File size: 18,185 Bytes
25fad07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import torch
import contextlib
import os
from ldm_patched.modules import model_management
from ldm_patched.modules import model_detection
from ldm_patched.modules.sd import VAE, CLIP, load_model_weights
import ldm_patched.modules.model_patcher
import ldm_patched.modules.utils
import ldm_patched.modules.clip_vision
from omegaconf import OmegaConf
from modules.sd_models_config import find_checkpoint_config
from modules.shared import cmd_opts
from modules import sd_hijack
from modules.sd_models_xl import extend_sdxl
from ldm.util import instantiate_from_config
from modules_forge import forge_clip
from modules_forge.unet_patcher import UnetPatcher
from ldm_patched.modules.model_base import model_sampling, ModelType, SD3
import logging
import types
import open_clip
from transformers import CLIPTextModel, CLIPTokenizer
from ldm_patched.modules.args_parser import args
class FakeObject:
def __init__(self, *args, **kwargs):
super().__init__()
self.visual = None
return
def eval(self, *args, **kwargs):
return self
def parameters(self, *args, **kwargs):
return []
class ForgeSD:
def __init__(self, unet, clip, vae, clipvision):
self.unet = unet
self.clip = clip
self.vae = vae
self.clipvision = clipvision
def shallow_copy(self):
return ForgeSD(
self.unet,
self.clip,
self.vae,
self.clipvision
)
@contextlib.contextmanager
def no_clip():
backup_openclip = open_clip.create_model_and_transforms
backup_CLIPTextModel = CLIPTextModel.from_pretrained
backup_CLIPTokenizer = CLIPTokenizer.from_pretrained
try:
open_clip.create_model_and_transforms = lambda *args, **kwargs: (FakeObject(), None, None)
CLIPTextModel.from_pretrained = lambda *args, **kwargs: FakeObject()
CLIPTokenizer.from_pretrained = lambda *args, **kwargs: FakeObject()
yield
finally:
open_clip.create_model_and_transforms = backup_openclip
CLIPTextModel.from_pretrained = backup_CLIPTextModel
CLIPTokenizer.from_pretrained = backup_CLIPTokenizer
return
def load_checkpoint_guess_config(ckpt, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
if isinstance(ckpt, str) and os.path.isfile(ckpt):
# If ckpt is a string and a valid file path, load it
sd, metadata = ldm_patched.modules.utils.load_torch_file(ckpt, return_metadata=True)
ckpt_path = ckpt # Store the path for error reporting
elif isinstance(ckpt, dict):
# If ckpt is already a state dictionary, use it directly
sd = ckpt
metadata = None # No metadata available for directly provided state dict
ckpt_path = "provided state dict" # Generic description for error reporting
else:
raise ValueError("Input must be either a file path or a state dictionary")
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata)
if out is None:
raise RuntimeError(f"ERROR: Could not detect model type of: {ckpt_path}")
return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
clip = None
clipvision = None
vae = None
model = None
model_patcher = None
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
parameters = ldm_patched.modules.utils.calculate_parameters(sd, diffusion_model_prefix)
weight_dtype = ldm_patched.modules.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
if model_config is None:
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
if diffusion_model is None:
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
weight_dtype = None
model_config.custom_operations = model_options.get("custom_operations", None)
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
if unet_dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if model_config.clip_vision_prefix is not None:
if output_clipvision:
clipvision = ldm_patched.modules.clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
if output_model:
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
model.load_model_weights(sd, diffusion_model_prefix)
if output_vae:
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd, metadata=metadata)
if output_clip:
clip_target = model_config.clip_target(state_dict=sd)
if clip_target is not None:
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
