Upload 16 files
Browse files- README.md +54 -3
- gui.py +75 -0
- install-cn.ps1 +57 -0
- install.bash +55 -0
- install.ps1 +23 -0
- interrogate.ps1 +29 -0
- resize.ps1 +41 -0
- run_gui.ps1 +6 -0
- run_gui.sh +7 -0
- svd_merge.ps1 +43 -0
- tensorboard.ps1 +4 -0
- train.ipynb +99 -0
- train.ps1 +202 -0
- train.sh +153 -0
- train_by_toml.ps1 +33 -0
- train_by_toml.sh +24 -0
README.md
CHANGED
@@ -1,3 +1,54 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA-scripts
|
2 |
+
|
3 |
+
LoRA training scripts for [kohya-ss/sd-scripts](https://github.com/kohya-ss/sd-scripts.git)
|
4 |
+
|
5 |
+
✨NEW: Train GUI
|
6 |
+
|
7 |
+

|
8 |
+
|
9 |
+
Follow the installation guide below to install the GUI, then run `run_gui.ps1`(windows) or `run_gui.sh`(linux) to start the GUI.
|
10 |
+
|
11 |
+
|
12 |
+
## Usage
|
13 |
+
|
14 |
+
### Clone repo with submodules
|
15 |
+
|
16 |
+
```sh
|
17 |
+
git clone --recurse-submodules https://github.com/Akegarasu/lora-scripts
|
18 |
+
```
|
19 |
+
|
20 |
+
### Required Dependencies
|
21 |
+
|
22 |
+
Python 3.10.8 and Git
|
23 |
+
|
24 |
+
### Windows
|
25 |
+
|
26 |
+
#### Installation
|
27 |
+
|
28 |
+
Run `install.ps1` will automaticilly create a venv for you and install necessary deps.
|
29 |
+
|
30 |
+
#### Train
|
31 |
+
|
32 |
+
Edit `train.ps1`, and run it.
|
33 |
+
|
34 |
+
### Linux
|
35 |
+
|
36 |
+
#### Installation
|
37 |
+
|
38 |
+
Run `install.bash` will create a venv and install necessary deps.
|
39 |
+
|
40 |
+
#### Train
|
41 |
+
|
42 |
+
Training script `train.sh` **will not** activate venv for you. You should activate venv first.
|
43 |
+
|
44 |
+
```sh
|
45 |
+
source venv/bin/activate
|
46 |
+
```
|
47 |
+
|
48 |
+
Edit `train.sh`, and run it.
|
49 |
+
|
50 |
+
#### TensorBoard
|
51 |
+
|
52 |
+
Run `tensorboard.ps1` will start TensorBoard at http://localhost:6006/
|
53 |
+
|
54 |
+

|
gui.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import subprocess
|
5 |
+
import sys
|
6 |
+
import webbrowser
|
7 |
+
|
8 |
+
import uvicorn
|
9 |
+
from typing import List
|
10 |
+
|
11 |
+
# from mikazuki.app import app
|
12 |
+
|
13 |
+
parser = argparse.ArgumentParser(description="GUI for stable diffusion training")
|
14 |
+
parser.add_argument("--host", type=str, default="127.0.0.1")
|
15 |
+
parser.add_argument("--port", type=int, default=28000, help="Port to run the server on")
|
16 |
+
parser.add_argument("--tensorboard-port", type=int, default=6006, help="Port to run the tensorboard")
|
17 |
+
parser.add_argument("--dev", action="store_true")
|
18 |
+
|
19 |
+
|
20 |
+
def find_windows_git():
|
21 |
+
possible_paths = ["git\\bin\\git.exe", "git\\cmd\\git.exe", "Git\\mingw64\\libexec\\git-core\\git.exe"]
|
22 |
+
for path in possible_paths:
|
23 |
+
if os.path.exists(path):
|
24 |
+
return path
|
25 |
+
|
26 |
+
|
27 |
+
def prepare_frontend():
|
28 |
+
if not os.path.exists("./frontend/dist"):
|
29 |
+
print("Frontend not found, try clone...")
|
30 |
+
print("Checking git installation...")
|
31 |
+
if not shutil.which("git"):
|
32 |
+
if sys.platform == "win32":
|
33 |
+
git_path = find_windows_git()
|
34 |
+
|
35 |
+
if git_path is not None:
|
36 |
+
print(f"Git not found, but found git in {git_path}, add it to PATH")
|
37 |
+
os.environ["PATH"] += os.pathsep + os.path.dirname(git_path)
|
38 |
+
return
|
39 |
+
else:
|
40 |
+
print("Git not found, please install git first")
|
41 |
+
sys.exit(1)
|
42 |
+
subprocess.run(["git", "submodule", "init"])
|
43 |
+
subprocess.run(["git", "submodule", "update"])
|
44 |
+
|
45 |
+
|
46 |
+
def remove_warnings():
|
47 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
48 |
+
if sys.platform == "win32":
|
49 |
+
# disable triton on windows
|
50 |
+
os.environ["XFORMERS_FORCE_DISABLE_TRITON"] = "1"
|
51 |
+
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
|
52 |
+
os.environ["PYTHONWARNINGS"] = "ignore::UserWarning"
|
53 |
+
|
54 |
+
|
55 |
+
def run_tensorboard():
|
56 |
+
print("Starting tensorboard...")
|
57 |
+
subprocess.Popen([sys.executable, "-m", "tensorboard.main", "--logdir", "logs", "--port", str(args.tensorboard_port)])
|
58 |
+
|
59 |
+
|
60 |
+
def check_dirs(dirs: List):
|
61 |
+
for d in dirs:
|
62 |
+
if not os.path.exists(d):
|
63 |
+
os.makedirs(d)
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
args, _ = parser.parse_known_args()
|
68 |
+
remove_warnings()
|
69 |
+
prepare_frontend()
|
70 |
+
run_tensorboard()
|
71 |
+
check_dirs(["toml/autosave", "logs"])
|
72 |
+
print(f"Server started at http://{args.host}:{args.port}")
|
73 |
+
if not args.dev:
|
74 |
+
webbrowser.open(f"http://{args.host}:{args.port}")
|
75 |
+
uvicorn.run("mikazuki.app:app", host=args.host, port=args.port, log_level="error")
|
install-cn.ps1
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
$Env:HF_HOME = "huggingface"
|
2 |
+
$Env:PIP_DISABLE_PIP_VERSION_CHECK = 1
|
3 |
+
$Env:PIP_NO_CACHE_DIR = 1
|
4 |
+
function InstallFail {
|
5 |
+
Write-Output "��װʧ�ܡ�"
|
6 |
+
Read-Host | Out-Null ;
|
7 |
+
Exit
|
8 |
+
}
|
9 |
+
|
10 |
+
function Check {
|
11 |
+
param (
|
12 |
+
$ErrorInfo
|
13 |
+
)
|
14 |
+
if (!($?)) {
|
15 |
+
Write-Output $ErrorInfo
|
16 |
+
InstallFail
|
17 |
+
}
|
18 |
+
}
|
19 |
+
|
20 |
+
if (!(Test-Path -Path "venv")) {
|
21 |
+
Write-Output "���ڴ��������..."
