File size: 6,620 Bytes
25fad07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import cv2
import torch

from modules_forge.shared import add_supported_preprocessor, preprocessor_dir
from ldm_patched.modules import model_management
from ldm_patched.modules.model_patcher import ModelPatcher
from modules_forge.forge_util import resize_image_with_pad
import ldm_patched.modules.clip_vision
from modules.modelloader import load_file_from_url
from modules_forge.forge_util import numpy_to_pytorch


class PreprocessorParameter:
    def __init__(self, minimum=0.0, maximum=1.0, step=0.01, label='Parameter 1', value=0.5, visible=False, **kwargs):
        self.gradio_update_kwargs = dict(
            minimum=minimum, maximum=maximum, step=step, label=label, value=value, visible=visible, **kwargs
        )


class Preprocessor:
    def __init__(self):
        self.name = 'PreprocessorBase'
        self.tags = []
        self.model_filename_filters = []
        self.slider_resolution = PreprocessorParameter(label='Resolution', minimum=128, maximum=2048, value=512, step=8, visible=True)
        self.slider_1 = PreprocessorParameter()
        self.slider_2 = PreprocessorParameter()
        self.slider_3 = PreprocessorParameter()
        self.model_patcher: ModelPatcher = None
        self.show_control_mode = True
        self.do_not_need_model = False
        self.sorting_priority = 0
        self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = True
        self.fill_mask_with_one_when_resize_and_fill = False
        self.use_soft_projection_in_hr_fix = False
        self.expand_mask_when_resize_and_fill = False

    def setup_model_patcher(self, model, load_device=None, offload_device=None, dtype=torch.float32, **kwargs):
        if load_device is None:
            load_device = model_management.get_torch_device()
        if offload_device is None:
            offload_device = torch.device('cpu')
        if not model_management.should_use_fp16(load_device):
            dtype = torch.float32
        model.eval()
        model = model.to(device=offload_device, dtype=dtype)
        self.model_patcher = ModelPatcher(
            model=model,
            load_device=load_device,
            offload_device=offload_device,
            weight_inplace_update=kwargs.get('weight_inplace_update', False),
            current_device=kwargs.get('current_device', None)
        )
        return self.model_patcher

    def move_all_model_patchers_to_gpu(self):
        if self.model_patcher:
            model_management.load_model_gpu(self.model_patcher)

    def send_tensor_to_model_device(self, x):
        if self.model_patcher:
            return x.to(device=self.model_patcher.model.device, dtype=self.model_patcher.model_dtype())
        return x

    def process_after_running_preprocessors(self, process, params, *args, **kwargs):
        return

    def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
        return cond, mask

    def process_after_every_sampling(self, process, params, *args, **kwargs):
        return

    def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, input_mask=None, **kwargs):
        return input_image


class PreprocessorNone(Preprocessor):
    def __init__(self):
        super().__init__()
        self.name = 'None'
        self.sorting_priority = 10


class PreprocessorCanny(Preprocessor):
    def __init__(self):
        super().__init__()
        self.name = 'canny'
        self.tags = ['Canny']
        self.model_filename_filters = ['canny']
        self.slider_1 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=100, label='Low Threshold', visible=True)
        self.slider_2 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=200, label='High Threshold', visible=True)
        self.sorting_priority = 100
        self.use_soft_projection_in_hr_fix = True

    def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs):
        input_image, remove_pad = resize_image_with_pad(input_image, resolution)
        canny_image = cv2.cvtColor(cv2.Canny(input_image, int(slider_1), int(slider_2)), cv2.COLOR_GRAY2RGB)
        return remove_pad(canny_image)


add_supported_preprocessor(PreprocessorNone())
add_supported_preprocessor(PreprocessorCanny())


class PreprocessorClipVision(Preprocessor):
    global_cache = {}

    def __init__(self, name, url, filename):
        super().__init__()
        self.name = name
        self.url = url
        self.filename = filename
        self.slider_resolution = PreprocessorParameter(visible=False)
        self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = False
        self.show_control_mode = False
        self.sorting_priority = 1
        self.clipvision = None

    def load_clipvision(self):
        if self.clipvision is not None:
            return self.clipvision

        ckpt_path = load_file_from_url(
            url=self.url,
            model_dir=preprocessor_dir,
            file_name=self.filename
        )

        if ckpt_path in PreprocessorClipVision.global_cache:
            self.clipvision = PreprocessorClipVision.global_cache[ckpt_path]
        else:
            self.clipvision = ldm_patched.modules.clip_vision.load(ckpt_path)
            PreprocessorClipVision.global_cache[ckpt_path] = self.clipvision

        # Set up the model patcher for the CLIP vision model
        self.setup_model_patcher(self.clipvision.model)

        return self.clipvision

    def setup_model_patcher(self, model, load_device=None, offload_device=None, dtype=torch.float32, **kwargs):
        if load_device is None:
            load_device = model_management.get_torch_device()
        if offload_device is None:
            offload_device = torch.device('cpu')
        if not model_management.should_use_fp16(load_device):
            dtype = torch.float32
        
        # The ClipVisionModel doesn't need eval() as it's handled internally
        model = model.to(device=offload_device, dtype=dtype)
        self.model_patcher = self.clipvision.patcher
        return self.model_patcher

    @torch.no_grad()
    def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs):
        clipvision = self.load_clipvision()
        
        # Move the model to the appropriate device
        self.move_all_model_patchers_to_gpu()
        
        # Convert input image to PyTorch tensor and move to the correct device
        input_tensor = self.send_tensor_to_model_device(numpy_to_pytorch(input_image))
        
        # Encode the image
        return clipvision.encode_image(input_tensor)