=[skip_grid],
outputs=[include_lone_images]
)
with gr.Row(variant="compact", elem_id="swap_axes"):
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
def swap_axes(axis1_type, axis1_values, axis1_values_dropdown, axis2_type, axis2_values, axis2_values_dropdown):
return self.current_axis_options[axis2_type].label, axis2_values, axis2_values_dropdown, self.current_axis_options[axis1_type].label, axis1_values, axis1_values_dropdown
xy_swap_args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
yz_swap_args = [y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
xz_swap_args = [x_type, x_values, x_values_dropdown, z_type, z_values, z_values_dropdown]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(axis_type, csv_mode):
axis = self.current_axis_options[axis_type]
if axis.choices:
if csv_mode:
return list_to_csv_string(axis.choices()), gr.update()
else:
return gr.update(), axis.choices()
else:
return gr.update(), gr.update()
fill_x_button.click(fn=fill, inputs=[x_type, csv_mode], outputs=[x_values, x_values_dropdown])
fill_y_button.click(fn=fill, inputs=[y_type, csv_mode], outputs=[y_values, y_values_dropdown])
fill_z_button.click(fn=fill, inputs=[z_type, csv_mode], outputs=[z_values, z_values_dropdown])
def select_axis(axis_type, axis_values, axis_values_dropdown, csv_mode):
axis_type = axis_type or 0 # if axle type is None set to 0
choices = self.current_axis_options[axis_type].choices
has_choices = choices is not None
if has_choices:
choices = choices()
if csv_mode:
if axis_values_dropdown:
axis_values = list_to_csv_string(list(filter(lambda x: x in choices, axis_values_dropdown)))
axis_values_dropdown = []
else:
if axis_values:
axis_values_dropdown = list(filter(lambda x: x in choices, csv_string_to_list_strip(axis_values)))
axis_values = ""
return (gr.Button.update(visible=has_choices), gr.Textbox.update(visible=not has_choices or csv_mode, value=axis_values),
gr.update(choices=choices if has_choices else None, visible=has_choices and not csv_mode, value=axis_values_dropdown))
x_type.change(fn=select_axis, inputs=[x_type, x_values, x_values_dropdown, csv_mode], outputs=[fill_x_button, x_values, x_values_dropdown])
y_type.change(fn=select_axis, inputs=[y_type, y_values, y_values_dropdown, csv_mode], outputs=[fill_y_button, y_values, y_values_dropdown])
z_type.change(fn=select_axis, inputs=[z_type, z_values, z_values_dropdown, csv_mode], outputs=[fill_z_button, z_values, z_values_dropdown])
def change_choice_mode(csv_mode, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown):
_fill_x_button, _x_values, _x_values_dropdown = select_axis(x_type, x_values, x_values_dropdown, csv_mode)
_fill_y_button, _y_values, _y_values_dropdown = select_axis(y_type, y_values, y_values_dropdown, csv_mode)
_fill_z_button, _z_values, _z_values_dropdown = select_axis(z_type, z_values, z_values_dropdown, csv_mode)
return _fill_x_button, _x_values, _x_values_dropdown, _fill_y_button, _y_values, _y_values_dropdown, _fill_z_button, _z_values, _z_values_dropdown
csv_mode.change(fn=change_choice_mode, inputs=[csv_mode, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown], outputs=[fill_x_button, x_values, x_values_dropdown, fill_y_button, y_values, y_values_dropdown, fill_z_button, z_values, z_values_dropdown])
def get_dropdown_update_from_params(axis, params):
val_key = f"{axis} Values"
vals = params.get(val_key, "")
valslist = csv_string_to_list_strip(vals)
return gr.update(value=valslist)
self.infotext_fields = (
(x_type, "X Type"),
(x_values, "X Values"),
(x_values_dropdown, lambda params: get_dropdown_update_from_params("X", params)),
(y_type, "Y Type"),
(y_values, "Y Values"),
(y_values_dropdown, lambda params: get_dropdown_update_from_params("Y", params)),
(z_type, "Z Type"),
(z_values, "Z Values"),
(z_values_dropdown, lambda params: get_dropdown_update_from_params("Z", params)),
)
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown,
draw_legend, draw_individual_labels, skip_grid, items_per_grid, include_lone_images, include_sub_grids,
no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode]
def draw_label_on_image(image, text):
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(image)
# You might want to adjust font size and position
try:
font = ImageFont.truetype("arial.ttf", 20)
except:
font = ImageFont.load_default()
# Draw text with background for better visibility
margin = 10
text_width, text_height = draw.textsize(text, font=font)
draw.rectangle([(margin, margin), (margin + text_width, margin + text_height)], fill='black')