|
22 |
+
python -m venv venv
|
23 |
+
Check "���������ʧ�ܣ����� python �Ƿ�װ����Լ� python �汾�Ƿ�Ϊ64λ�汾��python 3.10����python��Ŀ¼�Ƿ��ڻ�������PATH�ڡ�"
|
24 |
+
}
|
25 |
+
|
26 |
+
.\venv\Scripts\activate
|
27 |
+
Check "���������ʧ�ܡ�"
|
28 |
+
|
29 |
+
Set-Location .\sd-scripts
|
30 |
+
Write-Output "��װ������������ (�ѽ��й��ڼ��٣����ڹ������ʹ�ü���Դ�뻻�� install.ps1 �ű�)"
|
31 |
+
$install_torch = Read-Host "�Ƿ���Ҫ��װ Torch+xformers? [y/n] (Ĭ��Ϊ y)"
|
32 |
+
if ($install_torch -eq "y" -or $install_torch -eq "Y" -or $install_torch -eq ""){
|
33 |
+
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html -i https://mirrors.bfsu.edu.cn/pypi/web/simple
|
34 |
+
Check "torch ��װʧ�ܣ���ɾ�� venv �ļ��к��������С�"
|
35 |
+
pip install -U -I --no-deps xformers==0.0.19 -i https://mirrors.bfsu.edu.cn/pypi/web/simple
|
36 |
+
Check "xformers ��װʧ�ܡ�"
|
37 |
+
}
|
38 |
+
|
39 |
+
pip install --upgrade -r requirements.txt -i https://mirrors.bfsu.edu.cn/pypi/web/simple
|
40 |
+
Check "����������װʧ�ܡ�"
|
41 |
+
pip install --upgrade lion-pytorch dadaptation -i https://mirrors.bfsu.edu.cn/pypi/web/simple
|
42 |
+
Check "Lion��dadaptation �Ż�����װʧ�ܡ�"
|
43 |
+
pip install --upgrade lycoris-lora -i https://mirrors.bfsu.edu.cn/pypi/web/simple
|
44 |
+
Check "lycoris ��װʧ�ܡ�"
|
45 |
+
pip install --upgrade fastapi uvicorn -i https://mirrors.bfsu.edu.cn/pypi/web/simple
|
46 |
+
Check "UI ����������װʧ�ܡ�"
|
47 |
+
pip install --upgrade wandb -i https://mirrors.bfsu.edu.cn/pypi/web/simple
|
48 |
+
Check "wandb ��װʧ�ܡ�"
|
49 |
+
|
50 |
+
|
51 |
+
Write-Output "��װ bitsandbytes..."
|
52 |
+
cp .\bitsandbytes_windows\*.dll ..\venv\Lib\site-packages\bitsandbytes\
|
53 |
+
cp .\bitsandbytes_windows\cextension.py ..\venv\Lib\site-packages\bitsandbytes\cextension.py
|
54 |
+
cp .\bitsandbytes_windows\main.py ..\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
|
55 |
+
|
56 |
+
Write-Output "��װ���"
|
57 |
+
Read-Host | Out-Null ;
|
install.bash
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/bash
|
2 |
+
|
3 |
+
script_dir="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
4 |
+
create_venv=true
|
5 |
+
|
6 |
+
while [ -n "$1" ]; do
|
7 |
+
case "$1" in
|
8 |
+
--disable-venv)
|
9 |
+
create_venv=false
|
10 |
+
shift
|
11 |
+
;;
|
12 |
+
*)
|
13 |
+
shift
|
14 |
+
;;
|
15 |
+
esac
|
16 |
+
done
|
17 |
+
|
18 |
+
if $create_venv; then
|
19 |
+
echo "Creating python venv..."
|
20 |
+
python3 -m venv venv
|
21 |
+
source "$script_dir/venv/bin/activate"
|
22 |
+
echo "active venv"
|
23 |
+
fi
|
24 |
+
|
25 |
+
echo "Installing torch & xformers..."
|
26 |
+
|
27 |
+
cuda_version=$(nvcc --version | grep 'release' | sed -n -e 's/^.*release \([0-9]\+\.[0-9]\+\),.*$/\1/p')
|
28 |
+
cuda_major_version=$(echo "$cuda_version" | awk -F'.' '{print $1}')
|
29 |
+
cuda_minor_version=$(echo "$cuda_version" | awk -F'.' '{print $2}')
|
30 |
+
|
31 |
+
echo "Cuda Version:$cuda_version"
|
32 |
+
|
33 |
+
if (( cuda_major_version >= 12 )) || (( cuda_major_version == 11 && cuda_minor_version >= 8 )); then
|
34 |
+
echo "install torch 2.0.0+cu118"
|
35 |
+
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
|
36 |
+
pip install xformers==0.0.19
|
37 |
+
elif (( cuda_major_version == 11 && cuda_minor_version == 6 )); then
|
38 |
+
echo "install torch 1.12.1+cu116"
|
39 |
+
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
|
40 |
+
pip install --upgrade git+https://github.com/facebookresearch/xformers.git@0bad001ddd56c080524d37c84ff58d9cd030ebfd
|
41 |
+
pip install triton==2.0.0.dev20221202
|
42 |
+
else
|
43 |
+
echo "Unsupported cuda version:$cuda_version"
|
44 |
+
exit 1
|
45 |
+
fi
|
46 |
+
|
47 |
+
echo "Installing deps..."
|
48 |
+
cd "$script_dir/sd-scripts" || exit
|
49 |
+
|
50 |
+
pip install --upgrade -r requirements.txt
|
51 |
+
pip install --upgrade lion-pytorch lycoris-lora dadaptation fastapi uvicorn wandb
|
52 |
+
|
53 |
+
cd "$script_dir" || exit
|
54 |
+
|
55 |
+
echo "Install completed"
|
install.ps1
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
$Env:HF_HOME = "huggingface"
|
2 |
+
|
3 |
+
if (!(Test-Path -Path "venv")) {
|
4 |
+
Write-Output "Creating venv for python..."
|
5 |
+
python -m venv venv
|
6 |
+
}
|
7 |
+
.\venv\Scripts\activate
|
8 |
+
|
9 |
+
Write-Output "Installing deps..."
|
10 |
+
Set-Location .\sd-scripts
|
11 |
+
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
|
12 |
+
pip install --upgrade -r requirements.txt
|
13 |
+
pip install --upgrade xformers==0.0.19
|
14 |
+
|
15 |
+
Write-Output "Installing bitsandbytes for windows..."
