import pandas as pd import datetime import numpy as np import datetime import pytz import warnings warnings.filterwarnings('ignore') import argparse #this function put on the good format the date from the time series dataset def to_datetime(my_date,set_hour = False): my_date = str(my_date) set_month= {'Jan': '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04','May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'} month = int(my_date[4:6]) day = int(my_date[6:8]) year = int(my_date[0:4]) if set_hour : hour = 0 else : hour = int(my_date[8:10]) unaware = datetime.datetime(year, month, day, hour) final_date = pytz.utc.localize(unaware) return final_date def to_datetimeNLP(my_date,set_hour = False): my_date = str(my_date) set_month= {'Jan': '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04','May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'} month = int(my_date[5:7]) day = int(my_date[8:10]) year = int(my_date[0:4]) if set_hour : hour = 0 else : hour = int(my_date[11:13]) hour = hour - (hour%3) unaware = datetime.datetime(year, month, day,hour) final_date = pytz.utc.localize(unaware) return final_date #the function take a time series dataframe (df) and return an other dataset with all the data put in one parameter (Window) except the date and the label wich are in different columns #window size is equal to the size of the window def window_creation(df,size_window,timestamp_colum): good_row = list(df.columns) good_row.remove(timestamp_colum) window_df = df[good_row] window_df = window_df.reset_index() window_df = window_df.drop(columns=['index']) window_df = window_df.tail(size_window) window_data = window_df.to_numpy() return window_data #the function that link the NLP data and the time series data for French dataset #text_data is the french NLP dataset on dataframe format #crisis_knowledge is a dataframe from the crisis_knowledge CSV #time_data is the path to the repertory with time series data #window size is equal to the size of the window #fillNA is the value to fill the missing value def linker(text_data : object,crisis_knowledge : object,my_features : str,window_size : int,label_column_1 : str,label_column_2 : str, date_column : str, fillNA : int) -> object : #we join crisis knowledge and NLP data on the name of the crisis text_data = text_data.join(crisis_knowledge.set_index('Crisis Name'), on='event', validate='m:1') text_data['date'] = list(map(to_datetimeNLP,list(text_data['created_at']))) #features to keep for Time series features =['numer_sta','date','pmer','tend','ff','t','u','n'] features_clean =['pmer','tend','ff','t','u','n'] df_return = pd.DataFrame({'Date' : [],'Text' : [], 'Window' : [], 'label' : []}) list_of_date = [] list_of_text = [] list_of_window = [] list_of_crisis_type = [] list_of_label_uti = [] list_of_label_urg = [] list_of_label_int = [] list_of_label = [] #replace missing values and replace label by number my_features = my_features[features].fillna(fillNA).replace({'mq': fillNA, 'No_Crisis': 0, 'Crisis': 1, 'Ecological': 1, 'Sudden': 2}) for clean_f in features_clean : my_features[clean_f] = pd.to_numeric(my_features[clean_f]) my_features[clean_f] = (my_features[clean_f] - my_features[clean_f].min()) / (my_features[clean_f].max() - my_features[clean_f].min()) #this take from time series data the list of the id for each station set_of_station = set(list(my_features['numer_sta'])) my_features['date'] = list(map(to_datetime,list(my_features['date']))) set_of_date = set(list(my_features['date'])) dict_by_station = {} i = 0 for index,text_line in text_data.iterrows(): #if the NLP date can be found in the time series date if text_line['date'] in set_of_date : list_of_station = eval(text_line['Related station']) for i in range(len(list_of_station)): list_of_station[i] = int(list_of_station[i]) #station related to the crisis current_station = my_features[my_features['numer_sta'] == list_of_station[0]] current_station = current_station.sort_values(by=['date']) good_date = current_station[current_station['date'] < text_line['date']] list_of_date.append(text_line['date']) list_of_text.append(text_line['text']) list_of_crisis_type.append(text_line['type_crisis']) window = window_creation(good_date,window_size,'date') list_of_window.append(window) list_of_label_uti.append(text_line['utility']) list_of_label_int.append(text_line['humanitarian']) list_of_label_urg.append(text_line['urgency']) if text_line['utility'] == 'Message-NonUtilisable' : list_of_label.append('Not_Crisis_period') else: if text_line['type_crisis'] == 'Flood' or text_line['type_crisis'] == 'Hurricane' or text_line['type_crisis'] == 'Storms': list_of_label.append('Ecological_crisis') else: list_of_label.append('Sudden_Crisis') df_return = pd.DataFrame({'Date' : list_of_date,'Text' : list_of_text,'Crisis_Type' : list_of_crisis_type , 'Window' : list_of_window, 'intention' : list_of_label_int, 'urgency' : list_of_label_urg, 'utility' : list_of_label_uti , 'label' : list_of_label}) return df_return parser = argparse.ArgumentParser() parser.add_argument("-w", "--window_size",type = int, default = 16, help="size (in number of days) of our daily time series data") parser.add_argument("-o", "--output_file",type = str, default = './Multi_modal_dataset/CrisisTS_FR_Personnalized.csv', help="name of your output file") args = parser.parse_args() Knowledge = pd.read_csv('./utils/crisis_knowledge_fr.csv',sep="\t") nlp_csv = pd.read_csv('./Textual_Data/French_Corpus/Kozlwoski.csv',sep ='\t') time_series = pd.read_csv('./Time_Series/FrenchTS/french_time_series_MERGED.csv',sep = '\t') nlp_csv = nlp_csv.dropna(subset=['date']) nlp_csv = nlp_csv.dropna(subset=['humanitarian']) multi_modal_dataset = linker(nlp_csv ,Knowledge ,time_series , args.window_size,, 'Crisis_Predictability', 'label', 'date', 0) print('Done !') multi_modal_test_data.to_csv(args.output_file,sep = '\t')