parameters = ldm_patched.modules.utils.calculate_parameters(clip_sd)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
else:
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
left_over = sd.keys()
if len(left_over) > 0:
logging.debug("left over keys: {}".format(left_over))
if output_model:
model_patcher = UnetPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
if inital_load_device != torch.device("cpu"):
print("loaded diffusion model directly to GPU")
model_management.load_models_gpu([model_patcher], force_full_load=True)
return ForgeSD(model_patcher, clip, vae, clipvision)
def load_diffusion_model_state_dict(sd, model_options={}):
dtype = model_options.get("dtype", None)
metadata = model_options.get("metadata", None)
# Allow loading unets from checkpoint files
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
temp_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {diffusion_model_prefix: ""}, filter_keys=True)
if len(temp_sd) > 0:
sd = temp_sd
parameters = ldm_patched.modules.utils.calculate_parameters(sd)
weight_dtype = ldm_patched.modules.utils.weight_dtype(sd)
load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, "", metadata=metadata)
if model_config is not None:
new_sd = sd
else:
new_sd = model_detection.convert_diffusers_mmdit(sd, "")
if new_sd is not None: # diffusers mmdit
model_config = model_detection.model_config_from_unet(new_sd, "", metadata=metadata)
if model_config is None:
return None
else: # diffusers unet
model_config = model_detection.model_config_from_diffusers_unet(sd)
if model_config is None:
return None
diffusers_keys = ldm_patched.modules.utils.unet_to_diffusers(model_config.unet_config)
new_sd = {}
for k in diffusers_keys:
if k in sd:
new_sd[diffusers_keys[k]] = sd.pop(k)
else:
logging.warning("{} {}".format(diffusers_keys[k], k))
offload_device = model_management.unet_offload_device()
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
weight_dtype = None
if dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
else:
unet_dtype = dtype
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
if model_options.get("fp8_optimizations", False):
model_config.optimizations["fp8"] = True
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
logging.info("left over keys in unet: {}".format(left_over))
# Return ForgeSD with just the UNet
model_patcher = UnetPatcher(model, load_device=load_device, offload_device=offload_device)
return ForgeSD(model_patcher, None, None, None)
def load_diffusion_model(unet_path, model_options={}):
sd, metadata = ldm_patched.modules.utils.load_torch_file(unet_path, return_metadata=True)
model_options["metadata"] = metadata
model = load_diffusion_model_state_dict(sd, model_options=model_options)
if model is None:
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
return model
@torch.no_grad()
def load_model_for_a1111(timer, checkpoint_info=None, state_dict=None):
is_sd3 = 'model.diffusion_model.x_embedder.proj.weight' in state_dict
ztsnr = 'ztsnr' in state_dict
timer.record("forge solving config")
if not is_sd3:
a1111_config_filename = find_checkpoint_config(state_dict, checkpoint_info)
a1111_config = OmegaConf.load(a1111_config_filename)
if hasattr(a1111_config.model.params, 'network_config'):
a1111_config.model.params.network_config.target = 'modules_forge.forge_loader.FakeObject'
if hasattr(a1111_config.model.params, 'unet_config'):
a1111_config.model.params.unet_config.target = 'modules_forge.forge_loader.FakeObject'
if hasattr(a1111_config.model.params, 'first_stage_config'):
a1111_config.model.params.first_stage_config.target = 'modules_forge.forge_loader.FakeObject'
with no_clip():
sd_model = instantiate_from_config(a1111_config.model)
else:
sd_model = torch.nn.Module()
timer.record("forge instantiate config")
forge_objects = load_checkpoint_guess_config(
state_dict,
output_vae=True,
output_clip=True,
output_clipvision=True,
embedding_directory=cmd_opts.embeddings_dir,
output_model=True
)
sd_model.first_stage_model = forge_objects.vae.first_stage_model
sd_model.model.diffusion_model = forge_objects.unet.model.diffusion_model
