|
import os |
|
import safetensors |
|
import torch |
|
import typing |
|
|
|
from transformers import CLIPTokenizer, T5TokenizerFast |
|
|
|
from modules import shared, devices, modelloader, sd_hijack_clip, prompt_parser |
|
from modules.models.sd3.other_impls import SDClipModel, SDXLClipG, T5XXLModel, SD3Tokenizer |
|
|
|
|
|
class SafetensorsMapping(typing.Mapping): |
|
def __init__(self, file): |
|
self.file = file |
|
|
|
def __len__(self): |
|
return len(self.file.keys()) |
|
|
|
def __iter__(self): |
|
for key in self.file.keys(): |
|
yield key |
|
|
|
def __getitem__(self, key): |
|
return self.file.get_tensor(key) |
|
|
|
|
|
CLIPL_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_l.safetensors" |
|
CLIPL_CONFIG = { |
|
"hidden_act": "quick_gelu", |
|
"hidden_size": 768, |
|
"intermediate_size": 3072, |
|
"num_attention_heads": 12, |
|
"num_hidden_layers": 12, |
|
} |
|
|
|
CLIPG_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_g.safetensors" |
|
CLIPG_CONFIG = { |
|
"hidden_act": "gelu", |
|
"hidden_size": 1280, |
|
"intermediate_size": 5120, |
|
"num_attention_heads": 20, |
|
"num_hidden_layers": 32, |
|
"textual_inversion_key": "clip_g", |
|
} |
|
|
|
T5_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors" |
|
T5_CONFIG = { |
|
"d_ff": 10240, |
|
"d_model": 4096, |
|
"num_heads": 64, |
|
"num_layers": 24, |
|
"vocab_size": 32128, |
|
} |
|
|
|
|
|
class Sd3ClipLG(sd_hijack_clip.TextConditionalModel): |
|
def __init__(self, clip_l, clip_g): |
|
super().__init__() |
|
|
|
self.clip_l = clip_l |
|
self.clip_g = clip_g |
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
empty = self.tokenizer('')["input_ids"] |
|
self.id_start = empty[0] |
|
self.id_end = empty[1] |
|
self.id_pad = empty[1] |
|
|
|
self.return_pooled = True |
|
|
|
def tokenize(self, texts): |
|
return self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] |
|
|
|
def encode_with_transformers(self, tokens): |
|
tokens_g = tokens.clone() |
|
|
|
for batch_pos in range(tokens_g.shape[0]): |
|
index = tokens_g[batch_pos].cpu().tolist().index(self.id_end) |
|
tokens_g[batch_pos, index+1:tokens_g.shape[1]] = 0 |
|
|
|
l_out, l_pooled = self.clip_l(tokens) |
|
g_out, g_pooled = self.clip_g(tokens_g) |
|
|
|
lg_out = torch.cat([l_out, g_out], dim=-1) |
|
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1])) |
|
|
|
vector_out = torch.cat((l_pooled, g_pooled), dim=-1) |
|
|
|
lg_out.pooled = vector_out |
|
return lg_out |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
return torch.zeros((nvpt, 768+1280), device=devices.device) |
|
|
|
|
|
class Sd3T5(torch.nn.Module): |
|
def __init__(self, t5xxl): |
|
super().__init__() |
|
|
|
self.t5xxl = t5xxl |
|
self.tokenizer = T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl") |
|
|
|
empty = self.tokenizer('', padding='max_length', max_length=2)["input_ids"] |
|
self.id_end = empty[0] |
|
self.id_pad = empty[1] |
|
|
|
def tokenize(self, texts): |
|
return self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] |
|
|
|
def tokenize_line(self, line, *, target_token_count=None): |
|
if shared.opts.emphasis != "None": |
|
parsed = prompt_parser.parse_prompt_attention(line) |
|
else: |
|
parsed = [[line, 1.0]] |
|
|
|
tokenized = self.tokenize([text for text, _ in parsed]) |
|
|
|
tokens = [] |
|
multipliers = [] |
|
|
|
for text_tokens, (text, weight) in zip(tokenized, parsed): |
|
if text == 'BREAK' and weight == -1: |
|
continue |
|
|
|
tokens += text_tokens |
|
multipliers += [weight] * len(text_tokens) |
|
|
|
