|
import re |
|
import torch |
|
import os |
|
import ldm_patched.utils.path_utils |
|
from ldm_patched.modules.clip_vision import clip_preprocess, Output |
|
import ldm_patched.modules.utils |
|
import ldm_patched.modules.model_management as model_management |
|
try: |
|
import torchvision.transforms.v2 as T |
|
except ImportError: |
|
import torchvision.transforms as T |
|
|
|
def get_clipvision_file(preset): |
|
preset = preset.lower() |
|
clipvision_list = ldm_patched.utils.path_utils.get_filename_list("clip_vision") |
|
|
|
if preset.startswith("vit-g"): |
|
pattern = r'(ViT.bigG.14.*39B.b160k|ipadapter.*sdxl|sdxl.*model)\.(bin|safetensors)' |
|
elif preset.startswith("kolors"): |
|
pattern = r'clip.vit.large.patch14.336\.(bin|safetensors)' |
|
else: |
|
pattern = r'(ViT.H.14.*s32B.b79K|ipadapter.*sd15|sd1.?5.*model)\.(bin|safetensors)' |
|
clipvision_file = [e for e in clipvision_list if re.search(pattern, e, re.IGNORECASE)] |
|
|
|
clipvision_file = ldm_patched.utils.path_utils.get_full_path("clip_vision", clipvision_file[0]) if clipvision_file else None |
|
|
|
return clipvision_file |
|
|
|
def get_ipadapter_file(preset, is_sdxl): |
|
preset = preset.lower() |
|
ipadapter_list = ldm_patched.utils.path_utils.get_filename_list("ipadapter") |
|
is_insightface = False |
|
lora_pattern = None |
|
|
|
if preset.startswith("light"): |
|
if is_sdxl: |
|
raise Exception("light model is not supported for SDXL") |
|
pattern = r'sd15.light.v11\.(safetensors|bin)$' |
|
|
|
if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]: |
|
pattern = r'sd15.light\.(safetensors|bin)$' |
|
elif preset.startswith("standard"): |
|
if is_sdxl: |
|
pattern = r'ip.adapter.sdxl.vit.h\.(safetensors|bin)$' |
|
else: |
|
pattern = r'ip.adapter.sd15\.(safetensors|bin)$' |
|
elif preset.startswith("vit-g"): |
|
if is_sdxl: |
|
pattern = r'ip.adapter.sdxl\.(safetensors|bin)$' |
|
else: |
|
pattern = r'sd15.vit.g\.(safetensors|bin)$' |
|
elif preset.startswith("plus ("): |
|
if is_sdxl: |
|
pattern = r'plus.sdxl.vit.h\.(safetensors|bin)$' |
|
else: |
|
pattern = r'ip.adapter.plus.sd15\.(safetensors|bin)$' |
|
elif preset.startswith("plus face"): |
|
if is_sdxl: |
|
pattern = r'plus.face.sdxl.vit.h\.(safetensors|bin)$' |
|
else: |
|
pattern = r'plus.face.sd15\.(safetensors|bin)$' |
|
elif preset.startswith("full"): |
|
if is_sdxl: |
|
raise Exception("full face model is not supported for SDXL") |
|
pattern = r'full.face.sd15\.(safetensors|bin)$' |
|
elif preset.startswith("faceid portrait ("): |
|
if is_sdxl: |
|
pattern = r'portrait.sdxl\.(safetensors|bin)$' |
|
else: |
|
pattern = r'portrait.v11.sd15\.(safetensors|bin)$' |
|
|
|
if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]: |
|
pattern = r'portrait.sd15\.(safetensors|bin)$' |
|
is_insightface = True |
|
elif preset.startswith("faceid portrait unnorm"): |
|
if is_sdxl: |
|
pattern = r'portrait.sdxl.unnorm\.(safetensors|bin)$' |
|
else: |
|
raise Exception("portrait unnorm model is not supported for SD1.5") |
|
is_insightface = True |
|
elif preset == "faceid": |
|
if is_sdxl: |
|
pattern = r'faceid.sdxl\.(safetensors|bin)$' |
|
lora_pattern = r'faceid.sdxl.lora\.safetensors$' |
|
else: |
|
pattern = r'faceid.sd15\.(safetensors|bin)$' |
|
lora_pattern = r'faceid.sd15.lora\.safetensors$' |
|
is_insightface = True |
|
elif preset.startswith("faceid plus -"): |
|
if is_sdxl: |
|
