update forge classic to 1.7
Browse files- README.md +20 -9
- extensions-builtin/sd_forge_neveroom/scripts/forge_never_oom.py +24 -22
- extensions-builtin/xyz/lib_xyz/axis_application.py +9 -0
- extensions-builtin/xyz/lib_xyz/builtins.py +2 -0
- ldm_patched/k_diffusion/sampling.py +45 -0
- ldm_patched/ldm/modules/diffusionmodules/model.py +1 -1
- ldm_patched/modules/args_parser.py +7 -1
- ldm_patched/modules/model_management.py +9 -9
- ldm_patched/modules/model_patcher.py +88 -33
- ldm_patched/modules/sd.py +18 -11
- modules/cmd_args.py +5 -10
- modules/mac_specific.py +1 -1
- modules/processing.py +194 -149
- modules/processing_scripts/comments.py +12 -1
- modules/processing_scripts/rescale_cfg.py +7 -0
- modules/processing_scripts/sampler.py +4 -4
- modules/rng.py +2 -2
- modules/scripts_postprocessing.py +1 -1
- modules/sd_hijack_clip.py +1 -1
- modules/sd_samplers_common.py +6 -3
- modules/sd_samplers_kdiffusion.py +5 -7
- modules/shared.py +3 -0
- modules/shared_options.py +7 -3
- modules/shared_state.py +9 -12
- modules/txt2img.py +5 -1
- modules/ui.py +37 -29
- modules/ui_common.py +1 -1
- modules/ui_components.py +3 -3
- modules/ui_prompt_styles.py +1 -1
- modules/ui_toprow.py +15 -14
- modules_forge/stream.py +4 -2
- modules_forge/unet_patcher.py +4 -2
README.md
CHANGED
@@ -18,7 +18,7 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
|
|
18 |
|
19 |
<br>
|
20 |
|
21 |
-
## Features [May.
|
22 |
> Most base features of the original [Automatic1111 Webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) should still function
|
23 |
|
24 |
#### New Features
|
@@ -55,17 +55,23 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
|
|
55 |
> - Both `fp16_accumulation` and `cublas_ops` achieve the same speed up; if you already install/update to PyTorch **2.7.0**, you do not need to go for `cublas_ops`
|
56 |
> - The `fp16_accumulation` and `cublas_ops` require `fp16` precision, thus is not compatible with the `fp8` operation
|
57 |
|
|
|
|
|
|
|
58 |
- [X] Implement new Samplers
|
59 |
- *(ported from reForge Webui)*
|
60 |
- [X] Implement Scheduler Dropdown
|
61 |
- *(backported from Automatic1111 Webui upstream)*
|
62 |
-
- enable in **Settings/UI
|
|
|
63 |
- [X] Implement RescaleCFG
|
64 |
- reduce burnt colors; mainly for `v-pred` checkpoints
|
65 |
-
- enable in **Settings/UI
|
66 |
- [X] Implement MaHiRo
|
67 |
- alternative CFG calculation; improve prompt adherence
|
68 |
-
- enable in **Settings/UI
|
|
|
|
|
69 |
- [X] Implement `diskcache` for hashes
|
70 |
- *(backported from Automatic1111 Webui upstream)*
|
71 |
- [X] Implement `skip_early_cond`
|
@@ -117,13 +123,14 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
|
|
117 |
- [X] Remove unused `args_parser`
|
118 |
- [X] Remove unused `shared_options`
|
119 |
- [X] Remove legacy codes
|
120 |
-
- [X]
|
|
|
121 |
- put every upscaler inside the `ESRGAN` folder
|
122 |
-
|
123 |
- [X] Improve color correction
|
124 |
- [X] Improve hash caching
|
125 |
- [X] Improve error logs
|
126 |
-
- no longer
|
127 |
- [X] Revamp settings
|
128 |
- improve formatting
|
129 |
- update descriptions
|
@@ -135,7 +142,7 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
|
|
135 |
- change `visible` toggle to `interactive` toggle; now the UI will no longer jump around
|
136 |
- improved `Presets` application
|
137 |
- [X] Disable Refiner by default
|
138 |
-
- enable again in **Settings/UI
|
139 |
- [X] Disable Tree View by default
|
140 |
- enable again in **Settings/Extra Networks**
|
141 |
- [X] Run `text encoder` on CPU by default
|
@@ -150,7 +157,7 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
|
|
150 |
- `torch==2.7.0+cu128`
|
151 |
- `xformers==0.0.30`
|
152 |
|
153 |
-
> [!
|
154 |
> If your GPU does not support the latest PyTorch, manually [install](#install-older-pytorch) older version of PyTorch
|
155 |
|
156 |
- [X] No longer install `open-clip` twice
|
@@ -208,6 +215,10 @@ The name "Forge" is inspired by "Minecraft Forge". This project aims to become t
|
|
208 |
> [!Important]
|
209 |
> This simply **replaces** the `models` folder, rather than adding on top of it
|
210 |
|
|
|
|
|
|
|
|
|
211 |
- `--fast-fp16`: Enable the `allow_fp16_accumulation` option
|
212 |
- requires PyTorch **2.7.0** +
|
213 |
- `--sage`: Install the `sageattention` package to speed up generation
|
|
|
18 |
|
19 |
<br>
|
20 |
|
21 |
+
## Features [May. 28]
|
22 |
> Most base features of the original [Automatic1111 Webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) should still function
|
23 |
|
24 |
#### New Features
|
|
|
55 |
> - Both `fp16_accumulation` and `cublas_ops` achieve the same speed up; if you already install/update to PyTorch **2.7.0**, you do not need to go for `cublas_ops`
|
56 |
> - The `fp16_accumulation` and `cublas_ops` require `fp16` precision, thus is not compatible with the `fp8` operation
|
57 |
|
58 |
+
- [X] Persistent LoRA Patching
|
59 |
+
- speed up LoRA loading in subsequent generations
|
60 |
+
- see [Commandline](#by-classic)
|
61 |
- [X] Implement new Samplers
|
62 |
- *(ported from reForge Webui)*
|
63 |
- [X] Implement Scheduler Dropdown
|
64 |
- *(backported from Automatic1111 Webui upstream)*
|
65 |
+
- enable in **Settings/UI Alternatives**
|
66 |
+
- [X] Add `CFG` slider to the `Hires. fix` section
|
67 |
- [X] Implement RescaleCFG
|
68 |
- reduce burnt colors; mainly for `v-pred` checkpoints
|
69 |
+
- enable in **Settings/UI Alternatives**
|
70 |
- [X] Implement MaHiRo
|
71 |
- alternative CFG calculation; improve prompt adherence
|
72 |
+
- enable in **Settings/UI Alternatives**
|
73 |
+
- [X] Implement full precision calculation for `Mask blur` blending
|
74 |
+
- enable in **Settings/img2img**
|
75 |
- [X] Implement `diskcache` for hashes
|
76 |
- *(backported from Automatic1111 Webui upstream)*
|
77 |
- [X] Implement `skip_early_cond`
|
|
|
123 |
- [X] Remove unused `args_parser`
|
124 |
- [X] Remove unused `shared_options`
|
125 |
- [X] Remove legacy codes
|
126 |
+
- [X] Fix some typos
|
127 |
+
- [X] Remove redundant upscaler codes
|
128 |
- put every upscaler inside the `ESRGAN` folder
|
129 |
+
- [X] Optimize upscaler logics
|
130 |
- [X] Improve color correction
|
131 |
- [X] Improve hash caching
|
132 |
- [X] Improve error logs
|
133 |
+
- no longer print `TypeError: 'NoneType' object is not iterable`
|
134 |
- [X] Revamp settings
|
135 |
- improve formatting
|
136 |
- update descriptions
|
|
|
142 |
- change `visible` toggle to `interactive` toggle; now the UI will no longer jump around
|
143 |
- improved `Presets` application
|
144 |
- [X] Disable Refiner by default
|
145 |
+
- enable again in **Settings/UI Alternatives**
|
146 |
- [X] Disable Tree View by default
|
147 |
- enable again in **Settings/Extra Networks**
|
148 |
- [X] Run `text encoder` on CPU by default
|
|
|
157 |
- `torch==2.7.0+cu128`
|
158 |
- `xformers==0.0.30`
|
159 |
|
160 |
+
> [!Note]
|
161 |
> If your GPU does not support the latest PyTorch, manually [install](#install-older-pytorch) older version of PyTorch
|
162 |
|
163 |
- [X] No longer install `open-clip` twice
|
|
|
215 |
> [!Important]
|
216 |
> This simply **replaces** the `models` folder, rather than adding on top of it
|
217 |
|
218 |
+
- `--persistent-patches`: Enable the persistent LoRA patching
|
219 |
+
- no longer apply LoRA every single generation, if the weight is unchanged
|
220 |
+
- save around 1 second per generation when using LoRA
|
221 |
+
|
222 |
- `--fast-fp16`: Enable the `allow_fp16_accumulation` option
|
223 |
- requires PyTorch **2.7.0** +
|
224 |
- `--sage`: Install the `sageattention` package to speed up generation
|
extensions-builtin/sd_forge_neveroom/scripts/forge_never_oom.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from ldm_patched.modules import model_management
|
2 |
-
from modules import
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
|
@@ -18,34 +19,35 @@ class NeverOOMForForge(scripts.Script):
|
|
18 |
return scripts.AlwaysVisible
|
19 |
|
20 |
def ui(self, *args, **kwargs):
|
21 |
-
with gr.Accordion(
|
22 |
-
|
23 |
-
label="
|
24 |
-
value=False,
|
25 |
-
)
|
26 |
-
|
27 |
-
label="
|
28 |
-
value=False,
|
29 |
-
)
|
30 |
-
return unet_enabled, vae_enabled
|
31 |
|
32 |
-
|
33 |
-
unet_enabled, vae_enabled = script_args
|
34 |
|
35 |
-
|
36 |
-
print("NeverOOM Enabled for UNet")
|
37 |
|
38 |
-
if
|
39 |
-
print("
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
if self.previous_unet_enabled != unet_enabled:
|
44 |
model_management.unload_all_models()
|
45 |
-
if
|
46 |
self.original_vram_state = model_management.vram_state
|
47 |
model_management.vram_state = model_management.VRAMState.NO_VRAM
|
48 |
else:
|
49 |
model_management.vram_state = self.original_vram_state
|
50 |
-
print(f"VRAM State
|
51 |
-
self.previous_unet_enabled = unet_enabled
|
|
|
1 |
from ldm_patched.modules import model_management
|
2 |
+
from modules.ui_components import FormRow
|
3 |
+
from modules import scripts, shared
|
4 |
|
5 |
import gradio as gr
|
6 |
|
|
|
19 |
return scripts.AlwaysVisible
|
20 |
|
21 |
def ui(self, *args, **kwargs):
|
22 |
+
with gr.Accordion(label=self.title(), open=False):
|
23 |
+
with FormRow():
|
24 |
+
unet_enable = gr.Checkbox(value=False, label="Enable for UNet", info="always offload to memory")
|
25 |
+
vae_enable = gr.Checkbox(value=False, label="Enabled for VAE", info="always tiled encoding/decoding")
|
26 |
+
with FormRow():
|
27 |
+
tile_size = gr.Slider(minimum=64, maximum=1024, step=64, value=512, label="Tile Size", info="in pixels")
|
28 |
+
tile_overlap = gr.Slider(minimum=16, maximum=256, step=4, value=64, label="Tile Overlap", info="in pixels")
|
|
|
|
|
|
|
29 |
|
30 |
+
return unet_enable, vae_enable, tile_size, tile_overlap
|
|
|
31 |
|
32 |
+
def process(self, p, unet_enable: bool, vae_enable: bool, tile_size: int, tile_overlap: int, **kwargs):
|
|
|
33 |
|
34 |
+
if unet_enable:
|
35 |
+
print("[Never OOM] Enabled for UNet")
|
36 |
|
37 |
+
if vae_enable:
|
38 |
+
print("[Never OOM] Enabled for VAE")
|
39 |
+
shared.opts.tile_size = tile_size
|
40 |
+
shared.opts.tile_overlap = min(tile_size // 4, tile_overlap)
|
41 |
+
|
42 |
+
model_management.VAE_ALWAYS_TILED = vae_enable
|
43 |
+
|
44 |
+
if self.previous_unet_enabled != unet_enable:
|
45 |
+
self.previous_unet_enabled = unet_enable
|
46 |
|
|
|
47 |
model_management.unload_all_models()
|
48 |
+
if unet_enable:
|
49 |
self.original_vram_state = model_management.vram_state
|
50 |
model_management.vram_state = model_management.VRAMState.NO_VRAM
|
51 |
else:
|
52 |
model_management.vram_state = self.original_vram_state
|
53 |
+
print(f"Changed VRAM State To {model_management.vram_state.name}")
|
|
extensions-builtin/xyz/lib_xyz/axis_application.py
CHANGED
@@ -98,5 +98,14 @@ def apply_override(field, boolean: bool = False):
|
|
98 |
return fun
|
99 |
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def do_nothing(p, x, xs):
|
102 |
pass
|
|
|
98 |
return fun
|
99 |
|
100 |
|
101 |
+
def apply_size(p, x: str, xs) -> None:
|
102 |
+
try:
|
103 |
+
width, height = x.split("x")
|
104 |
+
p.width = int(width.strip())
|
105 |
+
p.height = int(height.strip())
|
106 |
+
except Exception:
|
107 |
+
print(f"Invalid size in XYZ plot: {x}")
|
108 |
+
|
109 |
+
|
110 |
def do_nothing(p, x, xs):
|
111 |
pass
|
extensions-builtin/xyz/lib_xyz/builtins.py
CHANGED
@@ -8,6 +8,7 @@ from .axis_application import (
|
|
8 |
apply_order,
|
9 |
apply_override,
|
10 |
apply_prompt,
|
|
|
11 |
apply_styles,
|
12 |
apply_uni_pc_order,
|
13 |
apply_vae,
|
@@ -43,6 +44,7 @@ builtin_options = [
|
|
43 |
AxisOptionImg2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=sd_samplers.visible_sampler_names),
|
44 |
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_remove_path, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
|
45 |
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
|
|
|
46 |
AxisOption("Sigma Churn", float, apply_field("s_churn")),
|
47 |
AxisOption("Sigma min", float, apply_field("s_tmin")),
|
48 |
AxisOption("Sigma max", float, apply_field("s_tmax")),
|
|
|
8 |
apply_order,
|
9 |
apply_override,
|
10 |
apply_prompt,
|
11 |
+
apply_size,
|
12 |
apply_styles,
|
13 |
apply_uni_pc_order,
|
14 |
apply_vae,
|
|
|
44 |
AxisOptionImg2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=sd_samplers.visible_sampler_names),
|
45 |
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_remove_path, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
|
46 |
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
|
47 |
+
AxisOption("Size", str, apply_size),
|
48 |
AxisOption("Sigma Churn", float, apply_field("s_churn")),
|
49 |
AxisOption("Sigma min", float, apply_field("s_tmin")),
|
50 |
AxisOption("Sigma max", float, apply_field("s_tmax")),
|
ldm_patched/k_diffusion/sampling.py
CHANGED
@@ -407,6 +407,51 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|
407 |
return x
|
408 |
|
409 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
@torch.no_grad()
|
411 |
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None):
|
412 |
"""DPM-Solver++(3M) SDE"""
|
|
|
407 |
return x
|
408 |
|
409 |
|
410 |
+
@torch.no_grad()
|
411 |
+
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None, solver_type="midpoint"):
|
412 |
+
"""DPM-Solver++(2M) SDE"""
|
413 |
+
|
414 |
+
if solver_type not in {"heun", "midpoint"}:
|
415 |
+
raise ValueError("solver_type must be 'heun' or 'midpoint'")
|
416 |
+
|
417 |
+
seed = extra_args.get("seed", None)
|
418 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
419 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
420 |
+
extra_args = {} if extra_args is None else extra_args
|
421 |
+
s_in = x.new_ones([x.shape[0]])
|
422 |
+
|
423 |
+
old_denoised = None
|
424 |
+
h_last = None
|
425 |
+
h = None
|
426 |
+
|
427 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
428 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
429 |
+
if callback is not None:
|
430 |
+
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
|
431 |
+
if sigmas[i + 1] == 0:
|
432 |
+
x = denoised
|
433 |
+
else:
|
434 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
435 |
+
h = s - t
|
436 |
+
eta_h = eta * h
|
437 |
+
|
438 |
+
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
439 |
+
|
440 |
+
if old_denoised is not None:
|
441 |
+
r = h_last / h
|
442 |
+
if solver_type == "heun":
|
443 |
+
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
|
444 |
+
elif solver_type == "midpoint":
|
445 |
+
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
446 |
+
|
447 |
+
if eta:
|
448 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
449 |
+
|
450 |
+
old_denoised = denoised
|
451 |
+
h_last = h
|
452 |
+
return x
|
453 |
+
|
454 |
+
|
455 |
@torch.no_grad()
|
456 |
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1.0, noise_sampler=None):
|
457 |
"""DPM-Solver++(3M) SDE"""
|
ldm_patched/ldm/modules/diffusionmodules/model.py
CHANGED
@@ -549,7 +549,7 @@ class Decoder(nn.Module):
|
|
549 |
_h = self.up[i_level].upsample(h)
|
550 |
del h
|
551 |
h = _h
|
552 |
-
|
553 |
|
554 |
# end
|
555 |
if self.give_pre_end:
|
|
|
549 |
_h = self.up[i_level].upsample(h)
|
550 |
del h
|
551 |
h = _h
|
552 |
+
model_management.soft_empty_cache()
|
553 |
|
554 |
# end
|
555 |
if self.give_pre_end:
|
ldm_patched/modules/args_parser.py
CHANGED
@@ -1,5 +1,10 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
|
|
|
|
|
|
3 |
|
4 |
import argparse
|
5 |
import enum
|
@@ -77,6 +82,7 @@ parser.add_argument("--cuda-stream", action="store_true")
|
|
77 |
parser.add_argument("--pin-shared-memory", action="store_true")
|
78 |
|
79 |
parser.add_argument("--fast-fp16", action="store_true")
|
|
|
80 |
|
81 |
|
82 |
class SageAttentionAPIs(enum.Enum):
|
|
|
1 |
+
"""
|
2 |
+
Credit: ComfyUI
|
3 |
+
https://github.com/comfyanonymous/ComfyUI
|
4 |
|
5 |
+
- Edited by. Forge Official
|
6 |
+
- Edited by. Haoming02
|
7 |
+
"""
|
8 |
|
9 |
import argparse
|
10 |
import enum
|
|
|
82 |
parser.add_argument("--pin-shared-memory", action="store_true")
|
83 |
|
84 |
parser.add_argument("--fast-fp16", action="store_true")
|
85 |
+
parser.add_argument("--persistent-patches", action="store_true")
|
86 |
|
87 |
|
88 |
class SageAttentionAPIs(enum.Enum):
|
ldm_patched/modules/model_management.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
|
|
|
|
|
|
|
4 |
|
5 |
-
import gc
|
6 |
import time
|
7 |
from enum import Enum
|
8 |
from functools import lru_cache
|
@@ -376,11 +379,9 @@ class LoadedModel:
|
|
376 |
if disable_async_load:
|
377 |
patch_model_to = self.device
|
378 |
|
379 |
-
self.model.model_patches_to(self.device)
|
380 |
-
self.model.model_patches_to(self.model.model_dtype())
|
381 |
|
382 |
try:
|
383 |
-
# TODO: do something with loras and offloading to CPU
|
384 |
self.real_model = self.model.patch_model(device_to=patch_model_to)
|
385 |
except Exception as e:
|
386 |
self.model.unpatch_model(self.model.offload_device)
|
@@ -434,7 +435,7 @@ class LoadedModel:
|
|
434 |
|
435 |
return self.real_model
|
436 |
|
437 |
-
def model_unload(self, avoid_model_moving: bool = False):
|
438 |
if self.model_accelerated:
|