draw.text((margin, margin), text, fill='white', font=font)
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown,
draw_legend, draw_individual_labels, skip_grid, items_per_grid, include_lone_images, include_sub_grids,
no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode):
x_type, y_type, z_type = x_type or 0, y_type or 0, z_type or 0 # if axle type is None set to 0
if not no_fixed_seeds:
modules.processing.fix_seed(p)
if not opts.return_grid:
p.batch_size = 1
if skip_grid:
include_lone_images = True
include_sub_grids = False
def process_axis(opt, vals, vals_dropdown):
if opt.label == 'Nothing':
return [0]
if opt.choices is not None and not csv_mode:
valslist = vals_dropdown
elif opt.prepare is not None:
valslist = opt.prepare(vals)
else:
valslist = csv_string_to_list_strip(vals)
if opt.type == int:
valslist_ext = []
for val in valslist:
if val.strip() == '':
continue
m = re_range.fullmatch(val)
mc = re_range_count.fullmatch(val)
if m is not None:
start = int(m.group(1))
end = int(m.group(2)) + 1
step = int(m.group(3)) if m.group(3) is not None else 1
valslist_ext += list(range(start, end, step))
elif mc is not None:
start = int(mc.group(1))
end = int(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == float:
valslist_ext = []
for val in valslist:
if val.strip() == '':
continue
m = re_range_float.fullmatch(val)
mc = re_range_count_float.fullmatch(val)
if m is not None:
start = float(m.group(1))
end = float(m.group(2))
step = float(m.group(3)) if m.group(3) is not None else 1
valslist_ext += np.arange(start, end + step, step).tolist()
elif mc is not None:
start = float(mc.group(1))
end = float(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += np.linspace(start=start, stop=end, num=num).tolist()
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == str_permutations:
valslist = list(permutations(valslist))
valslist = [opt.type(x) for x in valslist]
# Confirm options are valid before starting
if opt.confirm:
opt.confirm(p, valslist)
return valslist
x_opt = self.current_axis_options[x_type]
if x_opt.choices is not None and not csv_mode:
x_values = list_to_csv_string(x_values_dropdown)
xs = process_axis(x_opt, x_values, x_values_dropdown)
y_opt = self.current_axis_options[y_type]
if y_opt.choices is not None and not csv_mode:
y_values = list_to_csv_string(y_values_dropdown)
ys = process_axis(y_opt, y_values, y_values_dropdown)
z_opt = self.current_axis_options[z_type]
if z_opt.choices is not None and not csv_mode:
z_values = list_to_csv_string(z_values_dropdown)
zs = process_axis(z_opt, z_values, z_values_dropdown)
# this could be moved to common code, but unlikely to be ever triggered anywhere else
Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes
grid_mp = round(len(xs) * len(ys) * len(zs) * p.width * p.height / 1000000)
assert grid_mp < opts.img_max_size_mp, f'Error: Resulting grid would be too large ({grid_mp} MPixels) (max configured size is {opts.img_max_size_mp} MPixels)'
def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label in ['Seed', 'Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
else:
return axis_list
if not no_fixed_seeds:
xs = fix_axis_seeds(x_opt, xs)
ys = fix_axis_seeds(y_opt, ys)
zs = fix_axis_seeds(z_opt, zs)
if x_opt.label == 'Steps':
total_steps = sum(xs) * len(ys) * len(zs)
elif y_opt.label == 'Steps':
total_steps = sum(ys) * len(xs) * len(zs)
elif z_opt.label == 'Steps':
total_steps = sum(zs) * len(xs) * len(ys)
else:
total_steps = p.steps * len(xs) * len(ys) * len(zs)
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
if x_opt.label == "Hires steps":
total_steps += sum(xs) * len(ys) * len(zs)
elif y_opt.label == "Hires steps":
total_steps += sum(ys) * len(xs) * len(zs)
elif z_opt.label == "Hires steps":
total_steps += sum(zs) * len(xs) * len(ys)
elif p.hr_second_pass_steps:
total_steps += p.hr_second_pass_steps * len(xs) * len(ys) * len(zs)
else:
total_steps *= 2
total_steps *= p.n_iter
image_cell_count = p.n_iter * p.batch_size
cell_console_text = f"; {image_cell_count} images per cell" if image_cell_count > 1 else ""
plural_s = 's' if len(zs) > 1 else ''
print(f"X/Y/Z plot will create {len(xs) * len(ys) * len(zs) * image_cell_count} images on {len(zs)} {len(xs)}x{len(ys)} grid{plural_s}{cell_console_text}. (Total steps to process: {total_steps})")
shared.total_tqdm.updateTotal(total_steps)
state.xyz_plot_x = AxisInfo(x_opt, xs)
state.xyz_plot_y = AxisInfo(y_opt, ys)
state.xyz_plot_z = AxisInfo(z_opt, zs)