raise Exception("faceid plus model is not supported for SDXL") |
|
pattern = r'faceid.plus.sd15\.(safetensors|bin)$' |
|
lora_pattern = r'faceid.plus.sd15.lora\.safetensors$' |
|
is_insightface = True |
|
elif preset.startswith("faceid plus v2"): |
|
if is_sdxl: |
|
pattern = r'faceid.plusv2.sdxl\.(safetensors|bin)$' |
|
lora_pattern = r'faceid.plusv2.sdxl.lora\.safetensors$' |
|
else: |
|
pattern = r'faceid.plusv2.sd15\.(safetensors|bin)$' |
|
lora_pattern = r'faceid.plusv2.sd15.lora\.safetensors$' |
|
is_insightface = True |
|
|
|
elif preset.startswith("composition"): |
|
if is_sdxl: |
|
pattern = r'plus.composition.sdxl\.safetensors$' |
|
else: |
|
pattern = r'plus.composition.sd15\.safetensors$' |
|
elif preset.startswith("kolors"): |
|
if is_sdxl: |
|
pattern = r'(ip_adapter_plus_general|kolors.ip.adapter.plus)\.(safetensors|bin)$' |
|
else: |
|
raise Exception("Only supported for Kolors model") |
|
else: |
|
raise Exception(f"invalid type '{preset}'") |
|
|
|
ipadapter_file = [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)] |
|
ipadapter_file = ldm_patched.utils.path_utils.get_full_path("ipadapter", ipadapter_file[0]) if ipadapter_file else None |
|
|
|
return ipadapter_file, is_insightface, lora_pattern |
|
|
|
def get_lora_file(pattern): |
|
lora_list = ldm_patched.utils.path_utils.get_filename_list("loras") |
|
lora_file = [e for e in lora_list if re.search(pattern, e, re.IGNORECASE)] |
|
lora_file = ldm_patched.utils.path_utils.get_full_path("loras", lora_file[0]) if lora_file else None |
|
|
|
return lora_file |
|
|
|
def ipadapter_model_loader(file): |
|
model = ldm_patched.modules.utils.load_torch_file(file, safe_load=True) |
|
|
|
if file.lower().endswith(".safetensors"): |
|
st_model = {"image_proj": {}, "ip_adapter": {}} |
|
for key in model.keys(): |
|
if key.startswith("image_proj."): |
|
st_model["image_proj"][key.replace("image_proj.", "")] = model[key] |
|
elif key.startswith("ip_adapter."): |
|
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key] |
|
elif key.startswith("adapter_modules."): |
|
st_model["ip_adapter"][key.replace("adapter_modules.", "")] = model[key] |
|
model = st_model |
|
del st_model |
|
elif "adapter_modules" in model.keys(): |
|
model["ip_adapter"] = model.pop("adapter_modules") |
|
|
|
if not "ip_adapter" in model.keys() or not model["ip_adapter"]: |
|
raise Exception("invalid IPAdapter model {}".format(file)) |
|
|
|
if 'plusv2' in file.lower(): |
|
model["faceidplusv2"] = True |
|
|
|
if 'unnorm' in file.lower(): |
|
model["portraitunnorm"] = True |
|
|
|
return model |
|
|
|
def insightface_loader(provider, model_name='buffalo_l'): |
|
try: |
|
from insightface.app import FaceAnalysis |
|
except ImportError as e: |
|
raise Exception(e) |
|
|
|
path = os.path.join(ldm_patched.utils.path_utils.models_dir, "insightface") |
|
model = FaceAnalysis(name=model_name, root=path, providers=[provider + 'ExecutionProvider',]) |
|
model.prepare(ctx_id=0, det_size=(640, 640)) |
|
return model |
|
|
|
def split_tiles(embeds, num_split): |
|
_, H, W, _ = embeds.shape |
|
out = [] |
|
for x in embeds: |
|
x = x.unsqueeze(0) |
|
h, w = H // num_split, W // num_split |
|
x_split = torch.cat([x[:, i*h:(i+1)*h, j*w:(j+1)*w, :] for i in range(num_split) for j in range(num_split)], dim=0) |
|
out.append(x_split) |
|
|
|
x_split = torch.stack(out, dim=0) |
|
|
|
return x_split |
|
|
|