439 |
for m in self.real_model.modules():
|
440 |
if hasattr(m, "prev_ldm_patched_cast_weights"):
|
@@ -446,7 +447,7 @@ class LoadedModel:
|
|
446 |
if avoid_model_moving:
|
447 |
self.model.unpatch_model()
|
448 |
else:
|
449 |
-
self.model.unpatch_model(self.model.offload_device)
|
450 |
self.model.model_patches_to(self.model.offload_device)
|
451 |
|
452 |
def __eq__(self, other: "LoadedModel"):
|
@@ -471,7 +472,6 @@ def unload_model_clones(model):
|
|
471 |
if len(to_unload) > 0:
|
472 |
print(f"Reusing {len(to_unload)} loaded model{'s' if len(to_unload) > 1 else ''}")
|
473 |
soft_empty_cache()
|
474 |
-
gc.collect()
|
475 |
|
476 |
|
477 |
def free_memory(memory_required, device, keep_loaded=[]):
|
|
|
1 |
+
"""
|
2 |
+
Credit: ComfyUI
|
3 |
+
https://github.com/comfyanonymous/ComfyUI
|
4 |
|
5 |
+
- Edited by. Forge Official
|
6 |
+
- Edited by. Haoming02
|
7 |
+
"""
|
8 |
|
|
|
9 |
import time
|
10 |
from enum import Enum
|
11 |
from functools import lru_cache
|
|
|
379 |
if disable_async_load:
|
380 |
patch_model_to = self.device
|
381 |
|
382 |
+
self.model.model_patches_to(device=self.device, dtype=self.model.model_dtype())
|
|
|
383 |
|
384 |
try:
|
|
|
385 |
self.real_model = self.model.patch_model(device_to=patch_model_to)
|
386 |
except Exception as e:
|
387 |
self.model.unpatch_model(self.model.offload_device)
|
|
|
435 |
|
436 |
return self.real_model
|
437 |
|
438 |
+
def model_unload(self, *, avoid_model_moving: bool = False):
|
439 |
if self.model_accelerated:
|
440 |
for m in self.real_model.modules():
|
441 |
if hasattr(m, "prev_ldm_patched_cast_weights"):
|
|
|
447 |
if avoid_model_moving:
|
448 |
self.model.unpatch_model()
|
449 |
else:
|
450 |
+
self.model.unpatch_model(device_to=self.model.offload_device)
|
451 |
self.model.model_patches_to(self.model.offload_device)
|
452 |
|
453 |
def __eq__(self, other: "LoadedModel"):
|
|
|
472 |
if len(to_unload) > 0:
|
473 |
print(f"Reusing {len(to_unload)} loaded model{'s' if len(to_unload) > 1 else ''}")
|
474 |
soft_empty_cache()
|
|
|
475 |
|
476 |
|
477 |
def free_memory(memory_required, device, keep_loaded=[]):
|
ldm_patched/modules/model_patcher.py
CHANGED
@@ -1,15 +1,63 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
|
|
|
|
|
|
|
4 |
|
5 |
import copy
|
6 |
import inspect
|
7 |
|
|
|
|
|
8 |
import ldm_patched.modules.model_management
|
9 |
import ldm_patched.modules.utils
|
10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class ModelPatcher:
|
@@ -24,13 +72,11 @@ class ModelPatcher:
|
|
24 |
self.model_size()
|
25 |
self.load_device = load_device
|
26 |
self.offload_device = offload_device
|
27 |
-
if current_device is None
|
28 |
-
self.current_device = self.offload_device
|
29 |
-
else:
|
30 |
-
self.current_device = current_device
|
31 |
-
|
32 |
self.weight_inplace_update = weight_inplace_update
|
33 |
|
|
|
|
|
34 |
def model_size(self):
|
35 |
if self.size > 0:
|
36 |
return self.size
|
@@ -46,21 +92,22 @@ class ModelPatcher:
|
|
46 |
self.offload_device,
|
47 |
self.size,
|
48 |
self.current_device,
|
49 |
-
|
50 |
)
|
51 |
-
|
52 |
for k in self.patches:
|
53 |
n.patches[k] = self.patches[k][:]
|
54 |
|
|
|
55 |
n.object_patches = self.object_patches.copy()
|
56 |
n.model_options = copy.deepcopy(self.model_options)
|
57 |
n.model_keys = self.model_keys
|
|
|
|
|
58 |
return n
|
59 |
|
60 |
def is_clone(self, other):
|
61 |
-
|
62 |
-
return True
|
63 |
-
return False
|
64 |
|
65 |
def memory_required(self, input_shape):
|
66 |
return self.model.memory_required(input_shape=input_shape)
|
@@ -135,26 +182,26 @@ class ModelPatcher:
|
|
135 |
def add_object_patch(self, name, obj):
|
136 |
self.object_patches[name] = obj
|
137 |
|
138 |
-
def model_patches_to(self, device):
|
139 |
-
to = self.model_options["transformer_options"]
|
140 |
if "patches" in to:
|
141 |
patches = to["patches"]
|
142 |
for name in patches:
|
143 |
patch_list = patches[name]
|
144 |
for i in range(len(patch_list)):
|
145 |
if hasattr(patch_list[i], "to"):
|
146 |
-
patch_list[i] = patch_list[i].to(device)
|
147 |
if "patches_replace" in to:
|
148 |
patches = to["patches_replace"]
|
149 |
for name in patches:
|
150 |
patch_list = patches[name]
|
151 |
for k in patch_list:
|
152 |
if hasattr(patch_list[k], "to"):
|
153 |
-
patch_list[k] = patch_list[k].to(device)
|
154 |
if "model_function_wrapper" in self.model_options:
|
155 |
-
wrap_func = self.model_options["model_function_wrapper"]
|
156 |
if hasattr(wrap_func, "to"):
|
157 |
-
self.model_options["model_function_wrapper"] = wrap_func.to(device)
|
158 |
|
159 |
def model_dtype(self):
|
160 |
if hasattr(self.model, "get_dtype"):
|
@@ -169,6 +216,7 @@ class ModelPatcher:
|
|
169 |
current_patches.append((strength_patch, patches[k], strength_model))
|
170 |
self.patches[k] = current_patches
|
171 |
|
|
|
172 |
return list(p)
|
173 |
|
174 |
def get_key_patches(self, filter_prefix=None):
|
@@ -201,7 +249,10 @@ class ModelPatcher:
|
|
201 |
self.object_patches_backup[k] = old
|
202 |
ldm_patched.modules.utils.set_attr_raw(self.model, k, self.object_patches[k])
|
203 |
|
204 |
-
if patch_weights:
|
|
|
|
|
|
|
205 |
model_sd = self.model_state_dict()
|
206 |
for key in self.patches:
|
207 |
if key not in model_sd:
|
@@ -226,9 +277,11 @@ class ModelPatcher:
|
|
226 |
ldm_patched.modules.utils.set_attr(self.model, key, out_weight)
|
227 |
del temp_weight
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
|
|
232 |
|
233 |
return self.model
|
234 |
|
@@ -403,16 +456,18 @@ class ModelPatcher:
|
|
403 |
return weight
|
404 |
|
405 |
def unpatch_model(self, device_to=None):
|
406 |
-
|
|
|
407 |
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
|
415 |
-
|
|
|
416 |
|
417 |
if device_to is not None:
|
418 |
self.model.to(device_to)
|
@@ -422,7 +477,7 @@ class ModelPatcher:
|
|
422 |
for k in keys:
|
423 |
ldm_patched.modules.utils.set_attr_raw(self.model, k, self.object_patches_backup[k])
|
424 |
|
425 |
-
self.object_patches_backup
|
426 |
|
427 |
def __del__(self):
|
428 |
del self.patches
|
|
|
1 |
+
"""
|
2 |
+
Credit: ComfyUI
|
3 |
+
https://github.com/comfyanonymous/ComfyUI
|
4 |
|
5 |
+
- Edited by. Forge Official
|
6 |
+
- Edited by. Haoming02
|
7 |
+
"""
|
8 |
|
9 |
import copy
|
10 |
import inspect
|
11 |
|
12 |
+
import torch
|
13 |
+
|
14 |
import ldm_patched.modules.model_management
|
15 |
import ldm_patched.modules.utils
|
16 |
+
from ldm_patched.modules.args_parser import args
|
17 |
+
|
18 |
+
extra_weight_calculators = {} # backward compatibility
|
19 |
+
|
20 |
+
|
21 |
+
PERSISTENT_PATCHES = args.persistent_patches
|
22 |
+
if PERSISTENT_PATCHES:
|
23 |
+
print("[Experimental] Persistent Patches:", PERSISTENT_PATCHES)
|
24 |
+
|
25 |
+
|
26 |
+
class PatchStatus:
|
27 |
+
def __init__(self):
|
28 |
+
self.current = 0 # the current status of the ModelPatcher
|
29 |
+
self.updated = 0 # the last time a patch was modified
|
30 |
+
|
31 |
+
def require_patch(self) -> bool:
|
32 |
+
if not PERSISTENT_PATCHES:
|
33 |
+
return True
|
34 |
+
|
35 |
+
return self.current == 0
|
36 |
+
|
37 |
+
def require_unpatch(self) -> bool:
|
38 |
+
if not PERSISTENT_PATCHES:
|
39 |
+
return True
|
40 |
+
|
41 |
+
if not PatchStatus.has_lora():
|
42 |
+
return True
|
43 |
+
|
44 |
+
return self.current != self.updated
|
45 |
+
|
46 |
+
def patch(self):
|
47 |
+
if self.updated > 0:
|
48 |
+
self.current = self.updated
|
49 |
+
|
50 |
+
def unpatch(self):
|
51 |
+
self.current = 0
|
52 |
+
|
53 |
+
def update(self):
|
54 |
+
self.updated += 1
|
55 |
|
56 |
+
@staticmethod
|
57 |
+
def has_lora() -> bool:
|
58 |
+
from modules.shared import sd_model
|
59 |
+
|
60 |
+
return sd_model.current_lora_hash != str([])
|
61 |
|
62 |
|
63 |
class ModelPatcher:
|
|
|
72 |
self.model_size()
|
73 |
self.load_device = load_device
|
74 |
self.offload_device = offload_device
|
75 |
+
self.current_device = self.offload_device if current_device is None else current_device
|
|
|
|
|
|
|
|
|
76 |
self.weight_inplace_update = weight_inplace_update
|
77 |
|
78 |
+
self.patch_status = PatchStatus()
|
79 |
+
|
80 |
def model_size(self):
|
81 |
if self.size > 0:
|
82 |
return self.size
|
|
|
92 |
self.offload_device,
|
93 |
self.size,
|
94 |
self.current_device,
|
95 |
+
self.weight_inplace_update,
|
96 |
)
|
97 |
+
|
98 |
for k in self.patches:
|
99 |
n.patches[k] = self.patches[k][:]
|
100 |
|
101 |
+
n.backup = self.backup
|
102 |
n.object_patches = self.object_patches.copy()
|
103 |
n.model_options = copy.deepcopy(self.model_options)
|
104 |
n.model_keys = self.model_keys
|
105 |
+
n.patch_status = self.patch_status
|
106 |
+
|
107 |
return n
|
108 |
|
109 |
def is_clone(self, other):
|
110 |
+
return getattr(other, "model", None) is self.model
|
|
|
|
|
111 |
|
112 |
def memory_required(self, input_shape):
|
113 |
return self.model.memory_required(input_shape=input_shape)
|
|
|
182 |
def add_object_patch(self, name, obj):
|
183 |
self.object_patches[name] = obj
|
184 |
|
185 |
+
def model_patches_to(self, device, *, dtype=None):
|
186 |
+
to: dict[str, dict[str, list["torch.Tensor"] | dict[str, "torch.Tensor"]]] = self.model_options["transformer_options"]
|
187 |
if "patches" in to:
|
188 |
patches = to["patches"]
|
189 |
for name in patches:
|
190 |
patch_list = patches[name]
|
191 |
for i in range(len(patch_list)):
|
192 |
if hasattr(patch_list[i], "to"):
|
193 |
+
patch_list[i] = patch_list[i].to(device=device, dtype=dtype)
|
194 |
if "patches_replace" in to:
|
195 |
patches = to["patches_replace"]
|
196 |
for name in patches:
|
197 |
patch_list = patches[name]
|
198 |
for k in patch_list:
|
199 |
if hasattr(patch_list[k], "to"):
|
200 |
+
patch_list[k] = patch_list[k].to(device=device, dtype=dtype)
|
201 |
if "model_function_wrapper" in self.model_options:
|
202 |
+
wrap_func: "torch.Tensor" = self.model_options["model_function_wrapper"]
|
203 |
if hasattr(wrap_func, "to"):
|
204 |
+
self.model_options["model_function_wrapper"] = wrap_func.to(device=device, dtype=dtype)
|
205 |
|
206 |
def model_dtype(self):
|
207 |
if hasattr(self.model, "get_dtype"):
|
|
|
216 |
current_patches.append((strength_patch, patches[k], strength_model))
|
217 |
self.patches[k] = current_patches
|
218 |
|
219 |
+
self.patch_status.update()
|
220 |
return list(p)
|
221 |
|
222 |
def get_key_patches(self, filter_prefix=None):
|
|
|
249 |
self.object_patches_backup[k] = old
|
250 |
ldm_patched.modules.utils.set_attr_raw(self.model, k, self.object_patches[k])
|
251 |
|
252 |
+
if not patch_weights:
|
253 |
+
return self.model
|
254 |
+
|
255 |
+
if self.patches and self.patch_status.require_patch():
|
256 |
model_sd = self.model_state_dict()
|
257 |
for key in self.patches:
|
258 |
if key not in model_sd:
|
|
|
277 |
ldm_patched.modules.utils.set_attr(self.model, key, out_weight)
|
278 |
del temp_weight
|
279 |
|
280 |
+
self.patch_status.patch()
|
281 |
+
|
282 |
+
if device_to is not None:
|
283 |
+
self.model.to(device_to)
|
284 |
+
self.current_device = device_to
|
285 |
|
286 |
return self.model
|
287 |
|
|
|
456 |
return weight
|
457 |
|
458 |
def unpatch_model(self, device_to=None):
|
459 |
+
if self.backup and self.patch_status.require_unpatch():
|
460 |
+
keys = list(self.backup.keys())
|
461 |
|
462 |
+
if self.weight_inplace_update:
|
463 |
+
for k in keys:
|
464 |
+
ldm_patched.modules.utils.copy_to_param(self.model, k, self.backup[k])
|
465 |
+
else:
|
466 |
+
for k in keys:
|
467 |
+
ldm_patched.modules.utils.set_attr(self.model, k, self.backup[k])
|
468 |
|
469 |
+
self.backup.clear()
|
470 |
+
self.patch_status.unpatch()
|
471 |
|
472 |
if device_to is not None:
|
473 |
self.model.to(device_to)
|
|
|
477 |
for k in keys:
|
478 |
ldm_patched.modules.utils.set_attr_raw(self.model, k, self.object_patches_backup[k])
|
479 |
|
480 |
+
self.object_patches_backup.clear()
|
481 |
|
482 |
def __del__(self):
|
483 |
del self.patches
|
ldm_patched/modules/sd.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
# Reference: https://github.com/comfyanonymous/ComfyUI
|
2 |
|
3 |
|
|
|
|
|
4 |
import ldm_patched.modules.lora
|
5 |
import ldm_patched.modules.model_patcher
|
6 |
-
import ldm_patched.modules.supported_models_base
|
7 |
import ldm_patched.modules.utils
|
8 |
-
import ldm_patched.t2ia.adapter
|
9 |
import ldm_patched.taesd.taesd
|
10 |
-
import
|
11 |
-
|
12 |
-
from ldm_patched.ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
|
13 |
from ldm_patched.modules import model_management
|
|
|
14 |
|
15 |
from . import diffusers_convert
|
16 |
|
@@ -218,7 +217,11 @@ class VAE:
|
|
218 |
n.output_device = self.output_device
|
219 |
return n
|
220 |
|
221 |
-
def decode_tiled_(self, samples, tile_x=
|
|
|
|
|
|
|
|
|
222 |
steps = samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
223 |
steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
224 |
steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
@@ -267,7 +270,11 @@ class VAE:
|
|
267 |
)
|
268 |
return output
|
269 |
|
270 |
-
def encode_tiled_(self, pixel_samples, tile_x=
|
|
|
|
|
|
|
|
|
271 |
steps = pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
272 |
steps += pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(
|
273 |
pixel_samples.shape[3],
|
@@ -363,9 +370,9 @@ class VAE:
|
|
363 |
else:
|
364 |
return wrapper(self.decode_inner, samples_in)
|
365 |
|
366 |
-
def decode_tiled(self, samples
|
367 |
model_management.load_model_gpu(self.patcher)
|
368 |
-
output = self.decode_tiled_(samples
|
369 |
return output.movedim(1, -1)
|
370 |
|
371 |
def encode_inner(self, pixel_samples):
|
@@ -405,10 +412,10 @@ class VAE:
|
|
405 |
else:
|
406 |
return wrapper(self.encode_inner, pixel_samples)
|
407 |
|
408 |
-
def encode_tiled(self, pixel_samples
|
409 |
model_management.load_model_gpu(self.patcher)
|
410 |
pixel_samples = pixel_samples.movedim(-1, 1)
|
411 |
-
samples = self.encode_tiled_(pixel_samples
|
412 |
return samples
|
413 |
|
414 |
def get_sd(self):
|
|
|
1 |
# Reference: https://github.com/comfyanonymous/ComfyUI
|
2 |
|
3 |
|
4 |
+
import torch
|
5 |
+
|
6 |
import ldm_patched.modules.lora
|
7 |
import ldm_patched.modules.model_patcher
|
|
|
8 |
import ldm_patched.modules.utils
|
|
|
9 |
import ldm_patched.taesd.taesd
|
10 |
+
from ldm_patched.ldm.models.autoencoder import AutoencoderKL
|
|
|
|
|
11 |
from ldm_patched.modules import model_management
|
12 |
+
from modules.shared import opts
|
13 |
|
14 |
from . import diffusers_convert
|
15 |
|
|
|
217 |
n.output_device = self.output_device
|
218 |
return n
|
219 |
|
220 |
+
def decode_tiled_(self, samples, tile_x=0, tile_y=0, overlap=0):
|
221 |
+
tile_x = int(tile_x or (opts.tile_size / 8))
|
222 |
+
tile_y = int(tile_y or (opts.tile_size / 8))
|
223 |
+
overlap = int(overlap or (opts.tile_overlap / 8))
|
224 |
+
|
225 |
steps = samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
226 |
steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
227 |
steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
|
270 |
)
|
271 |
return output
|
272 |
|
273 |
+
def encode_tiled_(self, pixel_samples, tile_x=0, tile_y=0, overlap=0):
|
274 |
+
tile_x = int(tile_x or opts.tile_size)
|
275 |
+
tile_y = int(tile_y or opts.tile_size)
|
276 |
+
overlap = int(overlap or opts.tile_overlap)
|
277 |
+
|
278 |
steps = pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
279 |
steps += pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(
|
280 |
pixel_samples.shape[3],
|
|
|
370 |
else:
|
371 |
return wrapper(self.decode_inner, samples_in)
|
372 |
|
373 |
+
def decode_tiled(self, samples):
|
374 |
model_management.load_model_gpu(self.patcher)
|
375 |
+
output = self.decode_tiled_(samples)
|
376 |
return output.movedim(1, -1)
|
377 |
|
378 |
def encode_inner(self, pixel_samples):
|
|
|
412 |
else:
|
413 |
return wrapper(self.encode_inner, pixel_samples)
|
414 |
|
415 |
+
def encode_tiled(self, pixel_samples):
|
416 |
model_management.load_model_gpu(self.patcher)
|
417 |
pixel_samples = pixel_samples.movedim(-1, 1)
|
418 |
+
samples = self.encode_tiled_(pixel_samples)
|
419 |
return samples
|
420 |
|
421 |
def get_sd(self):
|
modules/cmd_args.py
CHANGED
@@ -11,14 +11,12 @@ parser.add_argument("-f", action="store_true", help=argparse.SUPPRESS) # allows
|
|
11 |
|
12 |
parser.add_argument("--update-all-extensions", action="store_true", help="launch.py argument: download updates for all extensions when starting the program")
|
13 |
parser.add_argument("--skip-python-version-check", action="store_true", help="launch.py argument: do not check python version")
|
|
|
14 |
parser.add_argument("--skip-torch-cuda-test", action="store_true", help="launch.py argument: do not check if CUDA is able to work properly")
|
|
|
15 |
parser.add_argument("--reinstall-xformers", action="store_true", help="launch.py argument: install the appropriate version of xformers even if you have some version already installed")
|
16 |
parser.add_argument("--reinstall-torch", action="store_true", help="launch.py argument: install the appropriate version of torch even if you have some version already installed")
|
17 |
-
parser.add_argument("--update-check", action="store_true", help="launch.py argument: check for updates at startup")