|
16 |
+
cp .\bitsandbytes_windows\*.dll ..\venv\Lib\site-packages\bitsandbytes\
|
17 |
+
cp .\bitsandbytes_windows\cextension.py ..\venv\Lib\site-packages\bitsandbytes\cextension.py
|
18 |
+
cp .\bitsandbytes_windows\main.py ..\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
|
19 |
+
|
20 |
+
pip install --upgrade lion-pytorch dadaptation lycoris-lora fastapi uvicorn wandb
|
21 |
+
|
22 |
+
Write-Output "Install completed"
|
23 |
+
Read-Host | Out-Null ;
|
interrogate.ps1
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA interrogate script by @bdsqlsz
|
2 |
+
|
3 |
+
$v2 = 0 # load Stable Diffusion v2.x model / Stable Diffusion 2.x模型读取
|
4 |
+
$sd_model = "./sd-models/sd_model.safetensors" # Stable Diffusion model to load: ckpt or safetensors file | 读取的基础SD模型, 保存格式 cpkt 或 safetensors
|
5 |
+
$model = "./output/LoRA.safetensors" # LoRA model to interrogate: ckpt or safetensors file | 需要调查关键字的LORA模型, 保存格式 cpkt 或 safetensors
|
6 |
+
$batch_size = 64 # batch size for processing with Text Encoder | 使用 Text Encoder 处理时的批量大小,默认16,推荐64/128
|
7 |
+
$clip_skip = 1 # use output of nth layer from back of text encoder (n>=1) | 使用文本编码器倒数第 n 层的输出,n 可以是大于等于 1 的整数
|
8 |
+
|
9 |
+
|
10 |
+
# Activate python venv
|
11 |
+
.\venv\Scripts\activate
|
12 |
+
|
13 |
+
$Env:HF_HOME = "huggingface"
|
14 |
+
$ext_args = [System.Collections.ArrayList]::new()
|
15 |
+
|
16 |
+
if ($v2) {
|
17 |
+
[void]$ext_args.Add("--v2")
|
18 |
+
}
|
19 |
+
|
20 |
+
# run interrogate
|
21 |
+
accelerate launch --num_cpu_threads_per_process=8 "./sd-scripts/networks/lora_interrogator.py" `
|
22 |
+
--sd_model=$sd_model `
|
23 |
+
--model=$model `
|
24 |
+
--batch_size=$batch_size `
|
25 |
+
--clip_skip=$clip_skip `
|
26 |
+
$ext_args
|
27 |
+
|
28 |
+
Write-Output "Interrogate finished"
|
29 |
+
Read-Host | Out-Null ;
|
resize.ps1
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA resize script by @bdsqlsz
|
2 |
+
|
3 |
+
$save_precision = "fp16" # precision in saving, default float | 保存精度, 可选 float、fp16、bf16, 默认 float
|
4 |
+
$new_rank = 4 # dim rank of output LoRA | dim rank等级, 默认 4
|
5 |
+
$model = "./output/lora_name.safetensors" # original LoRA model path need to resize, save as cpkt or safetensors | 需要调整大小的模型路径, 保存格式 cpkt 或 safetensors
|
6 |
+
$save_to = "./output/lora_name_new.safetensors" # output LoRA model path, save as ckpt or safetensors | 输出路径, 保存格式 cpkt 或 safetensors
|
7 |
+
$device = "cuda" # device to use, cuda for GPU | 使用 GPU跑, 默认 CPU
|
8 |
+
$verbose = 1 # display verbose resizing information | rank变更时, 显示详细信息
|
9 |
+
$dynamic_method = "" # Specify dynamic resizing method, --new_rank is used as a hard limit for max rank | 动态调节大小,可选"sv_ratio", "sv_fro", "sv_cumulative",默认无
|
10 |
+
$dynamic_param = "" # Specify target for dynamic reduction | 动态参数,sv_ratio模式推荐1~2, sv_cumulative模式0~1, sv_fro模式0~1, 比sv_cumulative要高
|
11 |
+
|
12 |
+
|
13 |
+
# Activate python venv
|
14 |
+
.\venv\Scripts\activate
|
15 |
+
|
16 |
+
$Env:HF_HOME = "huggingface"
|
17 |
+
$ext_args = [System.Collections.ArrayList]::new()
|
18 |
+
|
19 |
+
if ($verbose) {
|
20 |
+
[void]$ext_args.Add("--verbose")
|
21 |
+
}
|
22 |
+
|
23 |
+
if ($dynamic_method) {
|
24 |
+
[void]$ext_args.Add("--dynamic_method=" + $dynamic_method)
|
25 |
+
}
|
26 |
+
|
27 |
+
if ($dynamic_param) {
|
28 |
+
[void]$ext_args.Add("--dynamic_param=" + $dynamic_param)
|
29 |
+
}
|
30 |
+
|
31 |
+
# run resize
|
32 |
+
accelerate launch --num_cpu_threads_per_process=8 "./sd-scripts/networks/resize_lora.py" `
|
33 |
+
--save_precision=$save_precision `
|
34 |
+
--new_rank=$new_rank `
|
35 |
+
--model=$model `
|
36 |
+
--save_to=$save_to `
|
37 |
+
--device=$device `
|
38 |
+
$ext_args
|
39 |
+
|
40 |
+
Write-Output "Resize finished"
|
41 |
+
Read-Host | Out-Null ;
|
run_gui.ps1
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.\venv\Scripts\activate
|
2 |
+
|
3 |
+
$Env:HF_HOME = "huggingface"
|
4 |
+
$Env:PYTHONUTF8 = "1"
|
5 |
+
|
6 |
+
python gui.py
|
run_gui.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
export HF_HOME=huggingface
|
4 |
+
export PYTHONUTF8=1
|
5 |
+
|
6 |
+
python gui.py "$@"
|
7 |
+
|
svd_merge.ps1
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA svd_merge script by @bdsqlsz
|
2 |
+
|
3 |
+
$save_precision = "fp16" # precision in saving, default float | 保存精度, 可选 float、fp16、bf16, 默认 和源文件相同
|
4 |
+
$precision = "float" # precision in merging (float is recommended) | 合并时计算精度, 可选 float、fp16、bf16, 推荐float
|
5 |
+
$new_rank = 4 # dim rank of output LoRA | dim rank等级, 默认 4
|
6 |
+
$models = "./output/modelA.safetensors ./output/modelB.safetensors" # original LoRA model path need to resize, save as cpkt or safetensors | 需要合并的模型路径, 保存格式 cpkt 或 safetensors,多个用空格隔开
|
7 |
+
$ratios = "1.0 -1.0" # ratios for each model / LoRA模型合并比例,数量等于模型数量,多个用空格隔开
|
8 |
+
