File size: 18,185 Bytes
25fad07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import torch
import contextlib
import os
from ldm_patched.modules import model_management
from ldm_patched.modules import model_detection

from ldm_patched.modules.sd import VAE, CLIP, load_model_weights
import ldm_patched.modules.model_patcher
import ldm_patched.modules.utils
import ldm_patched.modules.clip_vision

from omegaconf import OmegaConf
from modules.sd_models_config import find_checkpoint_config
from modules.shared import cmd_opts
from modules import sd_hijack
from modules.sd_models_xl import extend_sdxl
from ldm.util import instantiate_from_config
from modules_forge import forge_clip
from modules_forge.unet_patcher import UnetPatcher
from ldm_patched.modules.model_base import model_sampling, ModelType, SD3
import logging
import types

import open_clip
from transformers import CLIPTextModel, CLIPTokenizer
from ldm_patched.modules.args_parser import args


class FakeObject:
    def __init__(self, *args, **kwargs):
        super().__init__()
        self.visual = None
        return

    def eval(self, *args, **kwargs):
        return self

    def parameters(self, *args, **kwargs):
        return []


class ForgeSD:
    def __init__(self, unet, clip, vae, clipvision):
        self.unet = unet
        self.clip = clip
        self.vae = vae
        self.clipvision = clipvision

    def shallow_copy(self):
        return ForgeSD(
            self.unet,
            self.clip,
            self.vae,
            self.clipvision
        )


@contextlib.contextmanager
def no_clip():
    backup_openclip = open_clip.create_model_and_transforms
    backup_CLIPTextModel = CLIPTextModel.from_pretrained
    backup_CLIPTokenizer = CLIPTokenizer.from_pretrained

    try:
        open_clip.create_model_and_transforms = lambda *args, **kwargs: (FakeObject(), None, None)
        CLIPTextModel.from_pretrained = lambda *args, **kwargs: FakeObject()
        CLIPTokenizer.from_pretrained = lambda *args, **kwargs: FakeObject()
        yield

    finally:
        open_clip.create_model_and_transforms = backup_openclip
        CLIPTextModel.from_pretrained = backup_CLIPTextModel
        CLIPTokenizer.from_pretrained = backup_CLIPTokenizer
    return


def load_checkpoint_guess_config(ckpt, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
    if isinstance(ckpt, str) and os.path.isfile(ckpt):
        # If ckpt is a string and a valid file path, load it
        sd, metadata = ldm_patched.modules.utils.load_torch_file(ckpt, return_metadata=True)
        ckpt_path = ckpt  # Store the path for error reporting
    elif isinstance(ckpt, dict):
        # If ckpt is already a state dictionary, use it directly
        sd = ckpt
        metadata = None  # No metadata available for directly provided state dict
        ckpt_path = "provided state dict"  # Generic description for error reporting
    else:
        raise ValueError("Input must be either a file path or a state dictionary")

    out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata)
    if out is None:
        raise RuntimeError(f"ERROR: Could not detect model type of: {ckpt_path}")
    return out

def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
    clip = None
    clipvision = None
    vae = None
    model = None
    model_patcher = None

    diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
    parameters = ldm_patched.modules.utils.calculate_parameters(sd, diffusion_model_prefix)
    weight_dtype = ldm_patched.modules.utils.weight_dtype(sd, diffusion_model_prefix)
    load_device = model_management.get_torch_device()

    model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
    if model_config is None:
        logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
        diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
        if diffusion_model is None:
            return None
        return (diffusion_model, None, VAE(sd={}), None)  # The VAE object is there to throw an exception if it's actually used'

    unet_weight_dtype = list(model_config.supported_inference_dtypes)
    if model_config.scaled_fp8 is not None:
        weight_dtype = None

    model_config.custom_operations = model_options.get("custom_operations", None)
    unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))

    if unet_dtype is None:
        unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)

    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
    model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)

    if model_config.clip_vision_prefix is not None:
        if output_clipvision:
            clipvision = ldm_patched.modules.clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)

    if output_model:
        inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
        model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
        model.load_model_weights(sd, diffusion_model_prefix)

    if output_vae:
        vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
        vae_sd = model_config.process_vae_state_dict(vae_sd)
        vae = VAE(sd=vae_sd, metadata=metadata)

    if output_clip:
        clip_target = model_config.clip_target(state_dict=sd)
        if clip_target is not None:
            clip_sd = model_config.process_clip_state_dict(sd)
            if len(clip_sd) > 0:
                parameters = ldm_patched.modules.utils.calculate_parameters(clip_sd)
                clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
                m, u = clip.load_sd(clip_sd, full_model=True)
                if len(m) > 0:
                    m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
                    if len(m_filter) > 0:
                        logging.warning("clip missing: {}".format(m))
                    else:
                        logging.debug("clip missing: {}".format(m))

                if len(u) > 0:
                    logging.debug("clip unexpected {}:".format(u))
            else:
                logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")

    left_over = sd.keys()
    if len(left_over) > 0:
        logging.debug("left over keys: {}".format(left_over))

    if output_model:
        model_patcher = UnetPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
        if inital_load_device != torch.device("cpu"):
            print("loaded diffusion model directly to GPU")
            model_management.load_models_gpu([model_patcher], force_full_load=True)

    return ForgeSD(model_patcher, clip, vae, clipvision)

def load_diffusion_model_state_dict(sd, model_options={}):
    dtype = model_options.get("dtype", None)
    metadata = model_options.get("metadata", None)