|
18 |
-
parser.add_argument("--test-server", action="store_true", help="launch.py argument: configure server for testing")
|
19 |
parser.add_argument("--log-startup", action="store_true", help="launch.py argument: print a detailed log of what's happening at startup")
|
20 |
-
parser.add_argument("--skip-prepare-environment", action="store_true", help="launch.py argument: skip all environment preparation")
|
21 |
-
parser.add_argument("--skip-install", action="store_true", help="launch.py argument: skip installation of packages")
|
22 |
parser.add_argument("--dump-sysinfo", action="store_true", help="launch.py argument: dump limited sysinfo file (without information about extensions, options) to disk and quit")
|
23 |
parser.add_argument("--loglevel", type=str, help="log level; one of: CRITICAL, ERROR, WARNING, INFO, DEBUG", default=None)
|
24 |
parser.add_argument("--data-dir", type=normalized_filepath, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored")
|
@@ -30,11 +28,8 @@ parser.add_argument("--vae-dir", type=normalized_filepath, default=None, help="P
|
|
30 |
parser.add_argument("--gfpgan-dir", type=normalized_filepath, help="GFPGAN directory", default=("./src/gfpgan" if os.path.exists("./src/gfpgan") else "./GFPGAN"))
|
31 |
parser.add_argument("--gfpgan-model", type=normalized_filepath, help="GFPGAN model file name", default=None)
|
32 |
parser.add_argument("--no-half", action="store_true", help="do not switch the model to 16-bit floats")
|
33 |
-
parser.add_argument("--no-half-vae", action="store_true", help="do not switch the VAE model to 16-bit floats")
|
34 |
-
parser.add_argument("--no-progressbar-hiding", action="store_true", help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
35 |
parser.add_argument("--embeddings-dir", type=normalized_filepath, default=os.path.join(models_path, "embeddings"), help="textual inversion directory")
|
36 |
parser.add_argument("--localizations-dir", type=normalized_filepath, default=os.path.join(script_path, "localizations"), help="localizations directory")
|
37 |
-
parser.add_argument("--upcast-sampling", action="store_true", help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
|
38 |
parser.add_argument("--share", action="store_true", help="use share=True for gradio and make the UI accessible through their site")
|
39 |
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
40 |
parser.add_argument("--ngrok-options", type=json.loads, help='The options to pass to ngrok in JSON format, e.g.: \'{"authtoken_from_env":true, "basic_auth":"user:password", "oauth_provider":"google", "oauth_allow_emails":"[email protected]"}\'', default=dict())
|
@@ -44,11 +39,9 @@ parser.add_argument("--gfpgan-models-path", type=normalized_filepath, help="Path
|
|
44 |
parser.add_argument("--esrgan-models-path", type=normalized_filepath, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, "ESRGAN"))
|
45 |
parser.add_argument("--xformers", action="store_true", help="enable xformers for cross attention layers")
|
46 |
parser.add_argument("--sage", action="store_true", help="enable sage for cross attention layers")
|
47 |
-
parser.add_argument("--force-enable-xformers", action="store_true", help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
48 |
parser.add_argument("--disable-nan-check", action="store_true", help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
|
49 |
parser.add_argument("--use-cpu", nargs="+", help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
50 |
parser.add_argument("--use-ipex", action="store_true", help="use Intel XPU as torch device")
|
51 |
-
parser.add_argument("--disable-model-loading-ram-optimization", action="store_true", help="disable an optimization that reduces RAM use when loading a model")
|
52 |
parser.add_argument("--listen", action="store_true", help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
53 |
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
54 |
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, "ui-config.json"))
|
@@ -67,7 +60,6 @@ parser.add_argument("--theme", type=str, help="launches the UI with light or dar
|
|
67 |
parser.add_argument("--use-textbox-seed", action="store_true", help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
|
68 |
parser.add_argument("--disable-console-progressbars", action="store_true", help="do not output progressbars to console", default=False)
|
69 |
parser.add_argument("--vae-path", type=normalized_filepath, help="Checkpoint to use as VAE; setting this argument disables all settings related to VAE", default=None)
|
70 |
-
parser.add_argument("--disable-safe-unpickle", action="store_true", help="disable checking pytorch models for malicious code", default=False)
|
71 |
parser.add_argument("--api", action="store_true", help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
|
72 |
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
73 |
parser.add_argument("--api-log", action="store_true", help="use api-log=True to enable logging of all API requests")
|
@@ -101,3 +93,6 @@ parser.add_argument("--fps", type=int, default=30, help="refresh rate for thread
|
|
101 |
pkm = parser.add_mutually_exclusive_group()
|
102 |
pkm.add_argument("--uv", action="store_true", help="Use the uv package manager")
|
103 |
pkm.add_argument("--uv-symlink", action="store_true", help="Use the uv package manager with symlink")
|
|
|
|
|
|
|
|
11 |
|
12 |
parser.add_argument("--update-all-extensions", action="store_true", help="launch.py argument: download updates for all extensions when starting the program")
|
13 |
parser.add_argument("--skip-python-version-check", action="store_true", help="launch.py argument: do not check python version")
|
14 |
+
parser.add_argument("--skip-prepare-environment", action="store_true", help="launch.py argument: skip all environment preparation")
|
15 |
parser.add_argument("--skip-torch-cuda-test", action="store_true", help="launch.py argument: do not check if CUDA is able to work properly")
|
16 |
+
parser.add_argument("--skip-install", action="store_true", help="launch.py argument: skip installation of packages")
|
17 |
parser.add_argument("--reinstall-xformers", action="store_true", help="launch.py argument: install the appropriate version of xformers even if you have some version already installed")
|
18 |
parser.add_argument("--reinstall-torch", action="store_true", help="launch.py argument: install the appropriate version of torch even if you have some version already installed")
|
|
|
|
|
19 |
parser.add_argument("--log-startup", action="store_true", help="launch.py argument: print a detailed log of what's happening at startup")
|
|
|
|
|
20 |
parser.add_argument("--dump-sysinfo", action="store_true", help="launch.py argument: dump limited sysinfo file (without information about extensions, options) to disk and quit")
|
21 |
parser.add_argument("--loglevel", type=str, help="log level; one of: CRITICAL, ERROR, WARNING, INFO, DEBUG", default=None)
|
22 |
parser.add_argument("--data-dir", type=normalized_filepath, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored")
|
|
|
28 |
parser.add_argument("--gfpgan-dir", type=normalized_filepath, help="GFPGAN directory", default=("./src/gfpgan" if os.path.exists("./src/gfpgan") else "./GFPGAN"))
|
29 |
parser.add_argument("--gfpgan-model", type=normalized_filepath, help="GFPGAN model file name", default=None)
|
30 |
parser.add_argument("--no-half", action="store_true", help="do not switch the model to 16-bit floats")
|
|
|
|
|
31 |
parser.add_argument("--embeddings-dir", type=normalized_filepath, default=os.path.join(models_path, "embeddings"), help="textual inversion directory")
|
32 |
parser.add_argument("--localizations-dir", type=normalized_filepath, default=os.path.join(script_path, "localizations"), help="localizations directory")
|
|
|
33 |
parser.add_argument("--share", action="store_true", help="use share=True for gradio and make the UI accessible through their site")
|
34 |
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
35 |
parser.add_argument("--ngrok-options", type=json.loads, help='The options to pass to ngrok in JSON format, e.g.: \'{"authtoken_from_env":true, "basic_auth":"user:password", "oauth_provider":"google", "oauth_allow_emails":"[email protected]"}\'', default=dict())
|
|
|
39 |
parser.add_argument("--esrgan-models-path", type=normalized_filepath, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, "ESRGAN"))
|
40 |
parser.add_argument("--xformers", action="store_true", help="enable xformers for cross attention layers")
|
41 |
parser.add_argument("--sage", action="store_true", help="enable sage for cross attention layers")
|
|
|
42 |
parser.add_argument("--disable-nan-check", action="store_true", help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
|
43 |
parser.add_argument("--use-cpu", nargs="+", help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
44 |
parser.add_argument("--use-ipex", action="store_true", help="use Intel XPU as torch device")
|
|
|
45 |
parser.add_argument("--listen", action="store_true", help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
46 |
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
47 |
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, "ui-config.json"))
|
|
|
60 |
parser.add_argument("--use-textbox-seed", action="store_true", help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
|
61 |
parser.add_argument("--disable-console-progressbars", action="store_true", help="do not output progressbars to console", default=False)
|
62 |
parser.add_argument("--vae-path", type=normalized_filepath, help="Checkpoint to use as VAE; setting this argument disables all settings related to VAE", default=None)
|
|
|
63 |
parser.add_argument("--api", action="store_true", help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
|
64 |
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
65 |
parser.add_argument("--api-log", action="store_true", help="use api-log=True to enable logging of all API requests")
|
|
|
93 |
pkm = parser.add_mutually_exclusive_group()
|
94 |
pkm.add_argument("--uv", action="store_true", help="Use the uv package manager")
|
95 |
pkm.add_argument("--uv-symlink", action="store_true", help="Use the uv package manager with symlink")
|
96 |
+
|
97 |
+
# ===== backward compatibility ===== #
|
98 |
+
parser.add_argument("--disable-safe-unpickle", action="store_true", help="does absolutely nothing", default=False) # adetailer
|
modules/mac_specific.py
CHANGED
@@ -12,7 +12,7 @@ log = logging.getLogger(__name__)
|
|
12 |
|
13 |
# before torch version 1.13, has_mps is only available in nightly pytorch and macOS 12.3+,
|
14 |
# use check `getattr` and try it for compatibility.
|
15 |
-
# in torch version 1.13, backends.mps.is_available() and backends.mps.is_built() are introduced in to check mps
|
16 |
# since torch 2.0.1+ nightly build, getattr(torch, 'has_mps', False) was deprecated, see https://github.com/pytorch/pytorch/pull/103279
|
17 |
def check_for_mps() -> bool:
|
18 |
if version.parse(torch.__version__) <= version.parse("2.0.1"):
|
|
|
12 |
|
13 |
# before torch version 1.13, has_mps is only available in nightly pytorch and macOS 12.3+,
|
14 |
# use check `getattr` and try it for compatibility.
|
15 |
+
# in torch version 1.13, backends.mps.is_available() and backends.mps.is_built() are introduced in to check mps availability,
|
16 |
# since torch 2.0.1+ nightly build, getattr(torch, 'has_mps', False) was deprecated, see https://github.com/pytorch/pytorch/pull/103279
|
17 |
def check_for_mps() -> bool:
|
18 |
if version.parse(torch.__version__) <= version.parse("2.0.1"):
|
modules/processing.py
CHANGED
@@ -1,38 +1,54 @@
|
|
1 |
from __future__ import annotations
|
|
|
|
|
2 |
import json
|
3 |
import math
|
4 |
import os
|
|
|
5 |
import sys
|
6 |
-
import hashlib
|
7 |
from dataclasses import dataclass, field
|
|
|
8 |
|
9 |
-
import
|
10 |
import numpy as np
|
|
|
|
|
11 |
from PIL import Image, ImageOps
|
12 |
-
import random
|
13 |
-
import cv2
|
14 |
from skimage.exposure import match_histograms
|
15 |
-
from typing import Any
|
16 |
|
17 |
-
import modules.sd_hijack
|
18 |
-
from modules import devices, prompt_parser, masking, sd_samplers, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
|
19 |
-
from modules.rng import slerp # noqa: F401
|
20 |
-
from modules.sd_hijack import model_hijack
|
21 |
-
from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
|
22 |
-
from modules.shared import opts, cmd_opts, state
|
23 |
-
import modules.shared as shared
|
24 |
-
import modules.paths as paths
|
25 |
import modules.face_restoration
|
26 |
-
import modules.
|
27 |
-
import modules.
|
28 |
import modules.sd_models as sd_models
|
29 |
import modules.sd_vae as sd_vae
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
from modules.sd_models import apply_token_merging
|
33 |
-
from
|
|
|
|
|
|
|
|
|
|
|
34 |
from modules_forge.forge_loader import apply_alpha_schedule_override
|
35 |
-
|
36 |
|
37 |
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
38 |
opt_C = 4
|
@@ -59,7 +75,7 @@ def apply_color_correction(correction_target: np.ndarray, original_image: Image.
|
|
59 |
|
60 |
def uncrop(image, dest_size, paste_loc):
|
61 |
x, y, w, h = paste_loc
|
62 |
-
base_image = Image.new(
|
63 |
image = images.resize_image(1, image, w, h)
|
64 |
base_image.paste(image, (x, y))
|
65 |
image = base_image
|
@@ -67,33 +83,59 @@ def uncrop(image, dest_size, paste_loc):
|
|
67 |
return image
|
68 |
|
69 |
|
70 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if overlay is None:
|
72 |
return image, image.copy()
|
73 |
|
|
|
|
|
|
|
74 |
if paste_loc is not None:
|
75 |
image = uncrop(image, (overlay.width, overlay.height), paste_loc)
|
76 |
|
77 |
original_denoised_image = image.copy()
|
78 |
|
79 |
-
image = image.convert(
|
80 |
image.alpha_composite(overlay)
|
81 |
-
image = image.convert(
|
82 |
|
83 |
return image, original_denoised_image
|
84 |
|
|
|
85 |
def create_binary_mask(image, round=True):
|
86 |
-
if image.mode ==
|
87 |
if round:
|
88 |
image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
|
89 |
else:
|
90 |
image = image.split()[-1].convert("L")
|
91 |
else:
|
92 |
-
image = image.convert(
|
93 |
return image
|
94 |
|
|
|
95 |
def txt2img_image_conditioning(sd_model, x, width, height):
|
96 |
-
if sd_model.model.conditioning_key in {
|
97 |
|
98 |
# The "masked-image" in this case will just be all 0.5 since the entire image is masked.
|
99 |
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
|
@@ -105,19 +147,18 @@ def txt2img_image_conditioning(sd_model, x, width, height):
|
|
105 |
|
106 |
return image_conditioning
|
107 |
|
108 |
-
elif sd_model.model.conditioning_key == "crossattn-adm":
|
109 |
|
110 |
-
return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
|
111 |
|
112 |
else:
|
113 |
sd = sd_model.model.state_dict()
|
114 |
-
diffusion_model_input = sd.get(
|
115 |
if diffusion_model_input is not None:
|
116 |
if diffusion_model_input.shape[1] == 9:
|
117 |
# The "masked-image" in this case will just be all 0.5 since the entire image is masked.
|
118 |
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
|
119 |
-
image_conditioning = images_tensor_to_samples(image_conditioning,
|
120 |
-
approximation_indexes.get(opts.sd_vae_encode_method))
|
121 |
|
122 |
# Add the fake full 1s mask to the first dimension.
|
123 |
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
|
@@ -236,7 +277,7 @@ class StableDiffusionProcessing:
|
|
236 |
self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
|
237 |
self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
|
238 |
self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
|
239 |
-
self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float(
|
240 |
self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
|
241 |
|
242 |
self.extra_generation_params = self.extra_generation_params or {}
|
@@ -296,7 +337,7 @@ class StableDiffusionProcessing:
|
|
296 |
self.comments[text] = 1
|
297 |
|
298 |
def txt2img_image_conditioning(self, x, width=None, height=None):
|
299 |
-
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {
|
300 |
|
301 |
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
|
302 |
|
@@ -308,8 +349,8 @@ class StableDiffusionProcessing:
|
|
308 |
def unclip_image_conditioning(self, source_image):
|
309 |
c_adm = self.sd_model.embedder(source_image)
|
310 |
if self.sd_model.noise_augmentor is not None:
|
311 |
-
noise_level = 0
|
312 |
-
c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device),
|
313 |
c_adm = torch.cat((c_adm, noise_level_emb), 1)
|
314 |
return c_adm
|
315 |
|
@@ -335,11 +376,7 @@ class StableDiffusionProcessing:
|
|
335 |
# Create another latent image, this time with a masked version of the original input.
|
336 |
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
337 |
conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
|
338 |
-
conditioning_image = torch.lerp(
|
339 |
-
source_image,
|
340 |
-
source_image * (1.0 - conditioning_mask),
|
341 |
-
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
|
342 |
-
)