$save_to = "./output/lora_name_new.safetensors" # output LoRA model path, save as ckpt or safetensors | 输出路径, 保存格式 cpkt 或 safetensors
|
9 |
+
$device = "cuda" # device to use, cuda for GPU | 使用 GPU跑, 默认 CPU
|
10 |
+
$new_conv_rank = 0 # Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank | Conv2d 3x3输出,没有默认同new_rank
|
11 |
+
|
12 |
+
# Activate python venv
|
13 |
+
.\venv\Scripts\activate
|
14 |
+
|
15 |
+
$Env:HF_HOME = "huggingface"
|
16 |
+
$Env:XFORMERS_FORCE_DISABLE_TRITON = "1"
|
17 |
+
$ext_args = [System.Collections.ArrayList]::new()
|
18 |
+
|
19 |
+
[void]$ext_args.Add("--models")
|
20 |
+
foreach ($model in $models.Split(" ")) {
|
21 |
+
[void]$ext_args.Add($model)
|
22 |
+
}
|
23 |
+
|
24 |
+
[void]$ext_args.Add("--ratios")
|
25 |
+
foreach ($ratio in $ratios.Split(" ")) {
|
26 |
+
[void]$ext_args.Add([float]$ratio)
|
27 |
+
}
|
28 |
+
|
29 |
+
if ($new_conv_rank) {
|
30 |
+
[void]$ext_args.Add("--new_conv_rank=" + $new_conv_rank)
|
31 |
+
}
|
32 |
+
|
33 |
+
# run svd_merge
|
34 |
+
accelerate launch --num_cpu_threads_per_process=8 "./sd-scripts/networks/svd_merge_lora.py" `
|
35 |
+
--save_precision=$save_precision `
|
36 |
+
--precision=$precision `
|
37 |
+
--new_rank=$new_rank `
|
38 |
+
--save_to=$save_to `
|
39 |
+
--device=$device `
|
40 |
+
$ext_args
|
41 |
+
|
42 |
+
Write-Output "SVD Merge finished"
|
43 |
+
Read-Host | Out-Null ;
|
tensorboard.ps1
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
$Env:TF_CPP_MIN_LOG_LEVEL = "3"
|
2 |
+
|
3 |
+
.\venv\Scripts\activate
|
4 |
+
tensorboard --logdir=logs
|
train.ipynb
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"pycharm": {
|
8 |
+
"name": "#%%\n"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"outputs": [],
|
12 |
+
"source": [
|
13 |
+
"# Train data path | 设置训练用模型、图片\n",
|
14 |
+
"pretrained_model = \"./sd-models/model.ckpt\" # base model path | 底模路径\n",
|
15 |
+
"train_data_dir = \"./train/aki\" # train dataset path | 训练数据集路径\n",
|
16 |
+
"\n",
|
17 |
+
"# Train related params | 训练相关参数\n",
|
18 |
+
"resolution = \"512,512\" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。\n",
|
19 |
+
"batch_size = 1 # batch size\n",
|
20 |
+
"max_train_epoches = 10 # max train epoches | 最大训练 epoch\n",
|
21 |
+
"save_every_n_epochs = 2 # save every n epochs | 每 N 个 epoch 保存一次\n",
|
22 |
+
"network_dim = 32 # network dim | 常用 4~128,不是越大越好\n",
|
23 |
+
"network_alpha= 32 # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。\n",
|
24 |
+
"clip_skip = 2 # clip skip | 玄学 一般用 2\n",
|
25 |
+
"train_unet_only = 0 # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启\n",
|
26 |
+
"train_text_encoder_only = 0 # train Text Encoder only | 仅训练 文本编码器\n",
|
27 |
+
"\n",
|
28 |
+
"# Learning rate | 学习率\n",
|
29 |
+
"lr = \"1e-4\"\n",
|
30 |
+
"unet_lr = \"1e-4\"\n",
|
31 |
+
"text_encoder_lr = \"1e-5\"\n",
|
32 |
+
"lr_scheduler = \"cosine_with_restarts\" # \"linear\", \"cosine\", \"cosine_with_restarts\", \"polynomial\", \"constant\", \"constant_with_warmup\"\n",
|
33 |
+
"\n",
|
34 |
+
"# Output settings | 输出设置\n",
|
35 |
+
"output_name = \"aki\" # output model name | 模型保存名称\n",
|
36 |
+
"save_model_as = \"safetensors\" # model save ext | 模型保存格式 ckpt, pt, safetensors"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": null,
|
42 |
+
"metadata": {
|
43 |
+
"pycharm": {
|
44 |
+
"name": "#%%\n"
|
45 |
+
}
|
46 |
+
},
|
47 |
+
"outputs": [],
|
48 |
+
"source": [
|
49 |
+
"!accelerate launch --num_cpu_threads_per_process=8 \"./sd-scripts/train_network.py\" \\\n",
|
50 |
+
" --enable_bucket \\\n",
|
51 |
+
" --pretrained_model_name_or_path=$pretrained_model \\\n",
|
52 |
+
" --train_data_dir=$train_data_dir \\\n",
|
53 |
+
" --output_dir=\"./output\" \\\n",
|
54 |
+
" --logging_dir=\"./logs\" \\\n",
|
55 |
+
" --resolution=$resolution \\\n",
|
56 |
+
" --network_module=networks.lora \\\n",
|
57 |
+
" --max_train_epochs=$max_train_epoches \\\n",
|
58 |
+
" --learning_rate=$lr \\\n",
|
59 |
+
" --unet_lr=$unet_lr \\\n",
|
60 |
+
" --text_encoder_lr=$text_encoder_lr \\\n",
|
61 |
+
" --network_dim=$network_dim \\\n",
|
62 |
+
" --network_alpha=$network_alpha \\\n",
|
63 |
+
" --output_name=$output_name \\\n",
|
64 |
+
" --lr_scheduler=$lr_scheduler \\\n",
|
65 |
+
" --train_batch_size=$batch_size \\\n",
|
66 |
+
" --save_every_n_epochs=$save_every_n_epochs \\\n",
|
67 |
+
" --mixed_precision=\"fp16\" \\\n",
|
68 |
+
" --save_precision=\"fp16\" \\\n",
|
69 |
+
" --seed=\"1337\" \\\n",
|
70 |
+
" --cache_latents \\\n",
|
71 |
+
" --clip_skip=$clip_skip \\\n",
|
72 |
+
" --prior_loss_weight=1 \\\n",
|
73 |
+
" --max_token_length=225 \\\n",
|
74 |
+
" --caption_extension=\".txt\" \\\n",
|
75 |
+
" --save_model_as=$save_model_as \\\n",
|
76 |
+
" --xformers --shuffle_caption --use_8bit_adam"
|
77 |
+
]
|
78 |
+
}
|
79 |
+
],
|
80 |
+
"metadata": {
|
81 |
+
"kernelspec": {
|