def merge_hiddenstates(x, tiles): |
|
chunk_size = tiles*tiles |
|
x = x.split(chunk_size) |
|
|
|
out = [] |
|
for embeds in x: |
|
num_tiles = embeds.shape[0] |
|
tile_size = int((embeds.shape[1]-1) ** 0.5) |
|
grid_size = int(num_tiles ** 0.5) |
|
|
|
|
|
class_tokens = embeds[:, 0, :] |
|
avg_class_token = class_tokens.mean(dim=0, keepdim=True).unsqueeze(0) |
|
|
|
patch_embeds = embeds[:, 1:, :] |
|
reshaped = patch_embeds.reshape(grid_size, grid_size, tile_size, tile_size, embeds.shape[-1]) |
|
|
|
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1) |
|
for i in range(grid_size)], dim=0) |
|
|
|
merged = merged.unsqueeze(0) |
|
|
|
|
|
pooled = torch.nn.functional.adaptive_avg_pool2d(merged.permute(0, 3, 1, 2), (tile_size, tile_size)).permute(0, 2, 3, 1) |
|
flattened = pooled.reshape(1, tile_size*tile_size, embeds.shape[-1]) |
|
|
|
|
|
with_class = torch.cat([avg_class_token, flattened], dim=1) |
|
out.append(with_class) |
|
|
|
out = torch.cat(out, dim=0) |
|
|
|
return out |
|
|
|
def merge_embeddings(x, tiles): |
|
chunk_size = tiles*tiles |
|
x = x.split(chunk_size) |
|
|
|
out = [] |
|
for embeds in x: |
|
num_tiles = embeds.shape[0] |
|
grid_size = int(num_tiles ** 0.5) |
|
tile_size = int(embeds.shape[1] ** 0.5) |
|
reshaped = embeds.reshape(grid_size, grid_size, tile_size, tile_size) |
|
|
|
|
|
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1) |
|
for i in range(grid_size)], dim=0) |
|
|
|
merged = merged.unsqueeze(0) |
|
|
|
|
|
pooled = torch.nn.functional.adaptive_avg_pool2d(merged, (tile_size, tile_size)) |
|
pooled = pooled.flatten(1) |
|
out.append(pooled) |
|
out = torch.cat(out, dim=0) |
|
|
|
return out |
|
|
|
def encode_image_masked(clip_vision, image, mask=None, batch_size=0, tiles=1, ratio=1.0, clipvision_size=224): |
|
|
|
embeds = encode_image_masked_(clip_vision, image, mask, batch_size, clipvision_size=clipvision_size) |
|
tiles = min(tiles, 16) |
|
|
|
if tiles > 1: |
|
|
|
image_split = split_tiles(image, tiles) |
|
|
|
|
|
embeds_split = Output() |
|
for i in image_split: |
|
encoded = encode_image_masked_(clip_vision, i, mask, batch_size, clipvision_size=clipvision_size) |
|
if not hasattr(embeds_split, "image_embeds"): |
|
|
|
embeds_split["image_embeds"] = encoded["image_embeds"] |
|
embeds_split["penultimate_hidden_states"] = encoded["penultimate_hidden_states"] |
|
else: |
|
|
|
embeds_split["image_embeds"] = torch.cat((embeds_split["image_embeds"], encoded["image_embeds"]), dim=0) |
|
embeds_split["penultimate_hidden_states"] = torch.cat((embeds_split["penultimate_hidden_states"], encoded["penultimate_hidden_states"]), dim=0) |
|
|
|
|
|
embeds_split["image_embeds"] = merge_embeddings(embeds_split["image_embeds"], tiles) |
|
embeds_split["penultimate_hidden_states"] = merge_hiddenstates(embeds_split["penultimate_hidden_states"], tiles) |
|
|
|
|
|
if embeds['image_embeds'].shape[0] > 1: |
|
embeds['image_embeds'] = embeds['image_embeds']*ratio + embeds_split['image_embeds']*(1-ratio) |
|
embeds['penultimate_hidden_states'] = embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']*(1-ratio) |
|
|
|
|
|
else: |
|
embeds['image_embeds'] = torch.cat([embeds['image_embeds']*ratio, embeds_split['image_embeds']]) |
|
embeds['penultimate_hidden_states'] = torch.cat([embeds['penultimate_hidden_states']*ratio, embeds_split['penultimate_hidden_states']]) |
|
|
|
|
|
|
|
return embeds |
