|
import math
|
|
import re
|
|
|
|
import gradio as gr
|
|
import modules.scripts as scripts
|
|
from modules import devices, images, processing, shared
|
|
from modules.processing import Processed
|
|
from modules.shared import opts, state
|
|
from PIL import Image
|
|
|
|
|
|
class SDUpscale(scripts.Script):
|
|
def title(self):
|
|
return "SD Upscale"
|
|
|
|
def show(self, is_img2img):
|
|
return is_img2img
|
|
|
|
def ui(self, is_img2img):
|
|
gr.HTML(
|
|
"""<p align="center">Upscale the image by the selected <b>Scale Factor</b>;
|
|
use the <b>Width</b> and <b>Height</b> to set the tile size;
|
|
use the <b>Batch size</b> to process multiple tiles at once</p>"""
|
|
)
|
|
|
|
with gr.Row():
|
|
upscaler_index = gr.Dropdown(
|
|
label="Upscaler",
|
|
choices=[x.name for x in shared.sd_upscalers],
|
|
value=shared.sd_upscalers[0].name,
|
|
type="index",
|
|
elem_id=self.elem_id("upscaler_index"),
|
|
)
|
|
scale_factor = gr.Slider(
|
|
label="Scale Factor",
|
|
value=2.0,
|
|
minimum=1.0,
|
|
maximum=8.0,
|
|
step=0.05,
|
|
elem_id=self.elem_id("scale_factor"),
|
|
)
|
|
|
|
with gr.Row():
|
|
overlap = gr.Slider(
|
|
label="Tile Overlap",
|
|
value=64,
|
|
minimum=0,
|
|
maximum=256,
|
|
step=16,
|
|
elem_id=self.elem_id("overlap"),
|
|
)
|
|
override = gr.Checkbox(
|
|
label="Save to Extras folder instead",
|
|
value=False,
|
|
elem_id=self.elem_id("override"),
|
|
)
|
|
|
|
return [overlap, upscaler_index, scale_factor, override]
|
|
|
|
def run(self, p, overlap, upscaler_index, scale_factor, override):
|
|
if isinstance(upscaler_index, str):
|
|
upscaler = next(
|
|
(x for x in shared.sd_upscalers if x.name == upscaler_index),
|
|
None,
|
|
)
|
|
assert upscaler is not None
|
|
else:
|
|
assert isinstance(upscaler_index, int)
|
|
upscaler = shared.sd_upscalers[upscaler_index]
|
|
|
|
processing.fix_seed(p)
|
|
|
|
p.extra_generation_params["SD Upscale - Overlap"] = overlap
|
|
p.extra_generation_params["SD Upscale - Upscaler"] = upscaler.name
|
|
|
|
initial_info = None
|
|
seed = p.seed
|
|
|
|
init_img = p.init_images[0]
|
|
init_img = images.flatten(init_img, opts.img2img_background_color)
|
|
|
|
if upscaler.name != "None":
|
|
img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
|
|
else:
|
|
img = init_img
|
|
|
|
devices.torch_gc()
|
|
|
|
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)
|
|
|
|
batch_size = p.batch_size
|
|
upscale_count = p.n_iter
|
|
p.n_iter = 1
|
|
p.do_not_save_grid = True
|
|
p.do_not_save_samples = True
|
|
|
|
work = []
|
|
|
|
for _, _, row in grid.tiles:
|
|
for tiledata in row:
|
|
work.append(tiledata[2])
|
|
|
|
batch_count = math.ceil(len(work) / batch_size)
|
|
state.job_count = batch_count * upscale_count
|
|
|
|
print(
|
|
f"""
|
|
[SD Upscale]
|
|
- Processing {len(grid.tiles[0][2])}x{len(grid.tiles)} tiles
|
|
- totaling {len(work)} images at a batch size of {batch_size}
|
|
- resulting in {state.job_count} iterations
|
|
"""
|
|
)
|
|
|
|
result_images = []
|
|
for n in range(upscale_count):
|
|
start_seed = seed + n
|
|
p.seed = start_seed
|
|
|
|
work_results = []
|
|
for i in range(batch_count):
|
|
p.batch_size = batch_size
|
|
p.init_images = work[i * batch_size : (i + 1) * batch_size]
|
|
|
|
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
|
|
processed = processing.process_images(p)
|
|
|
|
if initial_info is None:
|
|
initial_info = processed.info
|
|
|
|
p.seed = processed.seed + 1
|
|
work_results += processed.images
|
|
|
|
image_index = 0
|
|
for _, _, row in grid.tiles:
|
|
for tiledata in row:
|
|
tiledata[2] = (
|
|
work_results[image_index]
|
|
if image_index < len(work_results)
|
|
else Image.new("RGB", (p.width, p.height))
|
|
)
|
|
image_index += 1
|
|
|
|
combined_image = images.combine_grid(grid)
|
|
result_images.append(combined_image)
|
|
|
|
if opts.samples_save:
|
|
if override:
|
|
images.save_image(
|
|
combined_image,
|
|
path=opts.outdir_samples or opts.outdir_extras_samples,
|
|
basename="",
|
|
extension=opts.samples_format,
|
|
info=initial_info,
|
|
short_filename=True,
|
|
no_prompt=True,
|
|
grid=False,
|
|
pnginfo_section_name="extras",
|
|
existing_info=None,
|
|
forced_filename=None,
|
|
suffix="",
|
|
)
|
|
else:
|
|
images.save_image(
|
|
combined_image,
|
|
p.outpath_samples,
|
|
"",
|
|
start_seed,
|
|
p.prompt,
|
|
opts.samples_format,
|
|
info=initial_info,
|
|
p=p,
|
|
)
|
|
|
|
new_w, new_h = img.size
|
|
pattern = r"Size: (\d+)x(\d+)"
|
|
initial_info = re.sub(pattern, f"Size: {new_w}x{new_h}", initial_info)
|
|
|
|
return Processed(p, result_images, seed, initial_info)
|
|
|