import os import safetensors.torch import torch from modules import devices, errors, hashes, shared class Embedding: def __init__(self, vec, name, step=None): self.vec = vec self.name = name self.step = step self.shape = None self.vectors = 0 self.cached_checksum = None self.sd_checkpoint = None self.sd_checkpoint_name = None self.optimizer_state_dict = None self.filename = None self.hash = None self.shorthash = None def save(self, filename): raise NotImplementedError("Training is not supported...") def checksum(self): if self.cached_checksum is not None: return self.cached_checksum def const_hash(a): r = 0 for v in a: r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF return r self.cached_checksum = f"{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}" return self.cached_checksum def set_hash(self, v): self.hash = v self.shorthash = self.hash[0:12] class DirWithTextualInversionEmbeddings: def __init__(self, path): self.path = path self.mtime = None def has_changed(self): if not os.path.isdir(self.path): return False mt = os.path.getmtime(self.path) if self.mtime is None or mt > self.mtime: return True def update(self): if not os.path.isdir(self.path): return self.mtime = os.path.getmtime(self.path) class EmbeddingDatabase: def __init__(self): self.ids_lookup = {} self.word_embeddings = {} self.skipped_embeddings = {} self.expected_shape = -1 self.embedding_dirs = {} self.previously_displayed_embeddings = () def add_embedding_dir(self, path): self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) def clear_embedding_dirs(self): self.embedding_dirs.clear() def register_embedding(self, embedding, model): return self.register_embedding_by_name(embedding, model, embedding.name) def register_embedding_by_name(self, embedding, model, name): ids = model.cond_stage_model.tokenize([name])[0] first_id = ids[0] if first_id not in self.ids_lookup: self.ids_lookup[first_id] = [] if name in self.word_embeddings: lookup = [x for x in self.ids_lookup[first_id] if x[1].name != name] else: lookup = self.ids_lookup[first_id] if embedding is not None: lookup += [(ids, embedding)] self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True) if embedding is None: if name in self.word_embeddings: del self.word_embeddings[name] if len(self.ids_lookup[first_id]) == 0: del self.ids_lookup[first_id] return None self.word_embeddings[name] = embedding return embedding def get_expected_shape(self): devices.torch_npu_set_device() vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1) return vec.shape[1] def load_from_file(self, path, filename): name, ext = os.path.splitext(filename) ext = ext.upper() if ext in (".BIN", ".PT"): data = torch.load(path, map_location="cpu") elif ext in (".SAFETENSORS",): data = safetensors.torch.load_file(path, device="cpu") else: if ext in (".PNG", ".WEBP", ".JXL", ".AVIF"): second_ext = os.path.splitext(name)[1] if second_ext.upper() != ".PREVIEW": raise NotImplementedError("Image-Embedding is not supported...") return embedding = create_embedding_from_data(data, name, filename=filename, filepath=path) if self.expected_shape == -1 or self.expected_shape == embedding.shape: self.register_embedding(embedding, shared.sd_model) else: self.skipped_embeddings[name] = embedding def load_from_dir(self, embdir): if not os.path.isdir(embdir.path): return for root, _, fns in os.walk(embdir.path, followlinks=True): for fn in fns: try: fullfn = os.path.join(root, fn) if os.stat(fullfn).st_size == 0: continue self.load_from_file(fullfn, fn) except Exception: errors.report(f"Error loading embedding {fn}", exc_info=True) continue def load_textual_inversion_embeddings(self, force_reload=False): if not force_reload: need_reload = False for embdir in self.embedding_dirs.values(): if embdir.has_changed(): need_reload = True break if not need_reload: return self.ids_lookup.clear() self.word_embeddings.clear() self.skipped_embeddings.clear() self.expected_shape = self.get_expected_shape() for embdir in self.embedding_dirs.values(): self.load_from_dir(embdir) embdir.update() # re-sort word_embeddings because load_from_dir may not load in alphabetic order. # using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it. sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())} self.word_embeddings.clear() self.word_embeddings.update(sorted_word_embeddings) def find_embedding_at_position(self, tokens, offset): token = tokens[offset] possible_matches = self.ids_lookup.get(token, None) if possible_matches is None: return None, None for ids, embedding in possible_matches: if tokens[offset : offset + len(ids)] == ids: return embedding, len(ids) return None, None def create_embedding_from_data(data, name, filename="unknown embedding file", filepath=None): if "string_to_param" in data: # textual inversion embeddings param_dict = data["string_to_param"] param_dict = getattr(param_dict, "_parameters", param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11 assert len(param_dict) == 1, "embedding file has multiple terms in it" emb = next(iter(param_dict.items()))[1] vec = emb.detach().to(devices.device, dtype=torch.float32) shape = vec.shape[-1] vectors = vec.shape[0] elif type(data) == dict and "clip_g" in data and "clip_l" in data: # SDXL embedding vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()} shape = data["clip_g"].shape[-1] + data["clip_l"].shape[-1] vectors = data["clip_g"].shape[0] elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts assert len(data.keys()) == 1, "embedding file has multiple terms in it" emb = next(iter(data.values())) if len(emb.shape) == 1: emb = emb.unsqueeze(0) vec = emb.detach().to(devices.device, dtype=torch.float32) shape = vec.shape[-1] vectors = vec.shape[0] else: raise LookupError(f"Couldn't identify {filename}...") embedding = Embedding(vec, name) embedding.step = data.get("step", None) embedding.sd_checkpoint = data.get("sd_checkpoint", None) embedding.sd_checkpoint_name = data.get("sd_checkpoint_name", None) embedding.vectors = vectors embedding.shape = shape if filepath: embedding.filename = filepath embedding.set_hash(hashes.sha256(filepath, "/".join(["textual_inversion", name])) or "") return embedding