|
343 |
|
344 |
# Encode the new masked image using first stage of network.
|
345 |
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
|
@@ -358,14 +395,14 @@ class StableDiffusionProcessing:
|
|
358 |
if self.sd_model.cond_stage_key == "edit":
|
359 |
return self.edit_image_conditioning(source_image)
|
360 |
|
361 |
-
if self.sampler.conditioning_key in {
|
362 |
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask)
|
363 |
|
364 |
if self.sampler.conditioning_key == "crossattn-adm":
|
365 |
return self.unclip_image_conditioning(source_image)
|
366 |
|
367 |
sd = self.sampler.model_wrap.inner_model.model.state_dict()
|
368 |
-
diffusion_model_input = sd.get(
|
369 |
if diffusion_model_input is not None:
|
370 |
if diffusion_model_input.shape[1] == 9:
|
371 |
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
|
@@ -394,7 +431,7 @@ class StableDiffusionProcessing:
|
|
394 |
return self.token_merging_ratio or opts.token_merging_ratio
|
395 |
|
396 |
def setup_prompts(self):
|
397 |
-
if isinstance(self.prompt,list):
|
398 |
self.all_prompts = self.prompt
|
399 |
elif isinstance(self.negative_prompt, list):
|
400 |
self.all_prompts = [self.prompt] * len(self.negative_prompt)
|
@@ -505,7 +542,7 @@ class Processed:
|
|
505 |
self.height = p.height
|
506 |
self.sampler_name = p.sampler_name
|
507 |
self.cfg_scale = p.cfg_scale
|
508 |
-
self.image_cfg_scale = getattr(p,
|
509 |
self.steps = p.steps
|
510 |
self.batch_size = p.batch_size
|
511 |
self.restore_faces = p.restore_faces
|
@@ -516,7 +553,7 @@ class Processed:
|
|
516 |
self.sd_vae_hash = p.sd_vae_hash
|
517 |
self.seed_resize_from_w = p.seed_resize_from_w
|
518 |
self.seed_resize_from_h = p.seed_resize_from_h
|
519 |
-
self.denoising_strength = getattr(p,
|
520 |
self.extra_generation_params = p.extra_generation_params
|
521 |
self.index_of_first_image = index_of_first_image
|
522 |
self.styles = p.styles
|
@@ -611,7 +648,7 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
|
|
611 |
|
612 |
|
613 |
def get_fixed_seed(seed):
|
614 |
-
if seed ==
|
615 |
seed = -1
|
616 |
elif isinstance(seed, str):
|
617 |
try:
|
@@ -643,8 +680,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
|
643 |
if all_negative_prompts is None:
|
644 |
all_negative_prompts = p.all_negative_prompts
|
645 |
|
646 |
-
clip_skip = getattr(p,
|
647 |
-
enable_hr = getattr(p,
|
648 |
token_merging_ratio = p.get_token_merging_ratio()
|
649 |
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
|
650 |
|
@@ -663,7 +700,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
|
663 |
"Sampler": p.sampler_name,
|
664 |
"Schedule type": p.scheduler,
|
665 |
"CFG scale": p.cfg_scale,
|
666 |
-
"Image CFG scale": getattr(p,
|
667 |
"Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
|
668 |
"Face restoration": opts.face_restoration_model if p.restore_faces else None,
|
669 |
"Size": f"{p.width}x{p.height}",
|
@@ -681,7 +718,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
|
681 |
"ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
|
682 |
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
|
683 |
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
|
684 |
-
"Init image hash": getattr(p,
|
685 |
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
|
686 |
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
|
687 |
"Tiling": True if p.tiling else None,
|
@@ -701,7 +738,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
|
701 |
errors.report(f'Error creating infotext for key "{key}"', exc_info=True)
|
702 |
generation_params[key] = None
|
703 |
|
704 |
-
generation_params_text = ", ".join([k if k == v else f
|
705 |
|
706 |
negative_prompt_text = f"\nNegative prompt: {negative_prompt}" if negative_prompt else ""
|
707 |
|
@@ -717,17 +754,17 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|
717 |
try:
|
718 |
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
|
719 |
# and if after running refiner, the refiner model is not unloaded - webui swaps back to main model here, if model over is present it will be reloaded afterwards
|
720 |
-
if sd_models.checkpoint_aliases.get(p.override_settings.get(
|
721 |
-
p.override_settings.pop(
|
722 |
sd_models.reload_model_weights()
|
723 |
|
724 |
for k, v in p.override_settings.items():
|
725 |
opts.set(k, v, is_api=True, run_callbacks=False)
|
726 |
|
727 |
-
if k ==
|
728 |
sd_models.reload_model_weights()
|
729 |
|
730 |
-
if k ==
|
731 |
sd_vae.reload_vae_weights()
|
732 |
|
733 |
sd_samplers.fix_p_invalid_sampler_and_scheduler(p)
|
@@ -740,7 +777,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|
740 |
for k, v in stored_opts.items():
|
741 |
setattr(opts, k, v)
|
742 |
|
743 |
-
if k ==
|
744 |
sd_vae.reload_vae_weights()
|
745 |
|
746 |
return res
|
@@ -750,7 +787,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|
750 |
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
751 |
|
752 |
if isinstance(p.prompt, list):
|
753 |
-
assert
|
754 |
else:
|
755 |
assert p.prompt is not None
|
756 |
|
@@ -768,7 +805,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|
768 |
if p.refiner_checkpoint not in (None, "", "None", "none"):
|
769 |
p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint)
|
770 |
if p.refiner_checkpoint_info is None:
|
771 |
-
raise Exception(f
|
772 |
|
773 |
p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
|
774 |
p.sd_model_hash = shared.sd_model.sd_model_hash
|
@@ -823,10 +860,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|
823 |
sd_models.reload_model_weights() # model can be changed for example by refiner
|
824 |
|
825 |
p.sd_model.forge_objects = p.sd_model.forge_objects_original.shallow_copy()
|
826 |
-
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
827 |
-
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
828 |
-
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
829 |
-
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
830 |
|
831 |
p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
|
832 |
|
@@ -874,11 +911,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|
874 |
p.scripts.post_sample(p, ps)
|
875 |
samples_ddim = ps.samples
|
876 |
|
877 |
-
if getattr(samples_ddim,
|
878 |
x_samples_ddim = samples_ddim
|
879 |
else:
|
880 |
-
if opts.sd_vae_decode_method !=
|
881 |
-
p.extra_generation_params[
|
882 |
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
|
883 |
|
884 |
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
@@ -893,8 +930,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|
893 |
if p.scripts is not None:
|
894 |
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
895 |
|
896 |
-
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
897 |
-
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
898 |
|
899 |
batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
|
900 |
p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
|
@@ -908,7 +945,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|
908 |
for i, x_sample in enumerate(x_samples_ddim):
|
909 |
p.batch_index = i
|
910 |
|
911 |
-
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
912 |
x_sample = x_sample.astype(np.uint8)
|
913 |
|
914 |
if p.restore_faces:
|
@@ -969,14 +1006,14 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|
969 |
|
970 |
if mask_for_overlay is not None:
|
971 |
if opts.return_mask or opts.save_mask:
|
972 |
-
image_mask = mask_for_overlay.convert(
|
973 |
if save_samples and opts.save_mask:
|
974 |
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
|
975 |
if opts.return_mask:
|
976 |
output_images.append(image_mask)
|
977 |
|
978 |
if opts.return_mask_composite or opts.save_mask_composite:
|
979 |
-
image_mask_composite = Image.composite(original_denoised_image.convert(
|
980 |
if save_samples and opts.save_mask_composite:
|
981 |
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
|
982 |
if opts.return_mask_composite:
|
@@ -1054,8 +1091,10 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1054 |
hr_checkpoint_name: str = None
|
1055 |
hr_sampler_name: str = None
|
1056 |
hr_scheduler: str = None
|
1057 |
-
|
1058 |
-
|
|
|
|
|
1059 |
force_task_id: str = None
|
1060 |
|
1061 |
cached_hr_uc = [None, None]
|
@@ -1128,57 +1167,68 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1128 |
self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
|
1129 |
|
1130 |
def init(self, all_prompts, all_seeds, all_subseeds):
|
1131 |
-
if self.enable_hr:
|
1132 |
-
|
1133 |
|
1134 |
-
|
1135 |
-
self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name)
|
1136 |
|
1137 |
-
|
1138 |
-
|
1139 |
|
1140 |
-
|
1141 |
-
|
1142 |
-
|
1143 |
-
|
|
|
|
|
|
|
1144 |
|
1145 |
-
|
1146 |
-
|
1147 |
|
1148 |
-
|
1149 |
-
|
1150 |
-
if self.hr_scheduler is None:
|
1151 |
-
self.hr_scheduler = self.scheduler
|
1152 |
|
1153 |
-
|
1154 |
-
|
1155 |
|
1156 |
-
|
1157 |
-
|
1158 |
|
1159 |
-
|
1160 |
-
|
1161 |
-
if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
|
1162 |
-
raise Exception(f"could not find upscaler named {self.hr_upscaler}")
|
1163 |
|
1164 |
-
self.
|
|
|
1165 |
|
1166 |
-
|
1167 |
-
|
1168 |
-
state.job_count = self.n_iter
|
1169 |
-
if getattr(self, 'txt2img_upscale', False):
|
1170 |
-
total_steps = (self.hr_second_pass_steps or self.steps) * state.job_count
|
1171 |
-
else:
|
1172 |
-
total_steps = (self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count
|
1173 |
-
shared.total_tqdm.updateTotal(total_steps)
|
1174 |
-
state.job_count = state.job_count * 2
|
1175 |
-
state.processing_has_refined_job_count = True
|
1176 |
|
1177 |
-
|
1178 |
-
|
1179 |
|
1180 |
-
|
1181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1182 |
|
1183 |
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
1184 |
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
@@ -1199,8 +1249,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1199 |
image = torch.from_numpy(np.expand_dims(image, axis=0))
|
1200 |
image = image.to(shared.device, dtype=torch.float32)
|
1201 |
|
1202 |
-
if opts.sd_vae_encode_method !=
|
1203 |
-
self.extra_generation_params[
|
1204 |
|
1205 |
samples = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
|
1206 |
decoded_samples = None
|
@@ -1215,11 +1265,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1215 |
apply_token_merging(self.sd_model, self.get_token_merging_ratio())
|
1216 |
|
1217 |
if self.scripts is not None:
|
1218 |
-
self.scripts.process_before_every_sampling(self,
|
1219 |
-
x=x,
|
1220 |
-
noise=x,
|
1221 |
-
c=conditioning,
|
1222 |
-
uc=unconditional_conditioning)
|
1223 |
|
1224 |
if self.modified_noise is not None:
|
1225 |
x = self.modified_noise
|
@@ -1284,7 +1330,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1284 |
|
1285 |
batch_images = []
|
1286 |
for i, x_sample in enumerate(lowres_samples):
|
1287 |
-
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
1288 |
x_sample = x_sample.astype(np.uint8)
|
1289 |
image = Image.fromarray(x_sample)
|
1290 |
|
@@ -1298,15 +1344,15 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1298 |
decoded_samples = torch.from_numpy(np.array(batch_images))
|
1299 |
decoded_samples = decoded_samples.to(shared.device, dtype=torch.float32)
|
1300 |
|
1301 |
-
if opts.sd_vae_encode_method !=
|
1302 |
-
self.extra_generation_params[
|
1303 |
samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method))
|
1304 |
|
1305 |
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
|
1306 |
|
1307 |
shared.state.nextjob()
|
1308 |
|
1309 |
-
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
|
1310 |
|
1311 |
self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
|
1312 |
noise = self.rng.next()
|
@@ -1328,11 +1374,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1328 |
apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
|
1329 |
|
1330 |
if self.scripts is not None:
|
1331 |
-
self.scripts.process_before_every_sampling(self,
|
1332 |
-
x=samples,
|
1333 |
-
noise=noise,
|
1334 |
-
c=self.hr_c,
|
1335 |
-
uc=self.hr_uc)
|
1336 |
|
1337 |
if self.modified_noise is not None:
|
1338 |
noise = self.modified_noise
|
@@ -1362,10 +1404,10 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1362 |
if not self.enable_hr:
|
1363 |
return
|
1364 |
|
1365 |
-
if self.hr_prompt ==
|
1366 |
self.hr_prompt = self.prompt
|
1367 |
|
1368 |
-
if self.hr_negative_prompt ==
|
1369 |
self.hr_negative_prompt = self.negative_prompt
|
1370 |
|
1371 |
if isinstance(self.hr_prompt, list):
|
@@ -1430,8 +1472,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|
1430 |
res = super().parse_extra_network_prompts()
|
1431 |
|
1432 |
if self.enable_hr:
|
1433 |
-
self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
|
1434 |
-
self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
|
1435 |
|
1436 |
self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
|
1437 |
|
@@ -1515,19 +1557,24 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
1515 |
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
|
1516 |
image_mask = Image.fromarray(np_mask)
|
1517 |
|
|
|
|
|
|
|
|
|
|
|
1518 |
if self.mask_blur_x > 0 or self.mask_blur_y > 0:
|
1519 |
self.extra_generation_params["Mask blur"] = self.mask_blur
|
1520 |
|
1521 |
if self.inpaint_full_res:
|
1522 |
self.mask_for_overlay = image_mask
|
1523 |
-
mask = image_mask.convert(
|
1524 |
crop_region = masking.get_crop_region(mask, self.inpaint_full_res_padding)
|
1525 |
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
1526 |
x1, y1, x2, y2 = crop_region
|
1527 |
|
1528 |
mask = mask.crop(crop_region)
|
1529 |
image_mask = images.resize_image(2, mask, self.width, self.height)
|
1530 |
-
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
1531 |
|
1532 |
self.extra_generation_params["Inpaint area"] = "Only masked"
|
1533 |
self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
|
@@ -1558,10 +1605,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
1558 |
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
1559 |
|
1560 |
if image_mask is not None:
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
|
|
|
|
1565 |
|
1566 |
# crop_region is not None if we are doing inpaint full res
|
1567 |
if crop_region is not None:
|
@@ -1573,7 +1622,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
1573 |
image = masking.fill(image, latent_mask)
|
1574 |
|
1575 |
if self.inpainting_fill == 0:
|
1576 |
-
self.extra_generation_params["Masked content"] =
|
1577 |
|
1578 |
if add_color_corrections:
|
1579 |
self.color_corrections.append(setup_color_correction(image))
|
@@ -1600,8 +1649,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
1600 |
image = torch.from_numpy(batch_images)
|
1601 |
image = image.to(shared.device, dtype=torch.float32)
|
1602 |
|
1603 |
-
if opts.sd_vae_encode_method !=
|
1604 |
-
self.extra_generation_params[
|
1605 |
|
1606 |
self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
|
1607 |
devices.torch_gc()
|
@@ -1611,7 +1660,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
1611 |
|
1612 |
if image_mask is not None:
|
1613 |
init_mask = latent_mask
|
1614 |
-
latmask = init_mask.convert(
|
1615 |
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
1616 |
latmask = latmask[0]
|
1617 |
if self.mask_round:
|
@@ -1623,12 +1672,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
1623 |
|
1624 |
# this needs to be fixed to be done in sample() using actual seeds for batches
|
1625 |
if self.inpainting_fill == 2:
|
1626 |
-
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
|
1627 |
-
self.extra_generation_params["Masked content"] =
|
1628 |
|
1629 |
elif self.inpainting_fill == 3:
|
1630 |
self.init_latent = self.init_latent * self.mask
|
1631 |
-
self.extra_generation_params["Masked content"] =
|
1632 |
|
1633 |
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
|
1634 |
|
@@ -1643,11 +1692,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|
1643 |
apply_token_merging(self.sd_model, self.get_token_merging_ratio())
|
1644 |
|
1645 |
if self.scripts is not None:
|
1646 |
-
self.scripts.process_before_every_sampling(self,
|
1647 |
-
x=self.init_latent,
|
1648 |
-
noise=x,
|
1649 |
-
c=conditioning,
|
1650 |
-
uc=unconditional_conditioning)
|
1651 |
|
1652 |
if self.modified_noise is not None:
|
1653 |
x = self.modified_noise
|
|
|
1 |
from __future__ import annotations
|
2 |
+
|
3 |
+
import hashlib
|
4 |
import json
|
5 |
import math
|
6 |
import os
|
7 |
+
import random
|
8 |
import sys
|
|
|
9 |
from dataclasses import dataclass, field
|
10 |
+
from typing import Any
|
11 |
|
12 |
+
import cv2
|
13 |
import numpy as np
|
14 |
+
import torch
|
15 |
+
from einops import repeat
|
16 |
from PIL import Image, ImageOps
|
|
|
|
|
17 |
from skimage.exposure import match_histograms
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
import modules.face_restoration
|
20 |
+
import modules.paths as paths
|
21 |
+
import modules.sd_hijack
|
22 |
import modules.sd_models as sd_models
|
23 |
import modules.sd_vae as sd_vae
|
24 |
+
import modules.shared as shared
|
25 |
+
import modules.styles # noqa
|
26 |
+
import modules.images as images # noqa (circular import)
|
27 |
+
from modules import (
|
28 |
+
devices,
|
29 |
+
errors,
|
30 |
+
extra_networks,
|
31 |
+
infotext_utils,
|
32 |
+
masking,
|
33 |
+
prompt_parser,
|
34 |
+
rng,
|
35 |
+
scripts,
|
36 |
+
sd_samplers,
|
37 |
+
sd_samplers_common,
|
38 |
+
sd_unet,
|
39 |
+
sd_vae_approx,
|
40 |
+
)
|
41 |
+
from modules.rng import slerp # noqa
|
42 |
+
from modules.sd_hijack import model_hijack
|
43 |
from modules.sd_models import apply_token_merging
|
44 |
+
from modules.sd_samplers_common import (
|
45 |
+
approximation_indexes,
|
46 |
+
decode_first_stage,
|
47 |
+
images_tensor_to_samples,
|
48 |
+
)
|
49 |
+
from modules.shared import cmd_opts, opts, state
|
50 |
from modules_forge.forge_loader import apply_alpha_schedule_override
|
51 |
+
from modules_forge.forge_util import apply_circular_forge
|
52 |
|
53 |
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
54 |
opt_C = 4
|
|
|
75 |
|
76 |
def uncrop(image, dest_size, paste_loc):
|
77 |
x, y, w, h = paste_loc
|
78 |
+
base_image = Image.new("RGBA", dest_size)
|
79 |
image = images.resize_image(1, image, w, h)
|
80 |
base_image.paste(image, (x, y))
|
81 |
image = base_image
|
|
|
83 |
return image
|
84 |
|
85 |
|
86 |
+
def apply_overlay_precise(image: Image.Image, paste_loc: tuple[int], overlay: tuple[Image.Image, np.ndarray]):
|
87 |
+
_overlay, _mask = overlay
|
88 |
+
|
89 |
+
if paste_loc is not None:
|
90 |
+
image = uncrop(image, (_overlay.width, _overlay.height), paste_loc)
|
91 |
+
|
92 |
+
original_denoised_image = image.copy()
|
93 |
+
|
94 |
+
overlay_rgb = np.array(_overlay).astype(np.float32) / 255.0
|
95 |
+
image_np = np.array(image).astype(np.float32) / 255.0
|
96 |
+
image_rgb = image_np[:, :, :3]
|
97 |
+
|
98 |
+
_mask = np.expand_dims(_mask, axis=-1)
|
99 |
+
final = image_rgb * _mask + overlay_rgb * (1.0 - _mask)
|
100 |
+
|
101 |
+
_image = np.clip((final * 255.0).round(), 0, 255).astype(np.uint8)
|
102 |
+
image = Image.fromarray(_image)
|
103 |
+
|
104 |
+
return image, original_denoised_image
|
105 |
+
|
106 |
+
|
107 |
+
def apply_overlay(image: Image.Image, paste_loc: tuple[int], overlay: Image.Image):
|
108 |
if overlay is None:
|
109 |
return image, image.copy()
|
110 |
|
111 |
+
if opts.img2img_inpaint_precise_mask:
|
112 |
+
return apply_overlay_precise(image, paste_loc, overlay)
|
113 |
+
|
114 |
if paste_loc is not None:
|
115 |
image = uncrop(image, (overlay.width, overlay.height), paste_loc)
|
116 |
|
117 |
original_denoised_image = image.copy()
|
118 |
|
119 |
+
image = image.convert("RGBA")
|
120 |
image.alpha_composite(overlay)
|
121 |
+
image = image.convert("RGB")
|
122 |
|
123 |
return image, original_denoised_image
|
124 |
|
125 |
+
|
126 |
def create_binary_mask(image, round=True):
|
127 |
+
if image.mode == "RGBA" and image.getextrema()[-1] != (255, 255):
|
128 |
if round:
|
129 |
image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
|
130 |
else:
|
131 |
image = image.split()[-1].convert("L")
|
132 |
else:
|
133 |
+
image = image.convert("L")
|
134 |
return image
|
135 |
|
136 |
+
|
137 |
def txt2img_image_conditioning(sd_model, x, width, height):
|
138 |
+
if sd_model.model.conditioning_key in {"hybrid", "concat"}: # Inpainting models
|
139 |
|
140 |
# The "masked-image" in this case will just be all 0.5 since the entire image is masked.
|
141 |
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
|
|
|
147 |
|
148 |
return image_conditioning
|
149 |
|
150 |
+
elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
|
151 |
|
152 |
+
return x.new_zeros(x.shape[0], 2 * sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
|
153 |
|
154 |
else:
|
155 |
sd = sd_model.model.state_dict()
|
156 |
+
diffusion_model_input = sd.get("diffusion_model.input_blocks.0.0.weight", None)
|
157 |
if diffusion_model_input is not None:
|
158 |
if diffusion_model_input.shape[1] == 9:
|
159 |
# The "masked-image" in this case will just be all 0.5 since the entire image is masked.
|
160 |
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
|
161 |
+
image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method))
|
|
|
162 |
|
163 |
# Add the fake full 1s mask to the first dimension.
|
164 |
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
|
|
|
277 |
self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
|
278 |
self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
|
279 |
self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
|
280 |
+
self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float("inf")
|
281 |
self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
|
282 |
|
283 |
self.extra_generation_params = self.extra_generation_params or {}
|
|
|
337 |
self.comments[text] = 1
|
338 |
|
339 |
def txt2img_image_conditioning(self, x, width=None, height=None):
|
340 |
+
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {"hybrid", "concat"}
|
341 |
|
342 |
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
|
343 |
|
|
|
349 |
def unclip_image_conditioning(self, source_image):
|
350 |
c_adm = self.sd_model.embedder(source_image)
|
351 |
if self.sd_model.noise_augmentor is not None:
|
352 |
+
noise_level = 0 # TODO: Allow other noise levels?