82 |
+
"display_name": "Python 3",
|
83 |
+
"language": "python",
|
84 |
+
"name": "python3"
|
85 |
+
},
|
86 |
+
"language_info": {
|
87 |
+
"name": "python",
|
88 |
+
"version": "3.10.7 (tags/v3.10.7:6cc6b13, Sep 5 2022, 14:08:36) [MSC v.1933 64 bit (AMD64)]"
|
89 |
+
},
|
90 |
+
"orig_nbformat": 4,
|
91 |
+
"vscode": {
|
92 |
+
"interpreter": {
|
93 |
+
"hash": "675b13e958f0d0236d13cdfe08a1df3882cae564fa23a2e7e5eb1f2c6c632b02"
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"nbformat": 4,
|
98 |
+
"nbformat_minor": 2
|
99 |
+
}
|
train.ps1
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA train script by @Akegarasu
|
2 |
+
|
3 |
+
# Train data path | 设置训练用模型、图片
|
4 |
+
$pretrained_model = "./sd-models/model.ckpt" # base model path | 底模路径
|
5 |
+
$is_v2_model = 0 # SD2.0 model | SD2.0模型 2.0模型下 clip_skip 默认无效
|
6 |
+
$parameterization = 0 # parameterization | 参数化 本参数需要和 V2 参数同步使用 实验性功能
|
7 |
+
$train_data_dir = "./train/aki" # train dataset path | 训练数据集路径
|
8 |
+
$reg_data_dir = "" # directory for regularization images | 正则化数据集路径,默认不使用正则化图像。
|
9 |
+
|
10 |
+
# Network settings | 网络设置
|
11 |
+
$network_module = "networks.lora" # 在这里将会设置训练的网络种类,默认为 networks.lora 也就是 LoRA 训练。如果你想训练 LyCORIS(LoCon、LoHa) 等,则修改这个值为 lycoris.kohya
|
12 |
+
$network_weights = "" # pretrained weights for LoRA network | 若需要从已有的 LoRA 模型上继续训练,请填写 LoRA 模型路径。
|
13 |
+
$network_dim = 32 # network dim | 常用 4~128,不是越大越好
|
14 |
+
$network_alpha = 32 # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。
|
15 |
+
|
16 |
+
# Train related params | 训练相关参数
|
17 |
+
$resolution = "512,512" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。
|
18 |
+
$batch_size = 1 # batch size
|
19 |
+
$max_train_epoches = 10 # max train epoches | 最大训练 epoch
|
20 |
+
$save_every_n_epochs = 2 # save every n epochs | 每 N 个 epoch 保存一次
|
21 |
+
|
22 |
+
$train_unet_only = 0 # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启
|
23 |
+
$train_text_encoder_only = 0 # train Text Encoder only | 仅训练 文本编码器
|
24 |
+
$stop_text_encoder_training = 0 # stop text encoder training | 在第N步时停止训练文本编码器
|
25 |
+
|
26 |
+
$noise_offset = 0 # noise offset | 在训练中添加噪声偏移来改良生成非常暗或者非常亮的图像,如果启用,推荐参数为 0.1
|
27 |
+
$keep_tokens = 0 # keep heading N tokens when shuffling caption tokens | 在随机打乱 tokens 时,保留前 N 个不变。
|
28 |
+
$min_snr_gamma = 0 # minimum signal-to-noise ratio (SNR) value for gamma-ray | 伽马射线事件的最小信噪比(SNR)值 默认为 0
|
29 |
+
|
30 |
+
# Learning rate | 学习率
|
31 |
+
$lr = "1e-4"
|
32 |
+
$unet_lr = "1e-4"
|
33 |
+
$text_encoder_lr = "1e-5"
|
34 |
+
$lr_scheduler = "cosine_with_restarts" # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"
|
35 |
+
$lr_warmup_steps = 0 # warmup steps | 学习率预热步数,lr_scheduler 为 constant 或 adafactor 时该值需要设为0。
|
36 |
+
$lr_restart_cycles = 1 # cosine_with_restarts restart cycles | 余弦退火重启次数,仅在 lr_scheduler 为 cosine_with_restarts 时起效。
|
37 |
+
|
38 |
+
# Output settings | 输出设置
|
39 |
+
$output_name = "aki" # output model name | 模型保存名称
|
40 |
+
$save_model_as = "safetensors" # model save ext | 模型保存格式 ckpt, pt, safetensors
|
41 |
+
|
42 |
+
# Resume training state | 恢复训练设置
|
43 |
+
$save_state = 0 # save training state | 保存训练状态 名称类似于 <output_name>-??????-state ?????? 表示 epoch 数
|
44 |
+
$resume = "" # resume from state | 从某个状态文件夹中恢复训练 需配合上方参数同时使用 由于规范文件限制 epoch 数和全局步数不会保存 即使恢复时它们也从 1 开始 与 network_weights 的具体实现操作并不一致
|
45 |
+
|
46 |
+
# 其他设置
|
47 |
+
$min_bucket_reso = 256 # arb min resolution | arb 最小分辨率
|
48 |
+
$max_bucket_reso = 1024 # arb max resolution | arb 最大分辨率
|
49 |
+
$persistent_data_loader_workers = 0 # persistent dataloader workers | 容易爆内存,保留加载训练集的worker,减少每个 epoch 之间的停顿
|
50 |
+
$clip_skip = 2 # clip skip | 玄学 一般用 2
|
51 |
+
$multi_gpu = 0 # multi gpu | 多显卡训练 该参数仅限在显卡数 >= 2 使用
|
52 |
+
$lowram = 0 # lowram mode | 低内存模式 该模式下会将 U-net 文本编码器 VAE 转移到 GPU 显存中 启用该模式可能会对显存有一定影响
|
53 |
+
|
54 |
+
# 优化器设置
|
55 |
+
$optimizer_type = "AdamW8bit" # Optimizer type | 优化器类型 默认为 AdamW8bit,可选:AdamW AdamW8bit Lion SGDNesterov SGDNesterov8bit DAdaptation AdaFactor
|
56 |
+
|
57 |
+
# LyCORIS 训练设置
|
58 |
+
$algo = "lora" # LyCORIS network algo | LyCORIS 网络算法 可选 lora、loha、lokr、ia3、dylora。lora即为locon
|
59 |
+
$conv_dim = 4 # conv dim | 类似于 network_dim,推荐为 4
|
60 |
+
$conv_alpha = 4 # conv alpha | 类似于 network_alpha,可以采用与 conv_dim 一致或者更小的值
|
61 |
+
$dropout = "0" # dropout | dropout 概率, 0 为不使用 dropout, 越大则 dropout 越多,推荐 0~0.5, LoHa/LoKr/(IA)^3暂时不支持
|
62 |
+
|
63 |
+
# 远程记录设置
|
64 |
+
$use_wandb = 0 # enable wandb logging | 启用wandb远程记录功能
|
65 |
+
$wandb_api_key = "" # wandb api key | API,通过https://wandb.ai/authorize获取
|
66 |
+
$log_tracker_name = "" # wandb log tracker name | wandb项目名称,留空则为"network_train"
|
67 |
+
|
68 |
+
# ============= DO NOT MODIFY CONTENTS BELOW | 请勿修改下方内容 =====================
|
69 |
+
# Activate python venv
|
70 |
+
.\venv\Scripts\activate
|
71 |
+
|