sd_model.forge_objects = forge_objects
sd_model.forge_objects_original = forge_objects.shallow_copy()
sd_model.forge_objects_after_applying_lora = forge_objects.shallow_copy()
if args.torch_compile:
timer.record("start model compilation")
if forge_objects.unet is not None:
forge_objects.unet.compile_model(backend=args.torch_compile_backend)
timer.record("model compilation complete")
timer.record("forge load real models")
conditioner = getattr(sd_model, 'conditioner', None)
if conditioner:
text_cond_models = []
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
typename = type(embedder).__name__
if typename == 'FrozenCLIPEmbedder': # SDXL Clip L
embedder.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
embedder.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
embedder = forge_clip.CLIP_SD_XL_L(embedder, sd_hijack.model_hijack)
conditioner.embedders[i] = embedder
text_cond_models.append(embedder)
elif typename == 'FrozenOpenCLIPEmbedder2': # SDXL Clip G
embedder.tokenizer = forge_objects.clip.tokenizer.clip_g.tokenizer
embedder.transformer = forge_objects.clip.cond_stage_model.clip_g.transformer
embedder.text_projection = forge_objects.clip.cond_stage_model.clip_g.text_projection
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack, textual_inversion_key='clip_g')
embedder = forge_clip.CLIP_SD_XL_G(embedder, sd_hijack.model_hijack)
conditioner.embedders[i] = embedder
text_cond_models.append(embedder)
if len(text_cond_models) == 1:
sd_model.cond_stage_model = text_cond_models[0]
else:
sd_model.cond_stage_model = conditioner
elif type(sd_model.cond_stage_model).__name__ == 'FrozenCLIPEmbedder': # SD15 Clip
sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
sd_model.cond_stage_model = forge_clip.CLIP_SD_15_L(sd_model.cond_stage_model, sd_hijack.model_hijack)
elif type(sd_model.cond_stage_model).__name__ == 'FrozenOpenCLIPEmbedder': # SD21 Clip
sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_h.tokenizer
sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_h.transformer
model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
sd_model.cond_stage_model = forge_clip.CLIP_SD_21_H(sd_model.cond_stage_model, sd_hijack.model_hijack)
else:
raise NotImplementedError('Bad Clip Class Name:' + type(sd_model.cond_stage_model).__name__)
timer.record("forge set components")
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
if getattr(sd_model, 'parameterization', None) == 'v':
sd_model.forge_objects.unet.model.model_sampling = model_sampling(sd_model.forge_objects.unet.model.model_config, ModelType.V_PREDICTION)
sd_model.ztsnr = ztsnr
sd_model.is_sd3 = is_sd3
sd_model.latent_channels = 16 if is_sd3 else 4
sd_model.is_sdxl = conditioner is not None and not is_sd3
sd_model.is_sdxl_inpaint = sd_model.is_sdxl and forge_objects.unet.model.diffusion_model.in_channels == 9
sd_model.is_sd2 = not sd_model.is_sdxl and not is_sd3 and hasattr(sd_model.cond_stage_model, 'model')
sd_model.is_sd1 = not sd_model.is_sdxl and not sd_model.is_sd2 and not is_sd3
sd_model.is_ssd = sd_model.is_sdxl and 'model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight' not in sd_model.state_dict().keys()
if sd_model.is_sdxl:
extend_sdxl(sd_model)
sd_model.sd_model_hash = sd_model_hash
sd_model.sd_model_checkpoint = checkpoint_info.filename
sd_model.sd_checkpoint_info = checkpoint_info
@torch.inference_mode()
def patched_decode_first_stage(x):
sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_out(x)
sample = sd_model.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
return sample.to(x)
@torch.inference_mode()
def patched_encode_first_stage(x):
sample = sd_model.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_in(sample)
return sample.to(x)
sd_model.ema_scope = lambda *args, **kwargs: contextlib.nullcontext()
sd_model.get_first_stage_encoding = lambda x: x
sd_model.decode_first_stage = patched_decode_first_stage
sd_model.encode_first_stage = patched_encode_first_stage
sd_model.clip = sd_model.cond_stage_model
sd_model.tiling_enabled = False
timer.record("forge finalize")
sd_model.current_lora_hash = str([])
return sd_model
|