    # Allow loading unets from checkpoint files
    diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
    temp_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {diffusion_model_prefix: ""}, filter_keys=True)
    if len(temp_sd) > 0:
        sd = temp_sd

    parameters = ldm_patched.modules.utils.calculate_parameters(sd)
    weight_dtype = ldm_patched.modules.utils.weight_dtype(sd)

    load_device = model_management.get_torch_device()
    model_config = model_detection.model_config_from_unet(sd, "", metadata=metadata)

    if model_config is not None:
        new_sd = sd
    else:
        new_sd = model_detection.convert_diffusers_mmdit(sd, "")
        if new_sd is not None:  # diffusers mmdit
            model_config = model_detection.model_config_from_unet(new_sd, "", metadata=metadata)
            if model_config is None:
                return None
        else:  # diffusers unet
            model_config = model_detection.model_config_from_diffusers_unet(sd)
            if model_config is None:
                return None

            diffusers_keys = ldm_patched.modules.utils.unet_to_diffusers(model_config.unet_config)

            new_sd = {}
            for k in diffusers_keys:
                if k in sd:
                    new_sd[diffusers_keys[k]] = sd.pop(k)
                else:
                    logging.warning("{} {}".format(diffusers_keys[k], k))

    offload_device = model_management.unet_offload_device()
    unet_weight_dtype = list(model_config.supported_inference_dtypes)
    if model_config.scaled_fp8 is not None:
        weight_dtype = None

    if dtype is None:
        unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
    else:
        unet_dtype = dtype

    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
    model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
    model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
    if model_options.get("fp8_optimizations", False):
        model_config.optimizations["fp8"] = True

    model = model_config.get_model(new_sd, "")
    model = model.to(offload_device)
    model.load_model_weights(new_sd, "")
    left_over = sd.keys()
    if len(left_over) > 0:
        logging.info("left over keys in unet: {}".format(left_over))
    
    # Return ForgeSD with just the UNet
    model_patcher = UnetPatcher(model, load_device=load_device, offload_device=offload_device)
    return ForgeSD(model_patcher, None, None, None)

def load_diffusion_model(unet_path, model_options={}):
    sd, metadata = ldm_patched.modules.utils.load_torch_file(unet_path, return_metadata=True)
    model_options["metadata"] = metadata
    model = load_diffusion_model_state_dict(sd, model_options=model_options)
    if model is None:
        logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
    return model


@torch.no_grad()
def load_model_for_a1111(timer, checkpoint_info=None, state_dict=None):
    is_sd3 = 'model.diffusion_model.x_embedder.proj.weight' in state_dict
    ztsnr = 'ztsnr' in state_dict
    timer.record("forge solving config")
    
    if not is_sd3:
        a1111_config_filename = find_checkpoint_config(state_dict, checkpoint_info)
        a1111_config = OmegaConf.load(a1111_config_filename)
        if hasattr(a1111_config.model.params, 'network_config'):
            a1111_config.model.params.network_config.target = 'modules_forge.forge_loader.FakeObject'
        if hasattr(a1111_config.model.params, 'unet_config'):
            a1111_config.model.params.unet_config.target = 'modules_forge.forge_loader.FakeObject'
        if hasattr(a1111_config.model.params, 'first_stage_config'):
            a1111_config.model.params.first_stage_config.target = 'modules_forge.forge_loader.FakeObject'
        with no_clip():
            sd_model = instantiate_from_config(a1111_config.model)
    else:
        sd_model = torch.nn.Module() 
    
    timer.record("forge instantiate config")
    
    forge_objects = load_checkpoint_guess_config(
        state_dict,
        output_vae=True,
        output_clip=True,
        output_clipvision=True,
        embedding_directory=cmd_opts.embeddings_dir,
        output_model=True
    )
    sd_model.first_stage_model = forge_objects.vae.first_stage_model
    sd_model.model.diffusion_model = forge_objects.unet.model.diffusion_model
    sd_model.forge_objects = forge_objects
    sd_model.forge_objects_original = forge_objects.shallow_copy()
    sd_model.forge_objects_after_applying_lora = forge_objects.shallow_copy()
    if args.torch_compile:
        timer.record("start model compilation")
        if forge_objects.unet is not None:
            forge_objects.unet.compile_model(backend=args.torch_compile_backend)
        timer.record("model compilation complete")
    timer.record("forge load real models")
    