72 |
+
$Env:HF_HOME = "huggingface"
|
73 |
+
$Env:XFORMERS_FORCE_DISABLE_TRITON = "1"
|
74 |
+
$ext_args = [System.Collections.ArrayList]::new()
|
75 |
+
$launch_args = [System.Collections.ArrayList]::new()
|
76 |
+
|
77 |
+
if ($multi_gpu) {
|
78 |
+
[void]$launch_args.Add("--multi_gpu")
|
79 |
+
}
|
80 |
+
|
81 |
+
if ($lowram) {
|
82 |
+
[void]$ext_args.Add("--lowram")
|
83 |
+
}
|
84 |
+
|
85 |
+
if ($is_v2_model) {
|
86 |
+
[void]$ext_args.Add("--v2")
|
87 |
+
}
|
88 |
+
else {
|
89 |
+
[void]$ext_args.Add("--clip_skip=$clip_skip")
|
90 |
+
}
|
91 |
+
|
92 |
+
if ($parameterization) {
|
93 |
+
[void]$ext_args.Add("--v_parameterization")
|
94 |
+
}
|
95 |
+
|
96 |
+
if ($train_unet_only) {
|
97 |
+
[void]$ext_args.Add("--network_train_unet_only")
|
98 |
+
}
|
99 |
+
|
100 |
+
if ($train_text_encoder_only) {
|
101 |
+
[void]$ext_args.Add("--network_train_text_encoder_only")
|
102 |
+
}
|
103 |
+
|
104 |
+
if ($network_weights) {
|
105 |
+
[void]$ext_args.Add("--network_weights=" + $network_weights)
|
106 |
+
}
|
107 |
+
|
108 |
+
if ($reg_data_dir) {
|
109 |
+
[void]$ext_args.Add("--reg_data_dir=" + $reg_data_dir)
|
110 |
+
}
|
111 |
+
|
112 |
+
if ($optimizer_type) {
|
113 |
+
[void]$ext_args.Add("--optimizer_type=" + $optimizer_type)
|
114 |
+
}
|
115 |
+
|
116 |
+
if ($optimizer_type -eq "DAdaptation") {
|
117 |
+
[void]$ext_args.Add("--optimizer_args")
|
118 |
+
[void]$ext_args.Add("decouple=True")
|
119 |
+
}
|
120 |
+
|
121 |
+
if ($network_module -eq "lycoris.kohya") {
|
122 |
+
[void]$ext_args.Add("--network_args")
|
123 |
+
[void]$ext_args.Add("conv_dim=$conv_dim")
|
124 |
+
[void]$ext_args.Add("conv_alpha=$conv_alpha")
|
125 |
+
[void]$ext_args.Add("algo=$algo")
|
126 |
+
[void]$ext_args.Add("dropout=$dropout")
|
127 |
+
}
|
128 |
+
|
129 |
+
if ($noise_offset -ne 0) {
|
130 |
+
[void]$ext_args.Add("--noise_offset=$noise_offset")
|
131 |
+
}
|
132 |
+
|
133 |
+
if ($stop_text_encoder_training -ne 0) {
|
134 |
+
[void]$ext_args.Add("--stop_text_encoder_training=$stop_text_encoder_training")
|
135 |
+
}
|
136 |
+
|
137 |
+
if ($save_state -eq 1) {
|
138 |
+
[void]$ext_args.Add("--save_state")
|
139 |
+
}
|
140 |
+
|
141 |
+
if ($resume) {
|
142 |
+
[void]$ext_args.Add("--resume=" + $resume)
|
143 |
+
}
|
144 |
+
|
145 |
+
if ($min_snr_gamma -ne 0) {
|
146 |
+
[void]$ext_args.Add("--min_snr_gamma=$min_snr_gamma")
|
147 |
+
}
|
148 |
+
|
149 |
+
if ($persistent_data_loader_workers) {
|
150 |
+
[void]$ext_args.Add("--persistent_data_loader_workers")
|
151 |
+
}
|
152 |
+
|
153 |
+
if ($use_wandb -eq 1) {
|
154 |
+
[void]$ext_args.Add("--log_with=all")
|
155 |
+
if ($wandb_api_key) {
|
156 |
+
[void]$ext_args.Add("--wandb_api_key=" + $wandb_api_key)
|
157 |
+
}
|
158 |
+
|
159 |
+
if ($log_tracker_name) {
|
160 |
+
[void]$ext_args.Add("--log_tracker_name=" + $log_tracker_name)
|
161 |
+
}
|
162 |
+
}
|
163 |
+
else {
|
164 |
+
[void]$ext_args.Add("--log_with=tensorboard")
|
165 |
+
}
|
166 |
+
|
167 |
+
# run train
|
168 |
+
python -m accelerate.commands.launch $launch_args --num_cpu_threads_per_process=8 "./sd-scripts/train_network.py" `
|
169 |
+
--enable_bucket `
|
170 |
+
--pretrained_model_name_or_path=$pretrained_model `
|
171 |
+
--train_data_dir=$train_data_dir `
|
172 |
+
--output_dir="./output" `
|
173 |
+
--logging_dir="./logs" `
|
174 |
+
--log_prefix=$output_name `
|
175 |
+
--resolution=$resolution `
|
176 |
+
--network_module=$network_module `
|
177 |
+
--max_train_epochs=$max_train_epoches `
|
178 |
+
--learning_rate=$lr `
|
179 |
+
--unet_lr=$unet_lr `
|
180 |
+
--text_encoder_lr=$text_encoder_lr `
|
181 |
+
--lr_scheduler=$lr_scheduler `
|
182 |
+
--lr_warmup_steps=$lr_warmup_steps `
|
183 |
+
--lr_scheduler_num_cycles=$lr_restart_cycles `
|
184 |
+
--network_dim=$network_dim `
|
185 |
+
--network_alpha=$network_alpha `
|
186 |
+
--output_name=$output_name `
|
187 |
+
--train_batch_size=$batch_size `
|
188 |
+
--save_every_n_epochs=$save_every_n_epochs `
|
189 |
+
--mixed_precision="fp16" `
|
190 |
+
--save_precision="fp16" `
|
191 |
+
--seed="1337" `
|
192 |
+
--cache_latents `
|
193 |
+
--prior_loss_weight=1 `
|
194 |
+
--max_token_length=225 `
|
195 |
+
--caption_extension=".txt" `
|
196 |
+
--save_model_as=$save_model_as `
|
197 |
+
--min_bucket_reso=$min_bucket_reso `
|
198 |
+
--max_bucket_reso=$max_bucket_reso `
|
199 |
+
--keep_tokens=$keep_tokens `
|
200 |
+
--xformers --shuffle_caption $ext_args
|
201 |
+
Write-Output "Train finished"
|
202 |
+
Read-Host | Out-Null ;
|
train.sh
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# LoRA train script by @Akegarasu
|
3 |
+
|
4 |
+
# Train data path | 设置训练用模型、图片
|
5 |
+
pretrained_model="./sd-models/model.ckpt" # base model path | 底模路径
|
6 |
+
is_v2_model=0 # SD2.0 model | SD2.0模型 2.0模型下 clip_skip 默认无效
|
7 |
+