|
353 |
+
c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), "1 -> b", b=c_adm.shape[0]))
|
354 |
c_adm = torch.cat((c_adm, noise_level_emb), 1)
|
355 |
return c_adm
|
356 |
|
|
|
376 |
# Create another latent image, this time with a masked version of the original input.
|
377 |
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
378 |
conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
|
379 |
+
conditioning_image = torch.lerp(source_image, source_image * (1.0 - conditioning_mask), getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight))
|
|
|
|
|
|
|
|
|
380 |
|
381 |
# Encode the new masked image using first stage of network.
|
382 |
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
|
|
|
395 |
if self.sd_model.cond_stage_key == "edit":
|
396 |
return self.edit_image_conditioning(source_image)
|
397 |
|
398 |
+
if self.sampler.conditioning_key in {"hybrid", "concat"}:
|
399 |
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask)
|
400 |
|
401 |
if self.sampler.conditioning_key == "crossattn-adm":
|
402 |
return self.unclip_image_conditioning(source_image)
|
403 |
|
404 |
sd = self.sampler.model_wrap.inner_model.model.state_dict()
|
405 |
+
diffusion_model_input = sd.get("diffusion_model.input_blocks.0.0.weight", None)
|
406 |
if diffusion_model_input is not None:
|
407 |
if diffusion_model_input.shape[1] == 9:
|
408 |
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
|
|
|
431 |
return self.token_merging_ratio or opts.token_merging_ratio
|
432 |
|
433 |
def setup_prompts(self):
|
434 |
+
if isinstance(self.prompt, list):
|
435 |
self.all_prompts = self.prompt
|
436 |
elif isinstance(self.negative_prompt, list):
|
437 |
self.all_prompts = [self.prompt] * len(self.negative_prompt)
|
|
|
542 |
self.height = p.height
|
543 |
self.sampler_name = p.sampler_name
|
544 |
self.cfg_scale = p.cfg_scale
|
545 |
+
self.image_cfg_scale = getattr(p, "image_cfg_scale", None)
|
546 |
self.steps = p.steps
|
547 |
self.batch_size = p.batch_size
|
548 |
self.restore_faces = p.restore_faces
|
|
|
553 |
self.sd_vae_hash = p.sd_vae_hash
|
554 |
self.seed_resize_from_w = p.seed_resize_from_w
|
555 |
self.seed_resize_from_h = p.seed_resize_from_h
|
556 |
+
self.denoising_strength = getattr(p, "denoising_strength", None)
|
557 |
self.extra_generation_params = p.extra_generation_params
|
558 |
self.index_of_first_image = index_of_first_image
|
559 |
self.styles = p.styles
|
|
|
648 |
|
649 |
|
650 |
def get_fixed_seed(seed):
|
651 |
+
if seed == "" or seed is None:
|
652 |
seed = -1
|
653 |
elif isinstance(seed, str):
|
654 |
try:
|
|
|
680 |
if all_negative_prompts is None:
|
681 |
all_negative_prompts = p.all_negative_prompts
|
682 |
|
683 |
+
clip_skip = getattr(p, "clip_skip", opts.CLIP_stop_at_last_layers)
|
684 |
+
enable_hr = getattr(p, "enable_hr", False)
|
685 |
token_merging_ratio = p.get_token_merging_ratio()
|
686 |
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
|
687 |
|
|
|
700 |
"Sampler": p.sampler_name,
|
701 |
"Schedule type": p.scheduler,
|
702 |
"CFG scale": p.cfg_scale,
|
703 |
+
"Image CFG scale": getattr(p, "image_cfg_scale", None),
|
704 |
"Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
|
705 |
"Face restoration": opts.face_restoration_model if p.restore_faces else None,
|
706 |
"Size": f"{p.width}x{p.height}",
|
|
|
718 |
"ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
|
719 |
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
|
720 |
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
|
721 |
+
"Init image hash": getattr(p, "init_img_hash", None),
|
722 |
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
|
723 |
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
|
724 |
"Tiling": True if p.tiling else None,
|
|
|
738 |
errors.report(f'Error creating infotext for key "{key}"', exc_info=True)
|
739 |
generation_params[key] = None
|
740 |
|
741 |
+
generation_params_text = ", ".join([k if k == v else f"{k}: {infotext_utils.quote(v)}" for k, v in generation_params.items() if v is not None])
|
742 |
|
743 |
negative_prompt_text = f"\nNegative prompt: {negative_prompt}" if negative_prompt else ""
|
744 |
|
|
|
754 |
try:
|
755 |
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
|
756 |
# and if after running refiner, the refiner model is not unloaded - webui swaps back to main model here, if model over is present it will be reloaded afterwards
|
757 |
+
if sd_models.checkpoint_aliases.get(p.override_settings.get("sd_model_checkpoint")) is None:
|
758 |
+
p.override_settings.pop("sd_model_checkpoint", None)
|
759 |
sd_models.reload_model_weights()
|
760 |
|
761 |
for k, v in p.override_settings.items():
|
762 |
opts.set(k, v, is_api=True, run_callbacks=False)
|
763 |
|
764 |
+
if k == "sd_model_checkpoint":
|
765 |
sd_models.reload_model_weights()
|
766 |
|
767 |
+
if k == "sd_vae":
|
768 |
sd_vae.reload_vae_weights()
|
769 |
|
770 |
sd_samplers.fix_p_invalid_sampler_and_scheduler(p)
|
|
|
777 |
for k, v in stored_opts.items():
|
778 |
setattr(opts, k, v)
|
779 |
|
780 |
+
if k == "sd_vae":
|
781 |
sd_vae.reload_vae_weights()
|
782 |
|
783 |
return res
|
|
|
787 |
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
788 |
|
789 |
if isinstance(p.prompt, list):
|
790 |
+
assert len(p.prompt) > 0
|
791 |
else:
|
792 |
assert p.prompt is not None
|
793 |
|
|
|
805 |
if p.refiner_checkpoint not in (None, "", "None", "none"):
|
806 |
p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint)
|
807 |
if p.refiner_checkpoint_info is None:
|
808 |
+
raise Exception(f"Could not find checkpoint with name {p.refiner_checkpoint}")
|
809 |
|
810 |
p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
|
811 |
p.sd_model_hash = shared.sd_model.sd_model_hash
|
|
|
860 |
sd_models.reload_model_weights() # model can be changed for example by refiner
|
861 |
|
862 |
p.sd_model.forge_objects = p.sd_model.forge_objects_original.shallow_copy()
|
863 |
+
p.prompts = p.all_prompts[n * p.batch_size : (n + 1) * p.batch_size]
|
864 |
+
p.negative_prompts = p.all_negative_prompts[n * p.batch_size : (n + 1) * p.batch_size]
|
865 |
+
p.seeds = p.all_seeds[n * p.batch_size : (n + 1) * p.batch_size]
|
866 |
+
p.subseeds = p.all_subseeds[n * p.batch_size : (n + 1) * p.batch_size]
|
867 |
|
868 |
p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
|
869 |
|
|
|
911 |
p.scripts.post_sample(p, ps)
|
912 |
samples_ddim = ps.samples
|
913 |
|
914 |
+
if getattr(samples_ddim, "already_decoded", False):
|
915 |
x_samples_ddim = samples_ddim
|
916 |
else:
|
917 |
+
if opts.sd_vae_decode_method != "Full":
|
918 |
+
p.extra_generation_params["VAE Decoder"] = opts.sd_vae_decode_method
|
919 |
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
|
920 |
|
921 |
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
|
|
930 |
if p.scripts is not None:
|
931 |
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
932 |
|
933 |
+
p.prompts = p.all_prompts[n * p.batch_size : (n + 1) * p.batch_size]
|
934 |
+
p.negative_prompts = p.all_negative_prompts[n * p.batch_size : (n + 1) * p.batch_size]
|
935 |
|
936 |
batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
|
937 |
p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
|
|
|
945 |
for i, x_sample in enumerate(x_samples_ddim):
|
946 |
p.batch_index = i
|
947 |
|
948 |
+
x_sample = 255.0 * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
949 |
x_sample = x_sample.astype(np.uint8)
|
950 |
|
951 |
if p.restore_faces:
|
|
|
1006 |
|
1007 |
if mask_for_overlay is not None:
|
1008 |
if opts.return_mask or opts.save_mask:
|
1009 |
+
image_mask = mask_for_overlay.convert("RGB")
|
1010 |
if save_samples and opts.save_mask:
|
1011 |
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
|
1012 |
if opts.return_mask:
|
1013 |
output_images.append(image_mask)
|
1014 |
|
1015 |
if opts.return_mask_composite or opts.save_mask_composite:
|
1016 |
+
image_mask_composite = Image.composite(original_denoised_image.convert("RGBA").convert("RGBa"), Image.new("RGBa", image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert("L")).convert("RGBA")
|
1017 |
if save_samples and opts.save_mask_composite:
|
1018 |
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
|
1019 |
if opts.return_mask_composite:
|
|
|
1091 |
hr_checkpoint_name: str = None
|
1092 |
hr_sampler_name: str = None
|
1093 |
hr_scheduler: str = None
|
1094 |
+
hr_cfg_scale: float = None
|
1095 |
+
hr_rescale_cfg: float = None
|
1096 |
+
hr_prompt: str = ""
|
1097 |
+
hr_negative_prompt: str = ""
|
1098 |
force_task_id: str = None
|
1099 |
|
1100 |
cached_hr_uc = [None, None]
|
|
|
1167 |
self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
|
1168 |
|
1169 |
def init(self, all_prompts, all_seeds, all_subseeds):
|
1170 |
+
if not self.enable_hr:
|
1171 |
+
return
|
1172 |
|
1173 |
+
self.extra_generation_params["Denoising strength"] = self.denoising_strength
|
|
|
1174 |
|
1175 |
+
if self.hr_checkpoint_name and self.hr_checkpoint_name != "Use same checkpoint":
|
1176 |
+
self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name)
|
1177 |
|
1178 |
+
if self.hr_checkpoint_info is None:
|
1179 |
+
raise Exception(f"Could not find checkpoint with name {self.hr_checkpoint_name}")
|
1180 |
+
|
1181 |
+
if shared.sd_model.sd_checkpoint_info == self.hr_checkpoint_info:
|
1182 |
+
self.hr_checkpoint_info = None
|
1183 |
+
else:
|
1184 |
+
self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
|
1185 |
|
1186 |
+
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
|
1187 |
+
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
|
1188 |
|
1189 |
+
self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py
|
|
|
|
|
|
|
1190 |
|
1191 |
+
if self.hr_scheduler is None:
|
1192 |
+
self.hr_scheduler = self.scheduler
|
1193 |
|
1194 |
+
if self.hr_cfg_scale != self.cfg_scale:
|
1195 |
+
self.extra_generation_params["Hires CFG Scale"] = self.hr_cfg_scale
|
1196 |
|
1197 |
+
if self.hr_rescale_cfg:
|
1198 |
+
from modules.processing_scripts.rescale_cfg import ScriptRescaleCFG
|
|
|
|
|
1199 |
|
1200 |
+
ScriptRescaleCFG.apply_rescale_cfg(self, self.hr_rescale_cfg)
|
1201 |
+
self.extra_generation_params["Hires Rescale CFG"] = self.hr_rescale_cfg
|
1202 |
|
1203 |
+
if tuple(self.hr_prompt) != tuple(self.prompt):
|
1204 |
+
self.extra_generation_params["Hires prompt"] = self.hr_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1205 |
|
1206 |
+
if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
|
1207 |
+
self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
|
1208 |
|
1209 |
+
self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
1210 |
+
if self.enable_hr and self.latent_scale_mode is None:
|
1211 |
+
if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
|
1212 |
+
raise Exception(f"could not find upscaler named {self.hr_upscaler}")
|
1213 |
+
|
1214 |
+
self.calculate_target_resolution()
|
1215 |
+
|
1216 |
+
if not state.processing_has_refined_job_count:
|
1217 |
+
if state.job_count == -1:
|
1218 |
+
state.job_count = self.n_iter
|
1219 |
+
if getattr(self, "txt2img_upscale", False):
|
1220 |
+
total_steps = (self.hr_second_pass_steps or self.steps) * state.job_count
|
1221 |
+
else:
|
1222 |
+
total_steps = (self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count
|
1223 |
+
shared.total_tqdm.updateTotal(total_steps)
|
1224 |
+
state.job_count = state.job_count * 2
|
1225 |
+
state.processing_has_refined_job_count = True
|
1226 |
+
|
1227 |
+
if self.hr_second_pass_steps:
|
1228 |
+
self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
|
1229 |
+
|
1230 |
+
if self.hr_upscaler is not None:
|
1231 |
+
self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
|
1232 |
|
1233 |
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
1234 |
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
|
|
1249 |
image = torch.from_numpy(np.expand_dims(image, axis=0))
|
1250 |
image = image.to(shared.device, dtype=torch.float32)
|
1251 |
|
1252 |
+
if opts.sd_vae_encode_method != "Full":
|
1253 |
+
self.extra_generation_params["VAE Encoder"] = opts.sd_vae_encode_method
|
1254 |
|
1255 |
samples = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
|
1256 |
decoded_samples = None
|
|
|
1265 |
apply_token_merging(self.sd_model, self.get_token_merging_ratio())
|
1266 |
|
1267 |
if self.scripts is not None:
|
1268 |
+
self.scripts.process_before_every_sampling(self, x=x, noise=x, c=conditioning, uc=unconditional_conditioning)
|
|
|
|
|
|
|
|
|
1269 |
|
1270 |
if self.modified_noise is not None:
|
1271 |
x = self.modified_noise
|
|
|
1330 |
|
1331 |
batch_images = []
|
1332 |
for i, x_sample in enumerate(lowres_samples):
|
1333 |
+
x_sample = 255.0 * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
1334 |
x_sample = x_sample.astype(np.uint8)
|
1335 |
image = Image.fromarray(x_sample)
|
1336 |
|
|
|
1344 |
decoded_samples = torch.from_numpy(np.array(batch_images))
|
1345 |
decoded_samples = decoded_samples.to(shared.device, dtype=torch.float32)
|
1346 |
|
1347 |
+
if opts.sd_vae_encode_method != "Full":
|
1348 |
+
self.extra_generation_params["VAE Encoder"] = opts.sd_vae_encode_method
|
1349 |
samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method))
|
1350 |
|
1351 |
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
|
1352 |
|
1353 |
shared.state.nextjob()
|
1354 |
|
1355 |
+
samples = samples[:, :, self.truncate_y // 2 : samples.shape[2] - (self.truncate_y + 1) // 2, self.truncate_x // 2 : samples.shape[3] - (self.truncate_x + 1) // 2]
|
1356 |
|
1357 |
self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
|
1358 |
noise = self.rng.next()
|
|
|
1374 |
apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
|
1375 |
|
1376 |
if self.scripts is not None:
|
1377 |
+
self.scripts.process_before_every_sampling(self, x=samples, noise=noise, c=self.hr_c, uc=self.hr_uc)
|
|
|
|
|
|
|
|
|
1378 |
|
1379 |
if self.modified_noise is not None:
|
1380 |
noise = self.modified_noise
|
|
|
1404 |
if not self.enable_hr:
|
1405 |
return
|
1406 |
|
1407 |
+
if self.hr_prompt == "":
|
1408 |
self.hr_prompt = self.prompt
|
1409 |
|
1410 |
+
if self.hr_negative_prompt == "":
|
1411 |
self.hr_negative_prompt = self.negative_prompt
|
1412 |
|
1413 |
if isinstance(self.hr_prompt, list):
|
|
|
1472 |
res = super().parse_extra_network_prompts()
|
1473 |
|
1474 |
if self.enable_hr:
|
1475 |
+
self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size : (self.iteration + 1) * self.batch_size]
|
1476 |
+
self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size : (self.iteration + 1) * self.batch_size]
|
1477 |
|
1478 |
self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
|
1479 |
|
|
|
1557 |
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
|
1558 |
image_mask = Image.fromarray(np_mask)
|
1559 |
|
1560 |
+
if opts.img2img_inpaint_precise_mask and self.mask_blur_x * self.mask_blur_y > 0:
|
1561 |
+
_np_mask = np.array(image_mask).astype(np.float32) / 255.0
|
1562 |
+
kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1
|
1563 |
+
_image_mask = cv2.GaussianBlur(_np_mask, (kernel_size, kernel_size), self.mask_blur_x)
|
1564 |
+
|
1565 |
if self.mask_blur_x > 0 or self.mask_blur_y > 0:
|
1566 |
self.extra_generation_params["Mask blur"] = self.mask_blur
|
1567 |
|
1568 |
if self.inpaint_full_res:
|
1569 |
self.mask_for_overlay = image_mask
|
1570 |
+
mask = image_mask.convert("L")
|
1571 |
crop_region = masking.get_crop_region(mask, self.inpaint_full_res_padding)
|
1572 |
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
1573 |
x1, y1, x2, y2 = crop_region
|
1574 |
|
1575 |
mask = mask.crop(crop_region)
|
1576 |
image_mask = images.resize_image(2, mask, self.width, self.height)
|
1577 |
+
self.paste_to = (x1, y1, x2 - x1, y2 - y1)
|
1578 |
|
1579 |
self.extra_generation_params["Inpaint area"] = "Only masked"
|
1580 |
self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
|
|
|
1605 |
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
1606 |
|
1607 |
if image_mask is not None:
|
1608 |
+
if opts.img2img_inpaint_precise_mask:
|
1609 |
+
self.overlay_images.append((image, _image_mask))
|
1610 |
+
else:
|
1611 |
+
image_masked = Image.new("RGBa", (image.width, image.height))
|
1612 |
+
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert("L")))
|
1613 |
+
self.overlay_images.append(image_masked.convert("RGBA"))
|
1614 |
|
1615 |
# crop_region is not None if we are doing inpaint full res
|
1616 |
if crop_region is not None:
|
|
|
1622 |
image = masking.fill(image, latent_mask)
|
1623 |
|
1624 |
if self.inpainting_fill == 0:
|
1625 |
+
self.extra_generation_params["Masked content"] = "fill"
|
1626 |
|
1627 |
if add_color_corrections:
|
1628 |
self.color_corrections.append(setup_color_correction(image))
|
|
|
1649 |
image = torch.from_numpy(batch_images)
|
1650 |