tokens += [self.id_end] |
|
multipliers += [1.0] |
|
|
|
if target_token_count is not None: |
|
if len(tokens) < target_token_count: |
|
tokens += [self.id_pad] * (target_token_count - len(tokens)) |
|
multipliers += [1.0] * (target_token_count - len(tokens)) |
|
else: |
|
tokens = tokens[0:target_token_count] |
|
multipliers = multipliers[0:target_token_count] |
|
|
|
return tokens, multipliers |
|
|
|
def forward(self, texts, *, token_count): |
|
if not self.t5xxl or not shared.opts.sd3_enable_t5: |
|
return torch.zeros((len(texts), token_count, 4096), device=devices.device, dtype=devices.dtype) |
|
|
|
tokens_batch = [] |
|
|
|
for text in texts: |
|
tokens, multipliers = self.tokenize_line(text, target_token_count=token_count) |
|
tokens_batch.append(tokens) |
|
|
|
t5_out, t5_pooled = self.t5xxl(tokens_batch) |
|
|
|
return t5_out |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
return torch.zeros((nvpt, 4096), device=devices.device) |
|
|
|
|
|
class SD3Cond(torch.nn.Module): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
self.tokenizer = SD3Tokenizer() |
|
|
|
with torch.no_grad(): |
|
self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=devices.dtype) |
|
self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=devices.dtype, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG) |
|
|
|
if shared.opts.sd3_enable_t5: |
|
self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=devices.dtype) |
|
else: |
|
self.t5xxl = None |
|
|
|
self.model_lg = Sd3ClipLG(self.clip_l, self.clip_g) |
|
self.model_t5 = Sd3T5(self.t5xxl) |
|
|
|
def forward(self, prompts: list[str]): |
|
with devices.without_autocast(): |
|
lg_out, vector_out = self.model_lg(prompts) |
|
t5_out = self.model_t5(prompts, token_count=lg_out.shape[1]) |
|
lgt_out = torch.cat([lg_out, t5_out], dim=-2) |
|
|
|
return { |
|
'crossattn': lgt_out, |
|
'vector': vector_out, |
|
} |
|
|
|
def before_load_weights(self, state_dict): |
|
clip_path = os.path.join(shared.models_path, "CLIP") |
|
|
|
if 'text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight' not in state_dict: |
|
clip_g_file = modelloader.load_file_from_url(CLIPG_URL, model_dir=clip_path, file_name="clip_g.safetensors") |
|
with safetensors.safe_open(clip_g_file, framework="pt") as file: |
|
self.clip_g.transformer.load_state_dict(SafetensorsMapping(file)) |
|
|
|
if 'text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight' not in state_dict: |
|
clip_l_file = modelloader.load_file_from_url(CLIPL_URL, model_dir=clip_path, file_name="clip_l.safetensors") |
|
with safetensors.safe_open(clip_l_file, framework="pt") as file: |
|
self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False) |
|
|
|
if self.t5xxl and 'text_encoders.t5xxl.transformer.encoder.embed_tokens.weight' not in state_dict: |
|
t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp16.safetensors") |
|
with safetensors.safe_open(t5_file, framework="pt") as file: |
|
self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False) |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
return self.model_lg.encode_embedding_init_text(init_text, nvpt) |
|
|
|
def tokenize(self, texts): |
|
return self.model_lg.tokenize(texts) |
|
|
|
def medvram_modules(self): |
|
return [self.clip_g, self.clip_l, self.t5xxl] |
|
|
|
def get_token_count(self, text): |
|
_, token_count = self.model_lg.process_texts([text]) |
|
|
|
return token_count |
|
|
|
def get_target_prompt_token_count(self, token_count): |
|
return self.model_lg.get_target_prompt_token_count(token_count) |
|
|