parameterization=0 # parameterization | 参数化 本参数需要和 V2 参数同步使用 实验性功能
|
8 |
+
train_data_dir="./train/aki" # train dataset path | 训练数据集路径
|
9 |
+
reg_data_dir="" # directory for regularization images | 正则化数据集路径,默认不使用正则化图像。
|
10 |
+
|
11 |
+
# Network settings | 网络设置
|
12 |
+
network_module="networks.lora" # 在这里将会设置训练的网络种类,默认为 networks.lora 也就是 LoRA 训练。如果你想训练 LyCORIS(LoCon、LoHa) 等,则修改这个值为 lycoris.kohya
|
13 |
+
network_weights="" # pretrained weights for LoRA network | 若需要从已有的 LoRA 模型上继续训练,请填写 LoRA 模型路径。
|
14 |
+
network_dim=32 # network dim | 常用 4~128,不是越大越好
|
15 |
+
network_alpha=32 # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。
|
16 |
+
|
17 |
+
# Train related params | 训练相关参数
|
18 |
+
resolution="512,512" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。
|
19 |
+
batch_size=1 # batch size
|
20 |
+
max_train_epoches=10 # max train epoches | 最大训练 epoch
|
21 |
+
save_every_n_epochs=2 # save every n epochs | 每 N 个 epoch 保存一次
|
22 |
+
|
23 |
+
train_unet_only=0 # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启
|
24 |
+
train_text_encoder_only=0 # train Text Encoder only | 仅训练 文本编码器
|
25 |
+
stop_text_encoder_training=0 # stop text encoder training | 在第N步时停止训练文本编码器
|
26 |
+
|
27 |
+
noise_offset="0" # noise offset | 在训练中添加噪声偏移来改良生成非常暗或者非常亮的图像,如果启用,推荐参数为0.1
|
28 |
+
keep_tokens=0 # keep heading N tokens when shuffling caption tokens | 在随机打乱 tokens 时,保留前 N 个不变。
|
29 |
+
min_snr_gamma=0 # minimum signal-to-noise ratio (SNR) value for gamma-ray | 伽马射线事件的最小信噪比(SNR)值 默认为 0
|
30 |
+
|
31 |
+
# Learning rate | 学习率
|
32 |
+
lr="1e-4"
|
33 |
+
unet_lr="1e-4"
|
34 |
+
text_encoder_lr="1e-5"
|
35 |
+
lr_scheduler="cosine_with_restarts" # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "adafactor"
|
36 |
+
lr_warmup_steps=0 # warmup steps | 学习率预热步数,lr_scheduler 为 constant 或 adafactor 时该值需要设为0。
|
37 |
+
lr_restart_cycles=1 # cosine_with_restarts restart cycles | 余弦退火重启次数,仅在 lr_scheduler 为 cosine_with_restarts 时起效。
|
38 |
+
|
39 |
+
# Output settings | 输出设置
|
40 |
+
output_name="aki" # output model name | 模型保存名称
|
41 |
+
save_model_as="safetensors" # model save ext | 模型保存格式 ckpt, pt, safetensors
|
42 |
+
|
43 |
+
# Resume training state | 恢复训练设置
|
44 |
+
save_state=0 # save state | 保存训练状态 名称类似于 <output_name>-??????-state ?????? 表示 epoch 数
|
45 |
+
resume="" # resume from state | 从某个状态文件夹中恢复训练 需配合上方参数同时使用 由于规范文件限制 epoch 数和全局步数不会保存 即使恢复时它们也从 1 开始 与 network_weights 的具体实现操作并不一致
|
46 |
+
|
47 |
+
# 其他设置
|
48 |
+
min_bucket_reso=256 # arb min resolution | arb 最小分辨率
|
49 |
+
max_bucket_reso=1024 # arb max resolution | arb 最大分辨率
|
50 |
+
persistent_data_loader_workers=0 # persistent dataloader workers | 容易爆内存,保留加载训练集的worker,减少每个 epoch 之间的停顿
|
51 |
+
clip_skip=2 # clip skip | 玄学 一般用 2
|
52 |
+
|
53 |
+
# 优化器设置
|
54 |
+
optimizer_type="AdamW8bit" # Optimizer type | 优化器类型 默认为 AdamW8bit,可选:AdamW AdamW8bit Lion SGDNesterov SGDNesterov8bit DAdaptation AdaFactor
|
55 |
+
|
56 |
+
# LyCORIS 训练设置
|
57 |
+
algo="lora" # LyCORIS network algo | LyCORIS 网络算法 可选 lora、loha、lokr、ia3、dylora。lora即为locon
|
58 |
+
conv_dim=4 # conv dim | 类似于 network_dim,推荐为 4
|
59 |
+
conv_alpha=4 # conv alpha | 类似于 network_alpha,可以采用与 conv_dim 一致或者更小的值
|
60 |
+
dropout="0" # dropout | dropout 概率, 0 为不使用 dropout, 越大则 dropout 越多,推荐 0~0.5, LoHa/LoKr/(IA)^3暂时不支持
|
61 |
+
|
62 |
+
# 远程记录设置
|
63 |
+
use_wandb=0 # use_wandb | 启用wandb远程记录功能
|
64 |
+
wandb_api_key="" # wandb_api_key | API,通过https://wandb.ai/authorize获取
|
65 |
+
log_tracker_name="" # log_tracker_name | wandb项目名称,留空则为"network_train"
|
66 |
+
|
67 |
+
# ============= DO NOT MODIFY CONTENTS BELOW | 请勿修改下方内容 =====================
|
68 |
+
export HF_HOME="huggingface"
|
69 |
+
export TF_CPP_MIN_LOG_LEVEL=3
|
70 |
+
|
71 |
+
extArgs=()
|
72 |
+
launchArgs=()
|
73 |
+
if [[ $multi_gpu == 1 ]]; then launchArgs+=("--multi_gpu"); fi
|
74 |
+
|
75 |
+
if [[ $is_v2_model == 1 ]]; then
|
76 |
+
extArgs+=("--v2");
|
77 |
+
else
|
78 |
+
extArgs+=("--clip_skip $clip_skip");
|
79 |
+
fi
|
80 |
+
|
81 |
+
if [[ $parameterization == 1 ]]; then extArgs+=("--v_parameterization"); fi
|
82 |
+
|
83 |
+
if [[ $train_unet_only == 1 ]]; then extArgs+=("--network_train_unet_only"); fi
|
84 |
+
|
85 |
+
if [[ $train_text_encoder_only == 1 ]]; then extArgs+=("--network_train_text_encoder_only"); fi
|
86 |
+
|
87 |
+
if [[ $network_weights ]]; then extArgs+=("--network_weights $network_weights"); fi
|
88 |
+
|
89 |
+
if [[ $reg_data_dir ]]; then extArgs+=("--reg_data_dir $reg_data_dir"); fi
|
90 |
+
|
91 |
+
if [[ $optimizer_type ]]; then extArgs+=("--optimizer_type $optimizer_type"); fi
|
92 |
+
|
93 |
+
if [[ $optimizer_type == "DAdaptation" ]]; then extArgs+=("--optimizer_args decouple=True"); fi
|
94 |
+
|
95 |
+
if [[ $save_state == 1 ]]; then extArgs+=("--save_state"); fi
|
96 |
+
|
97 |
+
if [[ $resume ]]; then extArgs+=("--resume $resume"); fi
|
98 |
+
|
99 |