# If one of the axes is very slow to change between (like SD model
# checkpoint), then make sure it is in the outer iteration of the nested
# `for` loop.
first_axes_processed = 'z'
second_axes_processed = 'y'
if x_opt.cost > y_opt.cost and x_opt.cost > z_opt.cost:
first_axes_processed = 'x'
if y_opt.cost > z_opt.cost:
second_axes_processed = 'y'
else:
second_axes_processed = 'z'
elif y_opt.cost > x_opt.cost and y_opt.cost > z_opt.cost:
first_axes_processed = 'y'
if x_opt.cost > z_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'z'
elif z_opt.cost > x_opt.cost and z_opt.cost > y_opt.cost:
first_axes_processed = 'z'
if x_opt.cost > y_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'y'
grid_infotext = [None] * (1 + len(zs))
def cell(x, y, z, ix, iy, iz):
if shared.state.interrupted or state.stopping_generation:
return Processed(p, [], p.seed, "")
pc = copy(p)
pc.styles = pc.styles[:]
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
z_opt.apply(pc, z, zs)
xdim = len(xs) if vary_seeds_x else 1
ydim = len(ys) if vary_seeds_y else 1
if vary_seeds_x:
pc.seed += ix
if vary_seeds_y:
pc.seed += iy * xdim
if vary_seeds_z:
pc.seed += iz * xdim * ydim
try:
res = process_images(pc)
# If draw_individual_labels is enabled, save the labeled image immediately
if draw_individual_labels and res.images:
# Create a copy of the image and add labels
labeled_image = res.images[0].copy()
label = f"X: {x_opt.format_value(p, x_opt, x)}\nY: {y_opt.format_value(p, y_opt, y)}\nZ: {z_opt.format_value(p, z_opt, z)}"
# Draw label directly here instead of using a separate method
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(labeled_image)
try:
font = ImageFont.truetype("arial.ttf", 20)
except:
font = ImageFont.load_default()
margin = 10
lines = label.split('\n')
max_width = 0
total_height = 0
# Calculate total size needed for all lines
for line in lines:
try:
left, top, right, bottom = draw.textbbox((margin, margin), line, font=font)
width = right - left
height = bottom - top
except AttributeError:
width = len(line) * 10
height = 20
max_width = max(max_width, width)
total_height += height
# Draw background rectangle for all lines
draw.rectangle([(margin, margin), (margin + max_width, margin + total_height)], fill='black')
# Draw each line of text
current_height = margin
for line in lines:
draw.text((margin, current_height), line, fill='white', font=font)
try:
left, top, right, bottom = draw.textbbox((margin, margin), line, font=font)
height = bottom - top
except AttributeError:
height = 20
current_height += height
# Generate a unique filename based on coordinates
filename = f"xyz_grid_x{ix}_y{iy}_z{iz}"
# Save the labeled image
if opts.grid_save:
images.save_image(
labeled_image,
p.outpath_grids,
filename,
info=res.infotexts[0],
extension=opts.grid_format,
prompt=res.all_prompts[0],
seed=res.all_seeds[0],
grid=False,
p=res
)
# Use the labeled image for the grid
res.images[0] = labeled_image
except Exception as e:
errors.display(e, "generating image for xyz plot")
res = Processed(p, [], p.seed, "")