image = image.to(shared.device, dtype=torch.float32)
|
1651 |
|
1652 |
+
if opts.sd_vae_encode_method != "Full":
|
1653 |
+
self.extra_generation_params["VAE Encoder"] = opts.sd_vae_encode_method
|
1654 |
|
1655 |
self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
|
1656 |
devices.torch_gc()
|
|
|
1660 |
|
1661 |
if image_mask is not None:
|
1662 |
init_mask = latent_mask
|
1663 |
+
latmask = init_mask.convert("RGB").resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
1664 |
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
1665 |
latmask = latmask[0]
|
1666 |
if self.mask_round:
|
|
|
1672 |
|
1673 |
# this needs to be fixed to be done in sample() using actual seeds for batches
|
1674 |
if self.inpainting_fill == 2:
|
1675 |
+
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0 : self.init_latent.shape[0]]) * self.nmask
|
1676 |
+
self.extra_generation_params["Masked content"] = "latent noise"
|
1677 |
|
1678 |
elif self.inpainting_fill == 3:
|
1679 |
self.init_latent = self.init_latent * self.mask
|
1680 |
+
self.extra_generation_params["Masked content"] = "latent nothing"
|
1681 |
|
1682 |
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
|
1683 |
|
|
|
1692 |
apply_token_merging(self.sd_model, self.get_token_merging_ratio())
|
1693 |
|
1694 |
if self.scripts is not None:
|
1695 |
+
self.scripts.process_before_every_sampling(self, x=self.init_latent, noise=x, c=conditioning, uc=unconditional_conditioning)
|
|
|
|
|
|
|
|
|
1696 |
|
1697 |
if self.modified_noise is not None:
|
1698 |
x = self.modified_noise
|
modules/processing_scripts/comments.py
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
import re
|
|
|
2 |
|
3 |
from modules import script_callbacks, scripts, shared
|
4 |
|
|
|
|
|
|
|
5 |
|
6 |
def strip_comments(text):
|
7 |
text = re.sub("(^|\n)#[^\n]*(\n|$)", "\n", text) # while line comment
|
@@ -17,7 +21,7 @@ class ScriptComments(scripts.Script):
|
|
17 |
def show(self, is_img2img):
|
18 |
return scripts.AlwaysVisible
|
19 |
|
20 |
-
def process(self, p, *args):
|
21 |
if not shared.opts.enable_prompt_comments:
|
22 |
return
|
23 |
|
@@ -27,6 +31,13 @@ class ScriptComments(scripts.Script):
|
|
27 |
p.main_prompt = strip_comments(p.main_prompt)
|
28 |
p.main_negative_prompt = strip_comments(p.main_negative_prompt)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def before_token_counter(params: script_callbacks.BeforeTokenCounterParams):
|
32 |
if not shared.opts.enable_prompt_comments:
|
|
|
1 |
import re
|
2 |
+
from typing import TYPE_CHECKING
|
3 |
|
4 |
from modules import script_callbacks, scripts, shared
|
5 |
|
6 |
+
if TYPE_CHECKING:
|
7 |
+
from modules.processing import StableDiffusionProcessing
|
8 |
+
|
9 |
|
10 |
def strip_comments(text):
|
11 |
text = re.sub("(^|\n)#[^\n]*(\n|$)", "\n", text) # while line comment
|
|
|
21 |
def show(self, is_img2img):
|
22 |
return scripts.AlwaysVisible
|
23 |
|
24 |
+
def process(self, p: "StableDiffusionProcessing", *args):
|
25 |
if not shared.opts.enable_prompt_comments:
|
26 |
return
|
27 |
|
|
|
31 |
p.main_prompt = strip_comments(p.main_prompt)
|
32 |
p.main_negative_prompt = strip_comments(p.main_negative_prompt)
|
33 |
|
34 |
+
if getattr(p, "enable_hr", False):
|
35 |
+
p.all_hr_prompts = [strip_comments(x) for x in p.all_hr_prompts]
|
36 |
+
p.all_hr_negative_prompts = [strip_comments(x) for x in p.all_hr_negative_prompts]
|
37 |
+
|
38 |
+
p.hr_prompt = strip_comments(p.hr_prompt)
|
39 |
+
p.hr_negative_prompt = strip_comments(p.hr_negative_prompt)
|
40 |
+
|
41 |
|
42 |
def before_token_counter(params: script_callbacks.BeforeTokenCounterParams):
|
43 |
if not shared.opts.enable_prompt_comments:
|
modules/processing_scripts/rescale_cfg.py
CHANGED
@@ -43,6 +43,13 @@ class ScriptRescaleCFG(scripts.ScriptBuiltinUI):
|
|
43 |
def process_before_every_sampling(self, p, cfg, *args, **kwargs):
|
44 |
if not opts.show_rescale_cfg or cfg < 0.05:
|
45 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
@torch.inference_mode()
|
48 |
def rescale_cfg(args):
|
|
|
43 |
def process_before_every_sampling(self, p, cfg, *args, **kwargs):
|
44 |
if not opts.show_rescale_cfg or cfg < 0.05:
|
45 |
return
|
46 |
+
if p.is_hr_pass:
|
47 |
+
return
|
48 |
+
|
49 |
+
self.apply_rescale_cfg(p, cfg)
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def apply_rescale_cfg(p, cfg):
|
53 |
|
54 |
@torch.inference_mode()
|
55 |
def rescale_cfg(args):
|
modules/processing_scripts/sampler.py
CHANGED
@@ -26,14 +26,14 @@ class ScriptSampler(scripts.ScriptBuiltinUI):
|
|
26 |
|
27 |
with FormRow(elem_id=f"sampler_selection_{self.tabname}"):
|
28 |
self.sampler_name = gr.Dropdown(
|
29 |
-
label="Sampling
|
30 |
elem_id=f"{self.tabname}_sampling",
|
31 |
choices=sampler_names,
|
32 |
value=sampler_names[0],
|
33 |
)
|
34 |
if shared.opts.show_scheduler:
|
35 |
self.scheduler = gr.Dropdown(
|
36 |
-
label="Schedule
|
37 |
elem_id=f"{self.tabname}_scheduler",
|
38 |
choices=scheduler_names,
|
39 |
value=scheduler_names[0],
|
@@ -43,10 +43,10 @@ class ScriptSampler(scripts.ScriptBuiltinUI):
|
|
43 |
self.scheduler.do_not_save_to_config = True
|
44 |
self.steps = gr.Slider(
|
45 |
minimum=1,
|
46 |
-
maximum=
|
47 |
step=1,
|
48 |
elem_id=f"{self.tabname}_steps",
|
49 |
-
label="Sampling
|
50 |
value=20,
|
51 |
)
|
52 |
|
|
|
26 |
|
27 |
with FormRow(elem_id=f"sampler_selection_{self.tabname}"):
|
28 |
self.sampler_name = gr.Dropdown(
|
29 |
+
label="Sampling Method",
|
30 |
elem_id=f"{self.tabname}_sampling",
|
31 |
choices=sampler_names,
|
32 |
value=sampler_names[0],
|
33 |
)
|
34 |
if shared.opts.show_scheduler:
|
35 |
self.scheduler = gr.Dropdown(
|
36 |
+
label="Schedule Type",
|
37 |
elem_id=f"{self.tabname}_scheduler",
|
38 |
choices=scheduler_names,
|
39 |
value=scheduler_names[0],
|
|
|
43 |
self.scheduler.do_not_save_to_config = True
|
44 |
self.steps = gr.Slider(
|
45 |
minimum=1,
|
46 |
+
maximum=128,
|
47 |
step=1,
|
48 |
elem_id=f"{self.tabname}_steps",
|
49 |
+
label="Sampling Steps",
|
50 |
value=20,
|
51 |
)
|
52 |
|
modules/rng.py
CHANGED
@@ -40,7 +40,7 @@ def randn_local(seed, shape):
|
|
40 |
|
41 |
|
42 |
def randn_like(x):
|
43 |
-
"""Generate a tensor with random numbers from a normal distribution using the previously initialized
|
44 |
|
45 |
Use either randn() or manual_seed() to initialize the generator."""
|
46 |
|
@@ -54,7 +54,7 @@ def randn_like(x):
|
|
54 |
|
55 |
|
56 |
def randn_without_seed(shape, generator=None):
|
57 |
-
"""Generate a tensor with random numbers from a normal distribution using the previously initialized
|
58 |
|
59 |
Use either randn() or manual_seed() to initialize the generator."""
|
60 |
|
|
|
40 |
|
41 |
|
42 |
def randn_like(x):
|
43 |
+
"""Generate a tensor with random numbers from a normal distribution using the previously initialized generator.
|
44 |
|
45 |
Use either randn() or manual_seed() to initialize the generator."""
|
46 |
|
|
|
54 |
|
55 |
|
56 |
def randn_without_seed(shape, generator=None):
|
57 |
+
"""Generate a tensor with random numbers from a normal distribution using the previously initialized generator.
|
58 |
|
59 |
Use either randn() or manual_seed() to initialize the generator."""
|
60 |
|
modules/scripts_postprocessing.py
CHANGED
@@ -59,7 +59,7 @@ class ScriptPostprocessing:
|
|
59 |
args_to = None
|
60 |
|
61 |
order = 1000
|
62 |
-
"""scripts will be
|
63 |
|
64 |
name = None
|
65 |
"""this function should return the title of the script."""
|
|
|
59 |
args_to = None
|
60 |
|
61 |
order = 1000
|
62 |
+
"""scripts will be ordered by this value in postprocessing UI"""
|
63 |
|
64 |
name = None
|
65 |
"""this function should return the title of the script."""
|
modules/sd_hijack_clip.py
CHANGED
@@ -215,7 +215,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
|
215 |
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280.
|
216 |
An example shape returned by this function can be: (2, 77, 768).
|
217 |
For SDXL, instead of returning one tensor above, it returns a tuple with two: the other one with shape (B, 1280) with pooled values.
|
218 |
-
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one
|
219 |
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
|
220 |
"""
|
221 |
|
|
|
215 |
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280.
|
216 |
An example shape returned by this function can be: (2, 77, 768).
|
217 |
For SDXL, instead of returning one tensor above, it returns a tuple with two: the other one with shape (B, 1280) with pooled values.
|
218 |
+
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one element
|
219 |
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
|
220 |
"""
|
221 |
|
modules/sd_samplers_common.py
CHANGED
@@ -96,9 +96,12 @@ def samples_to_images_tensor(sample, approximation=None, model=None):
|
|
96 |
def single_sample_to_image(sample, approximation=None):
|
97 |
x_sample = samples_to_images_tensor(sample.unsqueeze(0), approximation)[0] * 0.5 + 0.5
|
98 |
|
99 |
-
x_sample =
|
100 |
-
x_sample
|
101 |
-
x_sample
|
|
|
|
|
|
|
102 |
|
103 |
return Image.fromarray(x_sample)
|
104 |
|
|
|
96 |
def single_sample_to_image(sample, approximation=None):
|
97 |
x_sample = samples_to_images_tensor(sample.unsqueeze(0), approximation)[0] * 0.5 + 0.5
|
98 |
|
99 |
+
x_sample = x_sample.cpu()
|
100 |
+
x_sample.mul_(255.0)
|
101 |
+
x_sample.round_()
|
102 |
+
x_sample.clamp_(0.0, 255.0)
|
103 |
+
x_sample = x_sample.to(torch.uint8)
|
104 |
+
x_sample = np.moveaxis(x_sample.numpy(), 0, 2)
|
105 |
|
106 |
return Image.fromarray(x_sample)
|
107 |
|
modules/sd_samplers_kdiffusion.py
CHANGED
@@ -17,6 +17,7 @@ from modules_forge.forge_sampler import sampling_cleanup, sampling_prepare
|
|
17 |
samplers_k_diffusion = [
|
18 |
("DPM++ 2M", "sample_dpmpp_2m", ["k_dpmpp_2m"], {"scheduler": "karras"}),
|
19 |
("DPM++ SDE", "sample_dpmpp_sde", ["k_dpmpp_sde"], {"scheduler": "karras", "second_order": True, "brownian_noise": True}),
|
|
|
20 |
("DPM++ 3M SDE", "sample_dpmpp_3m_sde", ["k_dpmpp_3m_sde"], {"scheduler": "exponential", "discard_next_to_last_sigma": True, "brownian_noise": True}),
|
21 |
("Euler a", "sample_euler_ancestral", ["k_euler_a", "k_euler_ancestral"], {"uses_ensd": True}),
|
22 |
("Euler", "sample_euler", ["k_euler"], {}),
|
@@ -41,6 +42,7 @@ samplers_data_k_diffusion = [
|
|
41 |
|
42 |
sampler_extra_params = {
|
43 |
"sample_dpmpp_sde": ["eta", "s_noise", "r"],
|
|
|
44 |
"sample_dpmpp_3m_sde": ["eta", "s_noise"],
|
45 |
"sample_euler_ancestral": ["eta", "s_noise"],
|
46 |
"sample_euler": ["s_churn", "s_tmin", "s_tmax", "s_noise"],
|
@@ -56,11 +58,7 @@ class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
|
|
56 |
@property
|
57 |
def inner_model(self):
|
58 |
if self.model_wrap is None:
|
59 |
-
denoiser =
|
60 |
-
k_diffusion.external.CompVisVDenoiser
|
61 |
-
if shared.sd_model.parameterization == "v"
|
62 |
-
else k_diffusion.external.CompVisDenoiser
|
63 |
-
)
|
64 |
self.model_wrap = denoiser(shared.sd_model, quantize=True)
|
65 |
|
66 |
return self.model_wrap
|
@@ -208,7 +206,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
|
208 |
"cond": conditioning,
|
209 |
"image_cond": image_conditioning,
|
210 |
"uncond": unconditional_conditioning,
|
211 |
-
"cond_scale": p.cfg_scale,
|
212 |
"s_min_uncond": self.s_min_uncond,
|
213 |
}
|
214 |
|
@@ -269,7 +267,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
|
269 |
"cond": conditioning,
|
270 |
"image_cond": image_conditioning,
|
271 |
"uncond": unconditional_conditioning,
|
272 |
-
"cond_scale": p.cfg_scale,
|
273 |
"s_min_uncond": self.s_min_uncond,
|
274 |
}
|
275 |
|
|
|
17 |
samplers_k_diffusion = [
|
18 |
("DPM++ 2M", "sample_dpmpp_2m", ["k_dpmpp_2m"], {"scheduler": "karras"}),
|
19 |
("DPM++ SDE", "sample_dpmpp_sde", ["k_dpmpp_sde"], {"scheduler": "karras", "second_order": True, "brownian_noise": True}),
|
20 |
+
("DPM++ 2M SDE", "sample_dpmpp_2m_sde", ["k_dpmpp_2m_sde_ka"], {"brownian_noise": True}),
|
21 |
("DPM++ 3M SDE", "sample_dpmpp_3m_sde", ["k_dpmpp_3m_sde"], {"scheduler": "exponential", "discard_next_to_last_sigma": True, "brownian_noise": True}),
|
22 |
("Euler a", "sample_euler_ancestral", ["k_euler_a", "k_euler_ancestral"], {"uses_ensd": True}),
|
23 |
("Euler", "sample_euler", ["k_euler"], {}),
|
|
|
42 |
|
43 |
sampler_extra_params = {
|
44 |
"sample_dpmpp_sde": ["eta", "s_noise", "r"],
|
45 |
+
"sample_dpmpp_2m_sde": ["eta", "s_noise"],
|
46 |
"sample_dpmpp_3m_sde": ["eta", "s_noise"],
|
47 |
"sample_euler_ancestral": ["eta", "s_noise"],
|
48 |
"sample_euler": ["s_churn", "s_tmin", "s_tmax", "s_noise"],
|
|
|
58 |
@property
|
59 |
def inner_model(self):
|
60 |
if self.model_wrap is None:
|
61 |
+
denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
|
|
|
|
|
|
|
|
|
62 |
self.model_wrap = denoiser(shared.sd_model, quantize=True)
|
63 |
|
64 |
return self.model_wrap
|
|
|
206 |
"cond": conditioning,
|
207 |
"image_cond": image_conditioning,
|
208 |
"uncond": unconditional_conditioning,
|
209 |
+
"cond_scale": p.hr_cfg_scale if p.is_hr_pass else p.cfg_scale,
|
210 |
"s_min_uncond": self.s_min_uncond,
|
211 |
}
|
212 |
|
|
|
267 |
"cond": conditioning,
|
268 |
"image_cond": image_conditioning,
|
269 |
"uncond": unconditional_conditioning,
|
270 |
+
"cond_scale": p.hr_cfg_scale if p.is_hr_pass else p.cfg_scale,
|
271 |
"s_min_uncond": self.s_min_uncond,
|
272 |
}
|
273 |
|
modules/shared.py
CHANGED
@@ -95,3 +95,6 @@ reload_gradio_theme = shared_gradio_themes.reload_gradio_theme
|
|
95 |
list_checkpoint_tiles = shared_items.list_checkpoint_tiles
|
96 |
refresh_checkpoints = shared_items.refresh_checkpoints
|
97 |
list_samplers = shared_items.list_samplers
|
|
|
|
|
|
|
|
95 |
list_checkpoint_tiles = shared_items.list_checkpoint_tiles
|
96 |
refresh_checkpoints = shared_items.refresh_checkpoints
|
97 |
list_samplers = shared_items.list_samplers
|
98 |
+
|
99 |
+
# ===== backward compatibility ===== #
|
100 |
+
batch_cond_uncond = True
|
modules/shared_options.py
CHANGED
@@ -226,8 +226,10 @@ options_templates.update(
|
|
226 |
"img2img_inpaint_sketch_default_brush_color": OptionInfo("#ff0000", "Initial Brush Color for Inpaint Sketch", ui_components.FormColorPicker, {}).needs_reload_ui(),
|
227 |
"return_mask": OptionInfo(False, "For inpainting, append the greyscale mask to results"),
|
228 |
"return_mask_composite": OptionInfo(False, "For inpainting, append the masked composite to results"),
|
229 |
-
"overlay_inpaint": OptionInfo(True, "For inpainting, overlay the
|
230 |
"img2img_batch_show_results_limit": OptionInfo(32, "Show the first N batch of img2img results in UI", gr.Slider, {"minimum": -1, "maximum": 256, "step": 1}).info("0 = disable; -1 = show all; too many images causes severe lag"),
|
|
|
|
|
231 |
},
|
232 |
)
|
233 |
)
|
@@ -353,8 +355,8 @@ options_templates.update(
|
|
353 |
"compact_prompt_box": OptionInfo(False, "Compact Prompt Layout").info("put prompts inside the Generate tab, leaving more space for the gallery").needs_reload_ui(),
|
354 |
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(),
|
355 |
"sd_checkpoint_dropdown_use_short": OptionInfo(False, "Show filenames without folder in the Checkpoint dropdown").info("if disabled, models under subdirectories will be listed like sdxl/anime.safetensors"),
|
356 |
-
"
|
357 |
-
"
|
358 |
"txt2img_settings_accordion": OptionInfo(False, "Put txt2img parameters under Accordion").needs_reload_ui(),
|
359 |
"img2img_settings_accordion": OptionInfo(False, "Put img2img parameters under Accordion").needs_reload_ui(),
|
360 |
"interrupt_after_current": OptionInfo(False, "Don't Interrupt in the middle").info("when using the Interrupt button, if generating more than one image, stop after the current generation of an image has finished instead of immediately"),
|
@@ -493,6 +495,8 @@ options_templates.update(
|
|
493 |
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ("none", "extra", "all")}),
|
494 |
"restore_config_state_file": OptionInfo("", 'Config state file to restore from, under "config-states/" folder'),
|
495 |
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
|
|
|
|
|
496 |
},
|
497 |
)
|
498 |
)
|
|
|
226 |
"img2img_inpaint_sketch_default_brush_color": OptionInfo("#ff0000", "Initial Brush Color for Inpaint Sketch", ui_components.FormColorPicker, {}).needs_reload_ui(),
|
227 |
"return_mask": OptionInfo(False, "For inpainting, append the greyscale mask to results"),
|
228 |
"return_mask_composite": OptionInfo(False, "For inpainting, append the masked composite to results"),
|
229 |
+
"overlay_inpaint": OptionInfo(True, "For inpainting, overlay the resulting image back onto the original image").info('when using the "Only masked" option'),
|
230 |
"img2img_batch_show_results_limit": OptionInfo(32, "Show the first N batch of img2img results in UI", gr.Slider, {"minimum": -1, "maximum": 256, "step": 1}).info("0 = disable; -1 = show all; too many images causes severe lag"),