    conditioner = getattr(sd_model, 'conditioner', None)

    if conditioner:
        text_cond_models = []
        for i in range(len(conditioner.embedders)):
            embedder = conditioner.embedders[i]
            typename = type(embedder).__name__
            if typename == 'FrozenCLIPEmbedder':  # SDXL Clip L
                embedder.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
                embedder.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
                model_embeddings = embedder.transformer.text_model.embeddings
                model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
                    model_embeddings.token_embedding, sd_hijack.model_hijack)
                embedder = forge_clip.CLIP_SD_XL_L(embedder, sd_hijack.model_hijack)
                conditioner.embedders[i] = embedder
                text_cond_models.append(embedder)
            elif typename == 'FrozenOpenCLIPEmbedder2':  # SDXL Clip G
                embedder.tokenizer = forge_objects.clip.tokenizer.clip_g.tokenizer
                embedder.transformer = forge_objects.clip.cond_stage_model.clip_g.transformer
                embedder.text_projection = forge_objects.clip.cond_stage_model.clip_g.text_projection
                model_embeddings = embedder.transformer.text_model.embeddings
                model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
                    model_embeddings.token_embedding, sd_hijack.model_hijack, textual_inversion_key='clip_g')
                embedder = forge_clip.CLIP_SD_XL_G(embedder, sd_hijack.model_hijack)
                conditioner.embedders[i] = embedder
                text_cond_models.append(embedder)
        if len(text_cond_models) == 1:
            sd_model.cond_stage_model = text_cond_models[0]
        else:
            sd_model.cond_stage_model = conditioner
    elif type(sd_model.cond_stage_model).__name__ == 'FrozenCLIPEmbedder':  # SD15 Clip
        sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
        sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
        model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
        model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
            model_embeddings.token_embedding, sd_hijack.model_hijack)
        sd_model.cond_stage_model = forge_clip.CLIP_SD_15_L(sd_model.cond_stage_model, sd_hijack.model_hijack)
    elif type(sd_model.cond_stage_model).__name__ == 'FrozenOpenCLIPEmbedder':  # SD21 Clip
        sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_h.tokenizer
        sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_h.transformer
        model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
        model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
            model_embeddings.token_embedding, sd_hijack.model_hijack)
        sd_model.cond_stage_model = forge_clip.CLIP_SD_21_H(sd_model.cond_stage_model, sd_hijack.model_hijack)
    else:
        raise NotImplementedError('Bad Clip Class Name:' + type(sd_model.cond_stage_model).__name__)

    timer.record("forge set components")
    sd_model_hash = checkpoint_info.calculate_shorthash()
    timer.record("calculate hash")

    if getattr(sd_model, 'parameterization', None) == 'v':
        sd_model.forge_objects.unet.model.model_sampling = model_sampling(sd_model.forge_objects.unet.model.model_config, ModelType.V_PREDICTION)
    
    sd_model.ztsnr = ztsnr

    sd_model.is_sd3 = is_sd3
    sd_model.latent_channels = 16 if is_sd3 else 4
    sd_model.is_sdxl = conditioner is not None and not is_sd3
    sd_model.is_sdxl_inpaint = sd_model.is_sdxl and forge_objects.unet.model.diffusion_model.in_channels == 9
    sd_model.is_sd2 = not sd_model.is_sdxl and not is_sd3 and hasattr(sd_model.cond_stage_model, 'model')
    sd_model.is_sd1 = not sd_model.is_sdxl and not sd_model.is_sd2 and not is_sd3
    sd_model.is_ssd = sd_model.is_sdxl and 'model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight' not in sd_model.state_dict().keys()
    
    if sd_model.is_sdxl:
        extend_sdxl(sd_model)
    
    sd_model.sd_model_hash = sd_model_hash
    sd_model.sd_model_checkpoint = checkpoint_info.filename
    sd_model.sd_checkpoint_info = checkpoint_info

    @torch.inference_mode()
    def patched_decode_first_stage(x):
        sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_out(x)
        sample = sd_model.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
        return sample.to(x)

    @torch.inference_mode()
    def patched_encode_first_stage(x):
        sample = sd_model.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
        sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_in(sample)
        return sample.to(x)

    sd_model.ema_scope = lambda *args, **kwargs: contextlib.nullcontext()
    sd_model.get_first_stage_encoding = lambda x: x
    sd_model.decode_first_stage = patched_decode_first_stage
    sd_model.encode_first_stage = patched_encode_first_stage
    sd_model.clip = sd_model.cond_stage_model
    sd_model.tiling_enabled = False
    timer.record("forge finalize")
    sd_model.current_lora_hash = str([])
    return sd_model