File size: 6,620 Bytes
25fad07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import cv2
import torch
from modules_forge.shared import add_supported_preprocessor, preprocessor_dir
from ldm_patched.modules import model_management
from ldm_patched.modules.model_patcher import ModelPatcher
from modules_forge.forge_util import resize_image_with_pad
import ldm_patched.modules.clip_vision
from modules.modelloader import load_file_from_url
from modules_forge.forge_util import numpy_to_pytorch
class PreprocessorParameter:
def __init__(self, minimum=0.0, maximum=1.0, step=0.01, label='Parameter 1', value=0.5, visible=False, **kwargs):
self.gradio_update_kwargs = dict(
minimum=minimum, maximum=maximum, step=step, label=label, value=value, visible=visible, **kwargs
)
class Preprocessor:
def __init__(self):
self.name = 'PreprocessorBase'
self.tags = []
self.model_filename_filters = []
self.slider_resolution = PreprocessorParameter(label='Resolution', minimum=128, maximum=2048, value=512, step=8, visible=True)
self.slider_1 = PreprocessorParameter()
self.slider_2 = PreprocessorParameter()
self.slider_3 = PreprocessorParameter()
self.model_patcher: ModelPatcher = None
self.show_control_mode = True
self.do_not_need_model = False
self.sorting_priority = 0
self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = True
self.fill_mask_with_one_when_resize_and_fill = False
self.use_soft_projection_in_hr_fix = False
self.expand_mask_when_resize_and_fill = False
def setup_model_patcher(self, model, load_device=None, offload_device=None, dtype=torch.float32, **kwargs):
if load_device is None:
load_device = model_management.get_torch_device()
if offload_device is None:
offload_device = torch.device('cpu')
if not model_management.should_use_fp16(load_device):
dtype = torch.float32
model.eval()
model = model.to(device=offload_device, dtype=dtype)
self.model_patcher = ModelPatcher(
model=model,
load_device=load_device,
offload_device=offload_device,
weight_inplace_update=kwargs.get('weight_inplace_update', False),
current_device=kwargs.get('current_device', None)
)
return self.model_patcher
def move_all_model_patchers_to_gpu(self):
if self.model_patcher:
model_management.load_model_gpu(self.model_patcher)
def send_tensor_to_model_device(self, x):
if self.model_patcher:
return x.to(device=self.model_patcher.model.device, dtype=self.model_patcher.model_dtype())
return x
def process_after_running_preprocessors(self, process, params, *args, **kwargs):
return
def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
return cond, mask
def process_after_every_sampling(self, process, params, *args, **kwargs):
return
def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, input_mask=None, **kwargs):
return input_image
class PreprocessorNone(Preprocessor):
def __init__(self):
super().__init__()
self.name = 'None'
self.sorting_priority = 10
class PreprocessorCanny(Preprocessor):
def __init__(self):
super().__init__()
self.name = 'canny'
self.tags = ['Canny']
self.model_filename_filters = ['canny']
self.slider_1 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=100, label='Low Threshold', visible=True)
self.slider_2 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=200, label='High Threshold', visible=True)
self.sorting_priority = 100
self.use_soft_projection_in_hr_fix = True
def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs):
input_image, remove_pad = resize_image_with_pad(input_image, resolution)
canny_image = cv2.cvtColor(cv2.Canny(input_image, int(slider_1), int(slider_2)), cv2.COLOR_GRAY2RGB)
return remove_pad(canny_image)
add_supported_preprocessor(PreprocessorNone())
add_supported_preprocessor(PreprocessorCanny())
class PreprocessorClipVision(Preprocessor):
global_cache = {}
def __init__(self, name, url, filename):
super().__init__()
self.name = name
self.url = url
self.filename = filename
self.slider_resolution = PreprocessorParameter(visible=False)
self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = False
self.show_control_mode = False
self.sorting_priority = 1
self.clipvision = None
def load_clipvision(self):
if self.clipvision is not None:
return self.clipvision
ckpt_path = load_file_from_url(
url=self.url,
model_dir=preprocessor_dir,
file_name=self.filename
)
if ckpt_path in PreprocessorClipVision.global_cache:
self.clipvision = PreprocessorClipVision.global_cache[ckpt_path]
else:
self.clipvision = ldm_patched.modules.clip_vision.load(ckpt_path)
PreprocessorClipVision.global_cache[ckpt_path] = self.clipvision
# Set up the model patcher for the CLIP vision model
self.setup_model_patcher(self.clipvision.model)
return self.clipvision
def setup_model_patcher(self, model, load_device=None, offload_device=None, dtype=torch.float32, **kwargs):
if load_device is None:
load_device = model_management.get_torch_device()
if offload_device is None:
offload_device = torch.device('cpu')
if not model_management.should_use_fp16(load_device):
dtype = torch.float32
# The ClipVisionModel doesn't need eval() as it's handled internally
model = model.to(device=offload_device, dtype=dtype)
self.model_patcher = self.clipvision.patcher
return self.model_patcher
@torch.no_grad()
def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs):
clipvision = self.load_clipvision()
# Move the model to the appropriate device
self.move_all_model_patchers_to_gpu()
# Convert input image to PyTorch tensor and move to the correct device
input_tensor = self.send_tensor_to_model_device(numpy_to_pytorch(input_image))
# Encode the image
return clipvision.encode_image(input_tensor)
|