|
231 |
+
"div_exp": OptionDiv(),
|
232 |
+
"img2img_inpaint_precise_mask": OptionInfo(False, 'For inpainting, process the "Mask blur" in fp32 instead of uint8 precision; improve blending result').info('<b>Experimental</b> ; may break functions that access the "overlay_images"'),
|
233 |
},
|
234 |
)
|
235 |
)
|
|
|
355 |
"compact_prompt_box": OptionInfo(False, "Compact Prompt Layout").info("put prompts inside the Generate tab, leaving more space for the gallery").needs_reload_ui(),
|
356 |
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(),
|
357 |
"sd_checkpoint_dropdown_use_short": OptionInfo(False, "Show filenames without folder in the Checkpoint dropdown").info("if disabled, models under subdirectories will be listed like sdxl/anime.safetensors"),
|
358 |
+
"hires_fix_show_sampler": OptionInfo(False, "[Hires. fix]: Show checkpoint, sampler, scheduler, and cfg options").needs_reload_ui(),
|
359 |
+
"hires_fix_show_prompts": OptionInfo(False, "[Hires. fix]: Show prompt and negative prompt textboxes").needs_reload_ui(),
|
360 |
"txt2img_settings_accordion": OptionInfo(False, "Put txt2img parameters under Accordion").needs_reload_ui(),
|
361 |
"img2img_settings_accordion": OptionInfo(False, "Put img2img parameters under Accordion").needs_reload_ui(),
|
362 |
"interrupt_after_current": OptionInfo(False, "Don't Interrupt in the middle").info("when using the Interrupt button, if generating more than one image, stop after the current generation of an image has finished instead of immediately"),
|
|
|
495 |
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ("none", "extra", "all")}),
|
496 |
"restore_config_state_file": OptionInfo("", 'Config state file to restore from, under "config-states/" folder'),
|
497 |
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
|
498 |
+
"tile_size": OptionInfo(512, "Tile Size for Tiled VAE", gr.Number, {"precision": 0}),
|
499 |
+
"tile_overlap": OptionInfo(64, "Overlap for Tiled VAE", gr.Number, {"precision": 0}),
|
500 |
},
|
501 |
)
|
502 |
)
|
modules/shared_state.py
CHANGED
@@ -2,10 +2,11 @@ import datetime
|
|
2 |
import logging
|
3 |
import threading
|
4 |
import time
|
|
|
|
|
5 |
import torch
|
6 |
|
7 |
-
from modules import errors, shared
|
8 |
-
from typing import Optional
|
9 |
|
10 |
log = logging.getLogger(__name__)
|
11 |
|
@@ -143,10 +144,7 @@ class State:
|
|
143 |
if not shared.parallel_processing_allowed:
|
144 |
return
|
145 |
|
146 |
-
if (
|
147 |
-
(shared.opts.live_previews_enable and shared.opts.show_progress_every_n_steps != -1) and
|
148 |
-
((self.sampling_step - self.current_image_sampling_step) >= shared.opts.show_progress_every_n_steps)
|
149 |
-
):
|
150 |
self.do_set_current_image()
|
151 |
|
152 |
@torch.inference_mode()
|
@@ -154,14 +152,13 @@ class State:
|
|
154 |
if self.current_latent is None:
|
155 |
return
|
156 |
|
157 |
-
|
|
|
|
|
|
|
158 |
|
159 |
try:
|
160 |
-
|
161 |
-
self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
|
162 |
-
else:
|
163 |
-
self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
|
164 |
-
|
165 |
self.current_image_sampling_step = self.sampling_step
|
166 |
self.current_latent = None
|
167 |
|
|
|
2 |
import logging
|
3 |
import threading
|
4 |
import time
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
import torch
|
8 |
|
9 |
+
from modules import devices, errors, shared
|
|
|
10 |
|
11 |
log = logging.getLogger(__name__)
|
12 |
|
|
|
144 |
if not shared.parallel_processing_allowed:
|
145 |
return
|
146 |
|
147 |
+
if (shared.opts.live_previews_enable and shared.opts.show_progress_every_n_steps != -1) and ((self.sampling_step - self.current_image_sampling_step) >= shared.opts.show_progress_every_n_steps):
|
|
|
|
|
|
|
148 |
self.do_set_current_image()
|
149 |
|
150 |
@torch.inference_mode()
|
|
|
152 |
if self.current_latent is None:
|
153 |
return
|
154 |
|
155 |
+
if shared.opts.show_progress_grid:
|
156 |
+
from modules.sd_samplers import samples_to_image_grid as sample
|
157 |
+
else:
|
158 |
+
from modules.sd_samplers import sample_to_image as sample
|
159 |
|
160 |
try:
|
161 |
+
self.assign_current_image(sample(self.current_latent))
|
|
|
|
|
|
|
|
|
162 |
self.current_image_sampling_step = self.sampling_step
|
163 |
self.current_latent = None
|
164 |
|
modules/txt2img.py
CHANGED
@@ -33,8 +33,10 @@ def txt2img_create_processing(
|
|
33 |
hr_checkpoint_name: str,
|
34 |
hr_sampler_name: str,
|
35 |
hr_scheduler: str,
|
|
|
|
|
36 |
hr_prompt: str,
|
37 |
-
hr_negative_prompt,
|
38 |
override_settings_texts,
|
39 |
*args,
|
40 |
force_enable_hr=False,
|
@@ -66,6 +68,8 @@ def txt2img_create_processing(
|
|
66 |
hr_checkpoint_name=None if hr_checkpoint_name == "Use same checkpoint" else hr_checkpoint_name,
|
67 |
hr_sampler_name=None if hr_sampler_name == "Use same sampler" else hr_sampler_name,
|
68 |
hr_scheduler=None if hr_scheduler == "Use same scheduler" else hr_scheduler,
|
|
|
|
|
69 |
hr_prompt=hr_prompt,
|
70 |
hr_negative_prompt=hr_negative_prompt,
|
71 |
override_settings=override_settings,
|
|
|
33 |
hr_checkpoint_name: str,
|
34 |
hr_sampler_name: str,
|
35 |
hr_scheduler: str,
|
36 |
+
hr_cfg_scale: float,
|
37 |
+
hr_rescale_cfg: float,
|
38 |
hr_prompt: str,
|
39 |
+
hr_negative_prompt: str,
|
40 |
override_settings_texts,
|
41 |
*args,
|
42 |
force_enable_hr=False,
|
|
|
68 |
hr_checkpoint_name=None if hr_checkpoint_name == "Use same checkpoint" else hr_checkpoint_name,
|
69 |
hr_sampler_name=None if hr_sampler_name == "Use same sampler" else hr_sampler_name,
|
70 |
hr_scheduler=None if hr_scheduler == "Use same scheduler" else hr_scheduler,
|
71 |
+
hr_cfg_scale=hr_cfg_scale if opts.hires_fix_show_sampler else cfg_scale,
|
72 |
+
hr_rescale_cfg=hr_rescale_cfg if opts.hires_fix_show_sampler else None,
|
73 |
hr_prompt=hr_prompt,
|
74 |
hr_negative_prompt=hr_negative_prompt,
|
75 |
override_settings=override_settings,
|
modules/ui.py
CHANGED
@@ -21,7 +21,7 @@ from modules.paths import script_path
|
|
21 |
from modules.sd_hijack import model_hijack
|
22 |
from modules.shared import cmd_opts, opts
|
23 |
from modules.ui_common import create_refresh_button
|
24 |
-
from modules.ui_components import FormGroup, FormHTML, FormRow, InputAccordion, ResizeHandleRow, ToolButton
|
25 |
from modules.ui_gradio_extensions import reload_javascript
|
26 |
|
27 |
create_setting_component = ui_settings.create_setting_component
|
@@ -223,21 +223,21 @@ def create_ui():
|
|
223 |
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="txt2img_height")
|
224 |
|
225 |
with gr.Column(elem_id="txt2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
|
226 |
-
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn", tooltip="
|
227 |
|
228 |
if opts.dimensions_and_batch_together:
|
229 |
with gr.Column(elem_id="txt2img_column_batch"):
|
230 |
-
batch_count = gr.Slider(minimum=1, step=1, label="Batch
|
231 |
-
batch_size = gr.Slider(minimum=1, maximum=
|
232 |
|
233 |
elif category == "cfg":
|
234 |
with gr.Row():
|
235 |
-
cfg_scale = gr.Slider(minimum=1.0, maximum=
|
236 |
scripts.scripts_txt2img.setup_ui_for_section(category)
|
237 |
|
238 |
-
elif category == "checkboxes":
|
239 |
-
|
240 |
-
|
241 |
|
242 |
elif category == "accordions":
|
243 |
with gr.Row(elem_id="txt2img_accordions", elem_classes="accordions"):
|
@@ -247,37 +247,41 @@ def create_ui():
|
|
247 |
|
248 |
with FormRow(elem_id="txt2img_hires_fix_row1", variant="compact"):
|
249 |
hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode)
|
250 |
-
hr_second_pass_steps = gr.Slider(minimum=0, maximum=
|
251 |
-
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.
|
252 |
|
253 |
with FormRow(elem_id="txt2img_hires_fix_row2", variant="compact"):
|
254 |
hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale")
|
255 |
hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x")
|
256 |
hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y")
|
257 |
|
258 |
-
with
|
259 |
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
262 |
|
263 |
-
|
264 |
-
|
|
|
265 |
|
266 |
with FormRow(elem_id="txt2img_hires_fix_row4", variant="compact", visible=opts.hires_fix_show_prompts) as hr_prompts_container:
|
267 |
with gr.Column(scale=80):
|
268 |
with gr.Row():
|
269 |
-
hr_prompt = gr.Textbox(label="Hires prompt", elem_id="hires_prompt", show_label=False, lines=3, placeholder="Prompt for
|
270 |
with gr.Column(scale=80):
|
271 |
with gr.Row():
|
272 |
-
hr_negative_prompt = gr.Textbox(label="Hires negative prompt", elem_id="hires_neg_prompt", show_label=False, lines=3, placeholder="Negative
|
273 |
|
274 |
scripts.scripts_txt2img.setup_ui_for_section(category)
|
275 |
|
276 |
elif category == "batch":
|
277 |
if not opts.dimensions_and_batch_together:
|
278 |
with FormRow(elem_id="txt2img_column_batch"):
|
279 |
-
batch_count = gr.Slider(minimum=1, step=1, label="Batch
|
280 |
-
batch_size = gr.Slider(minimum=1, maximum=
|
281 |
|
282 |
elif category == "override_settings":
|
283 |
with FormRow(elem_id="txt2img_override_settings_row") as row:
|
@@ -331,6 +335,8 @@ def create_ui():
|
|
331 |
hr_checkpoint_name,
|
332 |
hr_sampler_name,
|
333 |
hr_scheduler,
|
|
|
|
|
334 |
hr_prompt,
|
335 |
hr_negative_prompt,
|
336 |
override_settings,
|
@@ -395,6 +401,8 @@ def create_ui():
|
|
395 |
PasteField(hr_checkpoint_name, "Hires checkpoint", api="hr_checkpoint_name"),
|
396 |
PasteField(hr_sampler_name, sd_samplers.get_hr_sampler_from_infotext, api="hr_sampler_name"),
|
397 |
PasteField(hr_scheduler, sd_samplers.get_hr_scheduler_from_infotext, api="hr_scheduler"),
|
|
|
|
|
398 |
PasteField(hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" or d.get("Hires checkpoint", "Use same checkpoint") != "Use same checkpoint" or d.get("Hires schedule type", "Use same scheduler") != "Use same scheduler" else gr.update()),
|
399 |
PasteField(hr_prompt, "Hires prompt", api="hr_prompt"),
|
400 |
PasteField(hr_negative_prompt, "Hires negative prompt", api="hr_negative_prompt"),
|
@@ -558,11 +566,11 @@ def create_ui():
|
|
558 |
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512, elem_id="img2img_width")
|
559 |
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="img2img_height")
|
560 |
with gr.Column(elem_id="img2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
|
561 |
-
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn", tooltip="
|
562 |
detect_image_size_btn = ToolButton(value=detect_image_size_symbol, elem_id="img2img_detect_image_size_btn", tooltip="Auto detect size from img2img")
|
563 |
|
564 |
with gr.Tab(label="Resize by", elem_id="img2img_tab_resize_by") as tab_scale_by:
|
565 |
-
scale_by = gr.Slider(minimum=0.
|
566 |
|
567 |
with FormRow():
|
568 |
scale_by_html = FormHTML(resize_from_to_html(0, 0, 0.0), elem_id="img2img_scale_resolution_preview")
|
@@ -585,21 +593,21 @@ def create_ui():
|
|
585 |
|
586 |
if opts.dimensions_and_batch_together:
|
587 |
with gr.Column(elem_id="img2img_column_batch"):
|
588 |
-
batch_count = gr.Slider(minimum=1, step=1, label="Batch
|
589 |
-
batch_size = gr.Slider(minimum=1, maximum=
|
590 |
|
591 |
elif category == "denoising":
|
592 |
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Denoising strength", value=0.75, elem_id="img2img_denoising_strength")
|
593 |
|
594 |
elif category == "cfg":
|
595 |
with gr.Row():
|
596 |
-
cfg_scale = gr.Slider(minimum=1.0, maximum=
|
597 |
scripts.scripts_img2img.setup_ui_for_section(category)
|
598 |
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label="Image CFG Scale", value=1.5, elem_id="img2img_image_cfg_scale", visible=False)
|
599 |
|
600 |
-
elif category == "checkboxes":
|
601 |
-
|
602 |
-
|
603 |
|
604 |
elif category == "accordions":
|
605 |
with gr.Row(elem_id="img2img_accordions", elem_classes="accordions"):
|
@@ -608,8 +616,8 @@ def create_ui():
|
|
608 |
elif category == "batch":
|
609 |
if not opts.dimensions_and_batch_together:
|
610 |
with FormRow(elem_id="img2img_column_batch"):
|
611 |
-
batch_count = gr.Slider(minimum=1, step=1, label="Batch
|
612 |
-
batch_size = gr.Slider(minimum=1, maximum=
|
613 |
|
614 |
elif category == "override_settings":
|
615 |
with FormRow(elem_id="img2img_override_settings_row") as row:
|
|
|
21 |
from modules.sd_hijack import model_hijack
|
22 |
from modules.shared import cmd_opts, opts
|
23 |
from modules.ui_common import create_refresh_button
|
24 |
+
from modules.ui_components import FormGroup, FormHTML, FormRow, FormColumn, InputAccordion, ResizeHandleRow, ToolButton
|
25 |
from modules.ui_gradio_extensions import reload_javascript
|
26 |
|
27 |
create_setting_component = ui_settings.create_setting_component
|
|
|
223 |
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="txt2img_height")
|
224 |
|
225 |
with gr.Column(elem_id="txt2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
|
226 |
+
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn", tooltip="Swap width/height")
|
227 |
|
228 |
if opts.dimensions_and_batch_together:
|
229 |
with gr.Column(elem_id="txt2img_column_batch"):
|
230 |
+
batch_count = gr.Slider(minimum=1, maximum=128, step=1, label="Batch Count", value=1, elem_id="txt2img_batch_count")
|
231 |
+
batch_size = gr.Slider(minimum=1, maximum=16, step=1, label="Batch Size", value=1, elem_id="txt2img_batch_size")
|
232 |
|
233 |
elif category == "cfg":
|
234 |
with gr.Row():
|
235 |
+
cfg_scale = gr.Slider(minimum=1.0, maximum=24.0, step=0.5, label="CFG Scale", value=6.0, elem_id="txt2img_cfg_scale", scale=4)
|
236 |
scripts.scripts_txt2img.setup_ui_for_section(category)
|
237 |
|
238 |
+
# elif category == "checkboxes":
|
239 |
+
# with FormRow(elem_classes="checkboxes-row", variant="compact"):
|
240 |
+
# pass
|
241 |
|
242 |
elif category == "accordions":
|
243 |
with gr.Row(elem_id="txt2img_accordions", elem_classes="accordions"):
|
|
|
247 |
|
248 |
with FormRow(elem_id="txt2img_hires_fix_row1", variant="compact"):
|
249 |
hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode)
|
250 |
+
hr_second_pass_steps = gr.Slider(minimum=0, maximum=128, step=1, label="Hires steps", value=0, elem_id="txt2img_hires_steps")
|
251 |
+
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label="Denoising strength", value=0.6, elem_id="txt2img_denoising_strength")
|
252 |
|
253 |
with FormRow(elem_id="txt2img_hires_fix_row2", variant="compact"):
|
254 |
hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale")
|
255 |
hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x")
|
256 |
hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=64, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y")
|
257 |
|
258 |
+
with FormColumn(elem_id="txt2img_hires_fix_row3", variant="compact", visible=opts.hires_fix_show_sampler) as hr_sampler_container:
|
259 |
|
260 |
+
with gr.Row():
|
261 |
+
hr_checkpoint_name = gr.Dropdown(label="Hires checkpoint", elem_id="hr_checkpoint", choices=["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True), value="Use same checkpoint")
|
262 |
+
create_refresh_button(hr_checkpoint_name, modules.sd_models.list_models, lambda: {"choices": ["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True)}, "hr_checkpoint_refresh")
|
263 |
+
hr_sampler_name = gr.Dropdown(label="Hires sampling method", elem_id="hr_sampler", choices=["Use same sampler"] + sd_samplers.visible_sampler_names(), value="Use same sampler")
|
264 |
+
hr_scheduler = gr.Dropdown(label="Hires schedule type", elem_id="hr_scheduler", choices=["Use same scheduler"] + [x.label for x in sd_schedulers.schedulers], value="Use same scheduler")
|
265 |
|
266 |
+
with gr.Row():
|
267 |
+
hr_cfg_scale = gr.Slider(minimum=1.0, maximum=24.0, step=0.5, label="Hires CFG Scale", value=6.0, elem_id="hr_cfg_scale")
|
268 |
+
hr_rescale_cfg = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Hires Rescale CFG", elem_id="hr_rescale_cfg_scale", visible=opts.show_rescale_cfg)
|
269 |
|
270 |
with FormRow(elem_id="txt2img_hires_fix_row4", variant="compact", visible=opts.hires_fix_show_prompts) as hr_prompts_container:
|
271 |
with gr.Column(scale=80):
|
272 |
with gr.Row():
|
273 |
+
hr_prompt = gr.Textbox(label="Hires prompt", elem_id="hires_prompt", show_label=False, lines=3, placeholder="Prompt for Hires. fix\n(leave empty to use the same prompt as txt2img)", elem_classes=["prompt"])
|
274 |
with gr.Column(scale=80):
|
275 |
with gr.Row():
|
276 |
+
hr_negative_prompt = gr.Textbox(label="Hires negative prompt", elem_id="hires_neg_prompt", show_label=False, lines=3, placeholder="Negative Prompt for Hires. fix\n(leave empty to use the same negative prompt as txt2img)", elem_classes=["prompt"])
|
277 |
|
278 |
scripts.scripts_txt2img.setup_ui_for_section(category)
|
279 |
|
280 |
elif category == "batch":
|
281 |
if not opts.dimensions_and_batch_together:
|
282 |
with FormRow(elem_id="txt2img_column_batch"):
|
283 |
+
batch_count = gr.Slider(minimum=1, maximum=128, step=1, label="Batch Count", value=1, elem_id="txt2img_batch_count")
|
284 |
+
batch_size = gr.Slider(minimum=1, maximum=16, step=1, label="Batch Size", value=1, elem_id="txt2img_batch_size")
|
285 |
|
286 |
elif category == "override_settings":
|
287 |
with FormRow(elem_id="txt2img_override_settings_row") as row:
|
|
|
335 |
hr_checkpoint_name,
|
336 |
hr_sampler_name,
|
337 |
hr_scheduler,
|
338 |
+
hr_cfg_scale,
|
339 |
+
hr_rescale_cfg,
|
340 |
hr_prompt,
|
341 |
hr_negative_prompt,
|
342 |
override_settings,
|
|
|
401 |
PasteField(hr_checkpoint_name, "Hires checkpoint", api="hr_checkpoint_name"),
|
402 |
PasteField(hr_sampler_name, sd_samplers.get_hr_sampler_from_infotext, api="hr_sampler_name"),
|
403 |
PasteField(hr_scheduler, sd_samplers.get_hr_scheduler_from_infotext, api="hr_scheduler"),
|
404 |
+
PasteField(hr_cfg_scale, "Hires CFG Scale", api="hr_cfg_scale"),
|
405 |
+
PasteField(hr_rescale_cfg, "Hires Rescale CFG", api="hr_rescale_cfg"),
|
406 |
PasteField(hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" or d.get("Hires checkpoint", "Use same checkpoint") != "Use same checkpoint" or d.get("Hires schedule type", "Use same scheduler") != "Use same scheduler" else gr.update()),
|
407 |
PasteField(hr_prompt, "Hires prompt", api="hr_prompt"),
|
408 |
PasteField(hr_negative_prompt, "Hires negative prompt", api="hr_negative_prompt"),
|
|
|
566 |
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512, elem_id="img2img_width")
|
567 |
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="img2img_height")
|
568 |
with gr.Column(elem_id="img2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
|
569 |
+
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn", tooltip="Swap width/height")
|
570 |
detect_image_size_btn = ToolButton(value=detect_image_size_symbol, elem_id="img2img_detect_image_size_btn", tooltip="Auto detect size from img2img")
|
571 |
|
572 |
with gr.Tab(label="Resize by", elem_id="img2img_tab_resize_by") as tab_scale_by:
|
573 |
+
scale_by = gr.Slider(minimum=0.5, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale")
|
574 |
|
575 |
with FormRow():
|
576 |
scale_by_html = FormHTML(resize_from_to_html(0, 0, 0.0), elem_id="img2img_scale_resolution_preview")
|
|
|
593 |
|
594 |
if opts.dimensions_and_batch_together:
|
595 |
with gr.Column(elem_id="img2img_column_batch"):
|
596 |
+
batch_count = gr.Slider(minimum=1, maximum=128, step=1, label="Batch Count", value=1, elem_id="img2img_batch_count")
|
597 |
+
batch_size = gr.Slider(minimum=1, maximum=16, step=1, label="Batch Size", value=1, elem_id="img2img_batch_size")
|
598 |
|
599 |
elif category == "denoising":
|
600 |
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Denoising strength", value=0.75, elem_id="img2img_denoising_strength")
|
601 |
|
602 |
elif category == "cfg":
|
603 |
with gr.Row():
|
604 |
+
cfg_scale = gr.Slider(minimum=1.0, maximum=24.0, step=0.5, label="CFG Scale", value=6.0, elem_id="img2img_cfg_scale", scale=4)
|
605 |
scripts.scripts_img2img.setup_ui_for_section(category)
|
606 |
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label="Image CFG Scale", value=1.5, elem_id="img2img_image_cfg_scale", visible=False)
|
607 |
|
608 |
+
# elif category == "checkboxes":
|
609 |
+
# with FormRow(elem_classes="checkboxes-row", variant="compact"):
|
610 |
+
# pass
|
611 |
|
612 |
elif category == "accordions":
|
613 |
with gr.Row(elem_id="img2img_accordions", elem_classes="accordions"):
|
|
|
616 |
elif category == "batch":
|
617 |
if not opts.dimensions_and_batch_together:
|
618 |
with FormRow(elem_id="img2img_column_batch"):
|
619 |
+
batch_count = gr.Slider(minimum=1, maximum=128, step=1, label="Batch Count", value=1, elem_id="img2img_batch_count")
|
620 |
+
batch_size = gr.Slider(minimum=1, maximum=16, step=1, label="Batch Size", value=1, elem_id="img2img_batch_size")
|
621 |
|
622 |
elif category == "override_settings":
|
623 |
with FormRow(elem_id="img2img_override_settings_row") as row:
|
modules/ui_common.py
CHANGED
@@ -105,7 +105,7 @@ def save_files(js_data, images, do_make_zip, index):
|
|
105 |
logfile_path = os.path.join(shared.opts.outdir_save, "log.csv")
|
106 |
|
107 |
# NOTE: ensure csv integrity when fields are added by
|
108 |
-
# updating headers and padding with
|
109 |
if os.path.exists(logfile_path):
|
110 |
update_logfile(logfile_path, fields)
|
111 |
|
|
|
105 |
logfile_path = os.path.join(shared.opts.outdir_save, "log.csv")
|
106 |
|
107 |
# NOTE: ensure csv integrity when fields are added by
|
108 |
+
# updating headers and padding with delimiters where needed
|
109 |
if os.path.exists(logfile_path):
|
110 |
update_logfile(logfile_path, fields)
|
111 |
|
modules/ui_components.py
CHANGED
@@ -86,9 +86,9 @@ class DropdownEditable(FormComponent, gr.Dropdown):
|
|
86 |
|
87 |
|
88 |
class InputAccordion(gr.Checkbox):
|
89 |
-
"""
|
90 |
-
|
91 |
-
|
92 |
"""
|
93 |
|
94 |
global_index = 0
|
|
|
86 |
|
87 |
|
88 |
class InputAccordion(gr.Checkbox):
|
89 |
+
"""
|
90 |
+
A gr.Accordion that can be used as an input - returns True if open, False if closed.
|
91 |
+
Actually just a hidden checkbox, but creates an accordion that follows and is followed by the state of the checkbox.
|
92 |
"""
|
93 |
|
94 |
global_index = 0
|
modules/ui_prompt_styles.py
CHANGED
@@ -67,7 +67,7 @@ class UiPromptStyles:
|
|
67 |
with gr.Row():
|
68 |
self.selection = gr.Dropdown(label="Styles", elem_id=f"{tabname}_styles_edit_select", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info="Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.")
|
69 |
ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {"choices": list(shared.prompt_styles.styles)}, f"refresh_{tabname}_styles")
|
70 |
-
self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply_dialog", tooltip="Apply all selected styles from the style
|
71 |
self.copy = ui_components.ToolButton(value=styles_copy_symbol, elem_id=f"{tabname}_style_copy", tooltip="Copy main UI prompt to style.")
|
72 |
|
73 |
with gr.Row():
|
|
|
67 |
with gr.Row():
|
68 |
self.selection = gr.Dropdown(label="Styles", elem_id=f"{tabname}_styles_edit_select", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info="Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.")
|
69 |
ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {"choices": list(shared.prompt_styles.styles)}, f"refresh_{tabname}_styles")
|
70 |
+
self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply_dialog", tooltip="Apply all selected styles from the style selection dropdown in main UI to the prompt.")
|
71 |
self.copy = ui_components.ToolButton(value=styles_copy_symbol, elem_id=f"{tabname}_style_copy", tooltip="Copy main UI prompt to style.")
|
72 |
|
73 |
with gr.Row():
|
modules/ui_toprow.py
CHANGED
@@ -77,11 +77,11 @@ class Toprow:
|
|
77 |
def create_prompts(self):
|
78 |
with gr.Column(elem_id=f"{self.id_part}_prompt_container", elem_classes=["prompt-container-compact"] if self.is_compact else [], scale=6):
|
79 |
with gr.Row(elem_id=f"{self.id_part}_prompt_row", elem_classes=["prompt-row"]):
|
80 |
-
self.prompt = gr.Textbox(label="Prompt", elem_id=f"{self.id_part}_prompt", show_label=False, lines=3, placeholder="Prompt\n(
|
81 |
self.prompt_img = gr.File(label="", elem_id=f"{self.id_part}_prompt_image", file_count="single", type="binary", visible=False)
|
82 |
|
83 |
with gr.Row(elem_id=f"{self.id_part}_neg_prompt_row", elem_classes=["prompt-row"]):
|
84 |
-
self.negative_prompt = gr.Textbox(label="Negative
|
85 |
|
86 |
self.prompt_img.change(
|
87 |
fn=modules.images.image_data,
|
@@ -94,15 +94,15 @@ class Toprow:
|
|
94 |
with gr.Row(elem_id=f"{self.id_part}_generate_box", elem_classes=["generate-box"] + (["generate-box-compact"] if self.is_compact else []), render=not self.is_compact) as submit_box:
|
95 |
self.submit_box = submit_box
|
96 |
|
97 |
-
self.interrupt = gr.Button("Interrupt", elem_id=f"{self.id_part}_interrupt", elem_classes="generate-box-interrupt", tooltip="End generation
|
98 |
-
self.skip = gr.Button("Skip", elem_id=f"{self.id_part}_skip", elem_classes="generate-box-skip", tooltip="Stop
|
99 |
-
self.interrupting = gr.Button("Interrupting...", elem_id=f"{self.id_part}_interrupting", elem_classes="generate-box-interrupting", tooltip="Interrupting
|
100 |
-
self.submit = gr.Button("Generate", elem_id=f"{self.id_part}_generate", variant="primary", tooltip=
|
101 |
|
102 |
def interrupt_function():
|
103 |
if not shared.state.stopping_generation and shared.state.job_count > 1 and shared.opts.interrupt_after_current:
|
104 |
shared.state.stop_generating()
|
105 |
-
gr.Info("Generation will stop after finishing this image, click again to stop immediately
|
106 |
else:
|
107 |
shared.state.interrupt()
|
108 |
|
@@ -114,10 +114,10 @@ class Toprow:
|
|
114 |
with gr.Row(elem_id=f"{self.id_part}_tools"):
|
115 |
from modules.ui import paste_symbol, clear_prompt_symbol, restore_progress_symbol
|
116 |
|
117 |
-
self.paste = ToolButton(value=paste_symbol, elem_id="paste", tooltip="Read generation parameters from
|
118 |
-
self.clear_prompt_button = ToolButton(value=clear_prompt_symbol, elem_id=f"{self.id_part}_clear_prompt", tooltip="Clear
|
119 |
-
self.apply_styles = ToolButton(value=ui_prompt_styles.styles_materialize_symbol, elem_id=f"{self.id_part}_style_apply", tooltip="Apply
|
120 |
-
self.restore_progress_button = ToolButton(value=restore_progress_symbol, elem_id=f"{self.id_part}_restore_progress", visible=False, tooltip="Restore
|
121 |
|
122 |
self.token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{self.id_part}_token_counter", elem_classes=["token-counter"], visible=False)
|
123 |
self.token_button = gr.Button(visible=False, elem_id=f"{self.id_part}_token_button")
|
@@ -139,12 +139,13 @@ class Toprow:
|
|
139 |
def hook_paste_guard(self):
|
140 |
assert self.negative_prompt is not None and self.paste is not None
|
141 |
|
142 |
-
def
|
143 |
-
return gr.update(interactive=(not bool(prompt)))
|
144 |
|
145 |
self.negative_prompt.change(
|
146 |
-
fn=
|
147 |
inputs=[self.negative_prompt],
|
148 |
outputs=[self.paste],
|
149 |
show_progress="hidden",
|
|
|
150 |
)
|
|
|
77 |
def create_prompts(self):
|
78 |
with gr.Column(elem_id=f"{self.id_part}_prompt_container", elem_classes=["prompt-container-compact"] if self.is_compact else [], scale=6):
|
79 |
with gr.Row(elem_id=f"{self.id_part}_prompt_row", elem_classes=["prompt-row"]):
|
80 |
+
self.prompt = gr.Textbox(label="Prompt", elem_id=f"{self.id_part}_prompt", show_label=False, lines=3, placeholder="Prompt\n(Ctrl+Enter to Generate ; Alt+Enter to Skip ; Esc to Interrupt)", elem_classes=["prompt"])
|
81 |
self.prompt_img = gr.File(label="", elem_id=f"{self.id_part}_prompt_image", file_count="single", type="binary", visible=False)
|
82 |
|
83 |
with gr.Row(elem_id=f"{self.id_part}_neg_prompt_row", elem_classes=["prompt-row"]):
|
84 |
+
self.negative_prompt = gr.Textbox(label="Negative Prompt", elem_id=f"{self.id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative Prompt\n(Ctrl+Enter to Generate ; Alt+Enter to Skip ; Esc to Interrupt)", elem_classes=["prompt"])
|
85 |
|
86 |
self.prompt_img.change(
|
87 |
fn=modules.images.image_data,
|
|
|
94 |
with gr.Row(elem_id=f"{self.id_part}_generate_box", elem_classes=["generate-box"] + (["generate-box-compact"] if self.is_compact else []), render=not self.is_compact) as submit_box:
|
95 |
self.submit_box = submit_box
|
96 |
|
97 |
+
self.interrupt = gr.Button("Interrupt", elem_id=f"{self.id_part}_interrupt", elem_classes="generate-box-interrupt", tooltip="End batch after current generation finishes" if shared.opts.interrupt_after_current else "End current generation immediately")
|
98 |
+
self.skip = gr.Button("Skip", elem_id=f"{self.id_part}_skip", elem_classes="generate-box-skip", tooltip="Stop current batch and continue onto next batch")
|
99 |
+
self.interrupting = gr.Button("Interrupting...", elem_id=f"{self.id_part}_interrupting", elem_classes="generate-box-interrupting", tooltip="Interrupting...")
|
100 |
+
self.submit = gr.Button("Generate", elem_id=f"{self.id_part}_generate", variant="primary", tooltip='Right Click to open the "Generate Forever" menu')
|
101 |
|
102 |
def interrupt_function():
|
103 |
if not shared.state.stopping_generation and shared.state.job_count > 1 and shared.opts.interrupt_after_current:
|
104 |
shared.state.stop_generating()
|
105 |
+
gr.Info("Generation will stop after finishing this image, click again to stop immediately")
|
106 |
else:
|
107 |
shared.state.interrupt()
|
108 |
|
|
|
114 |
with gr.Row(elem_id=f"{self.id_part}_tools"):
|
115 |
from modules.ui import paste_symbol, clear_prompt_symbol, restore_progress_symbol
|
116 |
|
117 |
+
self.paste = ToolButton(value=paste_symbol, elem_id="paste", tooltip="Read generation parameters from prompts, or the last generation if prompt is empty, into user interface")
|
118 |
+
self.clear_prompt_button = ToolButton(value=clear_prompt_symbol, elem_id=f"{self.id_part}_clear_prompt", tooltip="Clear Prompt")
|
119 |
+
self.apply_styles = ToolButton(value=ui_prompt_styles.styles_materialize_symbol, elem_id=f"{self.id_part}_style_apply", tooltip="Apply selected Styles to Prompts")
|
120 |
+
self.restore_progress_button = ToolButton(value=restore_progress_symbol, elem_id=f"{self.id_part}_restore_progress", visible=False, tooltip="Restore Progress")
|
121 |
|
122 |
self.token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{self.id_part}_token_counter", elem_classes=["token-counter"], visible=False)
|
123 |
self.token_button = gr.Button(visible=False, elem_id=f"{self.id_part}_token_button")
|
|
|
139 |
def hook_paste_guard(self):
|
140 |
assert self.negative_prompt is not None and self.paste is not None
|
141 |
|
142 |
+
def guard(prompt: str) -> bool:
|
143 |
+
return gr.update(interactive=(not bool(prompt.strip())))
|
144 |
|
145 |
self.negative_prompt.change(
|
146 |
+
fn=guard,
|
147 |
inputs=[self.negative_prompt],
|
148 |
outputs=[self.paste],
|
149 |
show_progress="hidden",
|
150 |
+
queue=False,
|
151 |
)
|
modules_forge/stream.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14855
|
2 |
|
3 |
import torch
|
4 |
-
|
|
|
|
|
5 |
|
6 |
|
7 |
def stream_context():
|
@@ -58,7 +60,7 @@ current_stream = None
|
|
58 |
mover_stream = None
|
59 |
using_stream = False
|
60 |
|
61 |
-
if
|
62 |
current_stream = get_current_stream()
|
63 |
mover_stream = get_new_stream()
|
64 |
using_stream = current_stream is not None and mover_stream is not None
|
|
|
1 |
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14855
|
2 |
|
3 |
import torch
|
4 |
+
|
5 |
+
from ldm_patched.modules import model_management
|
6 |
+
from ldm_patched.modules.args_parser import args
|
7 |
|
8 |
|
9 |
def stream_context():
|
|
|
60 |
mover_stream = None
|
61 |
using_stream = False
|
62 |
|
63 |
+
if args.cuda_stream:
|
64 |
current_stream = get_current_stream()
|
65 |
mover_stream = get_new_stream()
|
66 |
using_stream = current_stream is not None and mover_stream is not None
|
modules_forge/unet_patcher.py
CHANGED
@@ -19,13 +19,13 @@ class UnetPatcher(ModelPatcher):
|
|
19 |
self.offload_device,
|
20 |
self.size,
|
21 |
self.current_device,
|
22 |
-
|
23 |
)
|
24 |
|
25 |
-
n.patches = {}
|
26 |
for k in self.patches:
|
27 |
n.patches[k] = self.patches[k][:]
|
28 |
|
|
|
29 |
n.object_patches = self.object_patches.copy()
|
30 |
n.model_options = copy.deepcopy(self.model_options)
|
31 |
n.model_keys = self.model_keys
|
@@ -33,6 +33,8 @@ class UnetPatcher(ModelPatcher):
|
|
33 |
n.extra_preserved_memory_during_sampling = self.extra_preserved_memory_during_sampling
|
34 |
n.extra_model_patchers_during_sampling = self.extra_model_patchers_during_sampling.copy()
|
35 |
n.extra_concat_condition = self.extra_concat_condition
|
|
|
|
|
36 |
return n
|
37 |
|
38 |
def add_extra_preserved_memory_during_sampling(self, memory_in_bytes: int):
|
|
|
19 |
self.offload_device,
|
20 |
self.size,
|
21 |
self.current_device,
|
22 |
+
self.weight_inplace_update,
|
23 |
)
|
24 |
|
|
|
25 |
for k in self.patches:
|
26 |
n.patches[k] = self.patches[k][:]
|
27 |
|
28 |
+
n.backup = self.backup
|
29 |
n.object_patches = self.object_patches.copy()
|
30 |
n.model_options = copy.deepcopy(self.model_options)
|
31 |
n.model_keys = self.model_keys
|
|
|
33 |
n.extra_preserved_memory_during_sampling = self.extra_preserved_memory_during_sampling
|
34 |
n.extra_model_patchers_during_sampling = self.extra_model_patchers_during_sampling.copy()
|
35 |
n.extra_concat_condition = self.extra_concat_condition
|
36 |
+
n.patch_status = self.patch_status
|
37 |
+
|
38 |
return n
|
39 |
|
40 |
def add_extra_preserved_memory_during_sampling(self, memory_in_bytes: int):
|