|
|
|
def encode_image_masked_(clip_vision, image, mask=None, batch_size=0, clipvision_size=224): |
|
model_management.load_model_gpu(clip_vision.patcher) |
|
outputs = Output() |
|
|
|
if batch_size == 0: |
|
batch_size = image.shape[0] |
|
elif batch_size > image.shape[0]: |
|
batch_size = image.shape[0] |
|
|
|
image_batch = torch.split(image, batch_size, dim=0) |
|
|
|
for img in image_batch: |
|
img = img.to(clip_vision.load_device) |
|
pixel_values = clip_preprocess(img, size=clipvision_size).float() |
|
|
|
|
|
if mask is not None: |
|
pixel_values = pixel_values * mask.to(clip_vision.load_device) |
|
|
|
out = clip_vision.model(pixel_values=pixel_values, intermediate_output=-2) |
|
|
|
if not hasattr(outputs, "last_hidden_state"): |
|
outputs["last_hidden_state"] = out[0].to(model_management.intermediate_device()) |
|
outputs["image_embeds"] = out[2].to(model_management.intermediate_device()) |
|
outputs["penultimate_hidden_states"] = out[1].to(model_management.intermediate_device()) |
|
else: |
|
outputs["last_hidden_state"] = torch.cat((outputs["last_hidden_state"], out[0].to(model_management.intermediate_device())), dim=0) |
|
outputs["image_embeds"] = torch.cat((outputs["image_embeds"], out[2].to(model_management.intermediate_device())), dim=0) |
|
outputs["penultimate_hidden_states"] = torch.cat((outputs["penultimate_hidden_states"], out[1].to(model_management.intermediate_device())), dim=0) |
|
|
|
del img, pixel_values, out |
|
torch.cuda.empty_cache() |
|
|
|
return outputs |
|
|
|
def tensor_to_size(source, dest_size): |
|
if isinstance(dest_size, torch.Tensor): |
|
dest_size = dest_size.shape[0] |
|
source_size = source.shape[0] |
|
|
|
if source_size < dest_size: |
|
shape = [dest_size - source_size] + [1]*(source.dim()-1) |
|
source = torch.cat((source, source[-1:].repeat(shape)), dim=0) |
|
elif source_size > dest_size: |
|
source = source[:dest_size] |
|
|
|
return source |
|
|
|
def min_(tensor_list): |
|
|
|
x = torch.stack(tensor_list) |
|
mn = x.min(axis=0)[0] |
|
return torch.clamp(mn, min=0) |
|
|
|
def max_(tensor_list): |
|
|
|
x = torch.stack(tensor_list) |
|
mx = x.max(axis=0)[0] |
|
return torch.clamp(mx, max=1) |
|
|
|
|
|
def contrast_adaptive_sharpening(image, amount): |
|
img = T.functional.pad(image, (1, 1, 1, 1)).cpu() |
|
|
|
a = img[..., :-2, :-2] |
|
b = img[..., :-2, 1:-1] |
|
c = img[..., :-2, 2:] |
|
d = img[..., 1:-1, :-2] |
|
e = img[..., 1:-1, 1:-1] |
|
f = img[..., 1:-1, 2:] |
|
g = img[..., 2:, :-2] |
|
h = img[..., 2:, 1:-1] |
|
i = img[..., 2:, 2:] |
|
|
|
|
|
cross = (b, d, e, f, h) |
|
mn = min_(cross) |
|
mx = max_(cross) |
|
|
|
diag = (a, c, g, i) |
|
mn2 = min_(diag) |
|
mx2 = max_(diag) |
|
mx = mx + mx2 |
|
mn = mn + mn2 |
|
|
|
|
|
inv_mx = torch.reciprocal(mx) |
|
amp = inv_mx * torch.minimum(mn, (2 - mx)) |
|
|
|
|
|
amp = torch.sqrt(amp) |
|
w = - amp * (amount * (1/5 - 1/8) + 1/8) |
|
div = torch.reciprocal(1 + 4*w) |
|
|
|
output = ((b + d + f + h)*w + e) * div |
|
output = torch.nan_to_num(output) |
|
output = output.clamp(0, 1) |
|
|
|
return output |
|
|
|
def tensor_to_image(tensor): |
|
image = tensor.mul(255).clamp(0, 255).byte().cpu() |
|
image = image[..., [2, 1, 0]].numpy() |
|
return image |
|
|
|
def image_to_tensor(image): |
|
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1) |
|
tensor = tensor[..., [2, 1, 0]] |
|
return tensor |
|
|