# Rest of the original cell function code...
subgrid_index = 1 + iz
if grid_infotext[subgrid_index] is None and ix == 0 and iy == 0:
pc.extra_generation_params = copy(pc.extra_generation_params)
pc.extra_generation_params['Script'] = self.title()
if x_opt.label != 'Nothing':
pc.extra_generation_params["X Type"] = x_opt.label
pc.extra_generation_params["X Values"] = x_values
if x_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed X Values"] = ", ".join([str(x) for x in xs])
if y_opt.label != 'Nothing':
pc.extra_generation_params["Y Type"] = y_opt.label
pc.extra_generation_params["Y Values"] = y_values
if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
grid_infotext[subgrid_index] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
if grid_infotext[0] is None and ix == 0 and iy == 0 and iz == 0:
pc.extra_generation_params = copy(pc.extra_generation_params)
if z_opt.label != 'Nothing':
pc.extra_generation_params["Z Type"] = z_opt.label
pc.extra_generation_params["Z Values"] = z_values
if z_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Z Values"] = ", ".join([str(z) for z in zs])
grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
return res
with SharedSettingsStackHelper():
if items_per_grid > 0 and not skip_grid:
items_per_grid = max(1, int(items_per_grid))
# Determine which axis has the most values
axis_lengths = {
'x': (len(xs), xs, x_opt, 'X'),
'y': (len(ys), ys, y_opt, 'Y'),
'z': (len(zs), zs, z_opt, 'Z')
}
# Find the axis with the most values
main_axis = max(axis_lengths.items(), key=lambda x: x[1][0])[0]
length, values, opt, axis_name = axis_lengths[main_axis]
if length > 1: # Only process if we have more than one value
chunks = [values[i:i + items_per_grid] for i in range(0, length, items_per_grid)]
all_processed = []
for chunk_idx, chunk in enumerate(chunks):
print(f"Processing grid {chunk_idx + 1}/{len(chunks)}")
grid_args = {
'p': p,
'xs': chunk if main_axis == 'x' else xs,
'ys': chunk if main_axis == 'y' else ys,
'zs': chunk if main_axis == 'z' else zs,
'x_labels': [x_opt.format_value(p, x_opt, x) for x in (chunk if main_axis == 'x' else xs)],
'y_labels': [y_opt.format_value(p, y_opt, y) for y in (chunk if main_axis == 'y' else ys)],
'z_labels': [z_opt.format_value(p, z_opt, z) for z in (chunk if main_axis == 'z' else zs)],
'cell': cell,
'draw_legend': draw_legend,
'draw_individual_labels': draw_individual_labels,
'include_lone_images': include_lone_images,
'include_sub_grids': include_sub_grids,
'first_axes_processed': first_axes_processed,
'second_axes_processed': second_axes_processed,
'margin_size': margin_size
}
chunk_processed = draw_xyz_grid(**grid_args)
# Keep only necessary data
if include_lone_images:
z_count = len(grid_args['zs'])
main_grid = chunk_processed.images[0]
individual_images = chunk_processed.images[z_count + 1:]
chunk_processed.images = [main_grid] + individual_images
main_info = chunk_processed.infotexts[0]
individual_infos = chunk_processed.infotexts[z_count + 1:]
chunk_processed.infotexts = [main_info] + individual_infos
main_prompt = chunk_processed.all_prompts[0]
individual_prompts = chunk_processed.all_prompts[z_count + 1:]
chunk_processed.all_prompts = [main_prompt] + individual_prompts
main_seed = chunk_processed.all_seeds[0]
individual_seeds = chunk_processed.all_seeds[z_count + 1:]
chunk_processed.all_seeds = [main_seed] + individual_seeds
else:
chunk_processed.images = [chunk_processed.images[0]]
chunk_processed.all_prompts = [chunk_processed.all_prompts[0]]
chunk_processed.all_seeds = [chunk_processed.all_seeds[0]]
chunk_processed.infotexts = [chunk_processed.infotexts[0]]
# Save images immediately
if opts.grid_save:
for i, image in enumerate(chunk_processed.images):
suffix = "" if i == 0 else f"_{i}"
images.save_image(
image,
p.outpath_grids,
f"xyz_grid_{chunk_idx+1}{suffix}",
info=chunk_processed.infotexts[i],
extension=opts.grid_format,
prompt=chunk_processed.all_prompts[i],
seed=chunk_processed.all_seeds[i],
grid=True if i == 0 else False,
p=chunk_processed
)
# Store only essential information for final results
if chunk_idx == 0:
final_processed = chunk_processed
else:
final_processed.images.extend(chunk_processed.images)
final_processed.all_prompts.extend(chunk_processed.all_prompts)
final_processed.all_seeds.extend(chunk_processed.all_seeds)
final_processed.infotexts.extend(chunk_processed.infotexts)
# Clear unnecessary references and force garbage collection
chunk_processed.images = []
chunk_processed.all_prompts = []
chunk_processed.all_seeds = []
chunk_processed.infotexts = []
del chunk_processed
gc.collect()
return final_processed
# Handle either skip_grid or normal processing without items_per_grid
if skip_grid:
# When skipping grid, process all images individually
processed = Processed(p, [], p.seed, "")
processed.images = []
processed.infotexts = []
processed.all_prompts = []
processed.all_seeds = []
total = len(xs) * len(ys) * len(zs)
done = 0
for iz, z in enumerate(zs):
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
if state.interrupted:
break
proc = cell(x, y, z, ix, iy, iz)
if proc.images:
processed.images.extend(proc.images)
processed.infotexts.extend(proc.infotexts)
processed.all_prompts.extend(proc.all_prompts)
processed.all_seeds.extend(proc.all_seeds)
done += 1
print(f"Processing image {done}/{total}")
if opts.grid_save:
# Save individual images
for i, image in enumerate(processed.images):
images.save_image(
image,
p.outpath_grids,
f"xyz_image_{i+1}",
info=processed.infotexts[i],
extension=opts.grid_format,
prompt=processed.all_prompts[i],
seed=processed.all_seeds[i],
grid=False,
p=processed
)
return processed
else:
# Original grid processing without items_per_grid
processed = draw_xyz_grid(
p,
xs=xs,
ys=ys,
zs=zs,
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
z_labels=[z_opt.format_value(p, z_opt, z) for z in zs],
cell=cell,
draw_legend=draw_legend,
draw_individual_labels=draw_individual_labels,
include_lone_images=include_lone_images,
include_sub_grids=include_sub_grids,
first_axes_processed=first_axes_processed,
second_axes_processed=second_axes_processed,
margin_size=margin_size
)
if not processed.images:
# It broke, no further handling needed.
return processed
z_count = len(zs)
# Set the grid infotexts to the real ones with extra_generation_params
processed.infotexts[:1 + z_count] = grid_infotext[:1 + z_count]
if opts.grid_save:
# Save the main xyz grid
images.save_image(
processed.images[0],
p.outpath_grids,
"xyz_grid",
info=processed.infotexts[0],
extension=opts.grid_format,
prompt=processed.all_prompts[0],
seed=processed.all_seeds[0],
grid=True,
p=processed
)
# Save sub-grids if enabled
if include_sub_grids:
for idx in range(1, z_count + 1):
images.save_image(
processed.images[idx],
p.outpath_grids,
f"xyz_grid_z_{idx}",
info=processed.infotexts[idx],
extension=opts.grid_format,
prompt=processed.all_prompts[idx],
seed=processed.all_seeds[idx],
grid=True,
p=processed
)
# Save individual images if enabled
if include_lone_images:
individual_images = processed.images[z_count + 1:]
individual_infos = processed.infotexts[z_count + 1:]
individual_prompts = processed.all_prompts[z_count + 1:]
individual_seeds = processed.all_seeds[z_count + 1:]
for idx, (image, info, prompt, seed) in enumerate(zip(
individual_images, individual_infos, individual_prompts, individual_seeds)):
images.save_image(
image,
p.outpath_grids,
f"xyz_grid_image_{idx + 1}",
info=info,
extension=opts.grid_format,
prompt=prompt,
seed=seed,
grid=False,
p=processed
)
# Organize the final image list
if include_lone_images:
# Keep main grid, sub-grids (if enabled), and individual images
main_grid = processed.images[0]
sub_grids = processed.images[1:z_count + 1] if include_sub_grids else []
individual_images = processed.images[z_count + 1:]
processed.images = [main_grid] + sub_grids + individual_images
# Adjust other lists accordingly
main_info = processed.infotexts[0]
sub_infos = processed.infotexts[1:z_count + 1] if include_sub_grids else []
individual_infos = processed.infotexts[z_count + 1:]
processed.infotexts = [main_info] + sub_infos + individual_infos
main_prompt = processed.all_prompts[0]
sub_prompts = processed.all_prompts[1:z_count + 1] if include_sub_grids else []
individual_prompts = processed.all_prompts[z_count + 1:]
processed.all_prompts = [main_prompt] + sub_prompts + individual_prompts
main_seed = processed.all_seeds[0]
sub_seeds = processed.all_seeds[1:z_count + 1] if include_sub_grids else []
individual_seeds = processed.all_seeds[z_count + 1:]
processed.all_seeds = [main_seed] + sub_seeds + individual_seeds
elif include_sub_grids:
# Keep only the main grid and sub-grids
processed.images = processed.images[:z_count + 1]
processed.infotexts = processed.infotexts[:z_count + 1]
processed.all_prompts = processed.all_prompts[:z_count + 1]
processed.all_seeds = processed.all_seeds[:z_count + 1]
else:
# Keep only the main grid
processed.images = [processed.images[0]]
processed.infotexts = [processed.infotexts[0]]
processed.all_prompts = [processed.all_prompts[0]]
processed.all_seeds = [processed.all_seeds[0]]
return processed