+
if [[ $persistent_data_loader_workers == 1 ]]; then extArgs+=("--persistent_data_loader_workers"); fi
|
100 |
+
|
101 |
+
if [[ $network_module == "lycoris.kohya" ]]; then
|
102 |
+
extArgs+=("--network_args conv_dim=$conv_dim conv_alpha=$conv_alpha algo=$algo dropout=$dropout")
|
103 |
+
fi
|
104 |
+
|
105 |
+
if [[ $stop_text_encoder_training -ne 0 ]]; then extArgs+=("--stop_text_encoder_training $stop_text_encoder_training"); fi
|
106 |
+
|
107 |
+
if [[ $noise_offset != "0" ]]; then extArgs+=("--noise_offset $noise_offset"); fi
|
108 |
+
|
109 |
+
if [[ $min_snr_gamma -ne 0 ]]; then extArgs+=("--min_snr_gamma $min_snr_gamma"); fi
|
110 |
+
|
111 |
+
if [[ $use_wandb == 1 ]]; then
|
112 |
+
extArgs+=("--log_with=all")
|
113 |
+
else
|
114 |
+
extArgs+=("--log_with=tensorboard")
|
115 |
+
fi
|
116 |
+
|
117 |
+
if [[ $wandb_api_key ]]; then extArgs+=("--wandb_api_key $wandb_api_key"); fi
|
118 |
+
|
119 |
+
if [[ $log_tracker_name ]]; then extArgs+=("--log_tracker_name $log_tracker_name"); fi
|
120 |
+
|
121 |
+
python -m accelerate.commands.launch ${launchArgs[@]} --num_cpu_threads_per_process=8 "./sd-scripts/train_network.py" \
|
122 |
+
--enable_bucket \
|
123 |
+
--pretrained_model_name_or_path=$pretrained_model \
|
124 |
+
--train_data_dir=$train_data_dir \
|
125 |
+
--output_dir="./output" \
|
126 |
+
--logging_dir="./logs" \
|
127 |
+
--log_prefix=$output_name \
|
128 |
+
--resolution=$resolution \
|
129 |
+
--network_module=$network_module \
|
130 |
+
--max_train_epochs=$max_train_epoches \
|
131 |
+
--learning_rate=$lr \
|
132 |
+
--unet_lr=$unet_lr \
|
133 |
+
--text_encoder_lr=$text_encoder_lr \
|
134 |
+
--lr_scheduler=$lr_scheduler \
|
135 |
+
--lr_warmup_steps=$lr_warmup_steps \
|
136 |
+
--lr_scheduler_num_cycles=$lr_restart_cycles \
|
137 |
+
--network_dim=$network_dim \
|
138 |
+
--network_alpha=$network_alpha \
|
139 |
+
--output_name=$output_name \
|
140 |
+
--train_batch_size=$batch_size \
|
141 |
+
--save_every_n_epochs=$save_every_n_epochs \
|
142 |
+
--mixed_precision="fp16" \
|
143 |
+
--save_precision="fp16" \
|
144 |
+
--seed="1337" \
|
145 |
+
--cache_latents \
|
146 |
+
--prior_loss_weight=1 \
|
147 |
+
--max_token_length=225 \
|
148 |
+
--caption_extension=".txt" \
|
149 |
+
--save_model_as=$save_model_as \
|
150 |
+
--min_bucket_reso=$min_bucket_reso \
|
151 |
+
--max_bucket_reso=$max_bucket_reso \
|
152 |
+
--keep_tokens=$keep_tokens \
|
153 |
+
--xformers --shuffle_caption ${extArgs[@]}
|
train_by_toml.ps1
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA train script by @Akegarasu
|
2 |
+
|
3 |
+
$multi_gpu = 0 # multi gpu | ���Կ�ѵ�� �ò����������Կ��� >= 2 ʹ��
|
4 |
+
$config_file = "./toml/default.toml" # config_file | ʹ��toml�ļ�ָ��ѵ������
|
5 |
+
$sample_prompts = "./toml/sample_prompts.txt" # sample_prompts | ����prompts�ļ�,���������ò�������
|
6 |
+
$utf8 = 1 # utf8 | ʹ��utf-8�����ȡtoml����utf-8�����д�ġ������ĵ�toml���뿪��
|
7 |
+
|
8 |
+
|
9 |
+
# ============= DO NOT MODIFY CONTENTS BELOW | �������·����� =====================
|
10 |
+
|
11 |
+
# Activate python venv
|
12 |
+
.\venv\Scripts\activate
|
13 |
+
|
14 |
+
$Env:HF_HOME = "huggingface"
|
15 |
+
|
16 |
+
$ext_args = [System.Collections.ArrayList]::new()
|
17 |
+
$launch_args = [System.Collections.ArrayList]::new()
|
18 |
+
|
19 |
+
if ($multi_gpu) {
|
20 |
+
[void]$launch_args.Add("--multi_gpu")
|
21 |
+
}
|
22 |
+
if ($utf8 -eq 1) {
|
23 |
+
$Env:PYTHONUTF8 = 1
|
24 |
+
}
|
25 |
+
|
26 |
+
# run train
|
27 |
+
python -m accelerate.commands.launch $launch_args --num_cpu_threads_per_process=8 "./sd-scripts/train_network.py" `
|
28 |
+
--config_file=$config_file `
|
29 |
+
--sample_prompts=$sample_prompts `
|
30 |
+
$ext_args
|
31 |
+
|
32 |
+
Write-Output "Train finished"
|
33 |
+
Read-Host | Out-Null ;
|
train_by_toml.sh
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# LoRA train script by @Akegarasu
|
3 |
+
|
4 |
+
multi_gpu=0 # multi gpu | 多显卡训练 该参数仅限在显卡数 >= 2 使用
|
5 |
+
config_file="./toml/default.toml" # config_file | 使用toml文件指定训练参数
|
6 |
+
sample_prompts="./toml/sample_prompts.txt" # sample_prompts | 采样prompts文件,留空则不启用采样功能
|
7 |
+
utf8=1 # utf8 | 使用utf-8编码读取toml;以utf-8编码编写的、含中文的toml必须开启
|
8 |
+
|
9 |
+
# ============= DO NOT MODIFY CONTENTS BELOW | 请勿修改下方内容 =====================
|
10 |
+
|
11 |
+
export HF_HOME="huggingface"
|
12 |
+
export TF_CPP_MIN_LOG_LEVEL=3
|
13 |
+
|
14 |
+
extArgs=()
|
15 |
+
launchArgs=()
|
16 |
+
|
17 |
+
if [[ $multi_gpu == 1 ]]; then launchArgs+=("--multi_gpu"); fi
|
18 |
+
if [[ $utf8 == 1 ]]; then export PYTHONUTF8=1; fi
|
19 |
+
|
20 |
+
# run train
|
21 |
+
python -m accelerate.commands.launch ${launchArgs[@]} --num_cpu_threads_per_process=8 "./sd-scripts/train_network.py" \
|
22 |
+
--config_file=$config_file \
|
23 |
+
--sample_prompts=$sample_prompts \
|
24 |
+
${extArgs[@]}
|