File size: 24,770 Bytes
52ffd21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c4a84
 
 
 
 
 
 
 
 
 
 
 
 
52ffd21
 
 
 
 
 
 
74518dd
 
 
 
 
 
 
 
8b98cdf
 
 
61bda76
 
fcbb291
61bda76
 
 
 
 
8655fe8
61bda76
 
9292067
 
 
 
 
93a52a0
9292067
 
 
8c9bf28
 
 
61bda76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c9bf28
 
61bda76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c9bf28
 
 
 
 
 
 
 
 
61bda76
a6c88c1
 
 
 
 
 
 
61bda76
 
 
 
 
 
48cabb9
61bda76
 
 
 
 
 
 
 
ef16925
a6c88c1
61bda76
09212e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61bda76
 
ef16925
61bda76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9292067
ef16925
61bda76
 
9292067
61bda76
 
 
ef16925
 
 
 
 
 
 
 
 
 
 
 
 
61bda76
 
 
 
 
 
48cabb9
61bda76
 
 
 
 
 
 
ef16925
61bda76
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
---
dataset_info:
  features:
  - name: label
    dtype: string
  - name: identifier
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 71882488
    num_examples: 82603
  - name: test
    num_bytes: 405966
    num_examples: 1219
  download_size: 31200331
  dataset_size: 72288454
source_datasets:
- Tonic/climate-guard-thinking_data_nocomment_qwen_toxic_agent
- Tonic/climate-guard-synthetic_data_qwen_toxic_agent
- Tonic/climate-guard-thinking_data_nocomment_intern_toxic_agent
- Tonic/climate-guard-thinking_data_nocomment_phi4_toxic_agent
- Tonic/climate-guard-thinking_data_nocomment_yi_toxic_agent
- Tonic/climate-guard-synthetic_data_nocomment_yi_toxic_agent
- climate_fever
- QuotaClimat/frugalaichallenge-text-train
- takara-ai/QuotaClimat



configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: mit
task_categories:
- text-classification
- zero-shot-classification
language:
- en
tags:
- climate
pretty_name: Climate Guard Toxic Agent
size_categories:
- 10K<n<100K
---

# Climate Guard - Toxic Agent - Dataset

## Dataset Description

This dataset is a comprehensive consolidation of multiple climate-related datasets, focusing on climate disinformation and factual climate information. It combines and standardizes data from various high-quality sources to create a robust resource for climate-related text classification tasks.

### Dataset Sources
The dataset incorporates data from the following sources:
- Tonic Climate Guard Series:
  - [climate-guard-thinking_data_nocomment_qwen_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-thinking_data_nocomment_qwen_toxic_agent)
  - [climate-guard-synthetic_data_qwen_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-synthetic_data_qwen_toxic_agent)
  - [climate-guard-thinking_data_nocomment_intern_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-thinking_data_nocomment_intern_toxic_agent)
  - [climate-guard-thinking_data_nocomment_phi4_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-thinking_data_nocomment_phi4_toxic_agent)
  - [climate-guard-thinking_data_nocomment_yi_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-thinking_data_nocomment_yi_toxic_agent)
  - [climate-guard-synthetic_data_yi_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-synthetic_data_yi_toxic_agent)
- [QuotaClimat/frugalaichallenge-text-train](https://huggingface.co/datasets/QuotaClimat/frugalaichallenge-text-train)
- [Climate FEVER dataset](https://huggingface.co/datasets/climate_fever)
- [Quota Climat dataset (12% random sample)](https://huggingface.co/datasets/takara-ai/QuotaClimat)

<details>
  <summary><h3>Data Processing - 👇🏻Click to expand</h3></summary> 

The dataset underwent several processing steps to ensure quality and consistency:

1. **Text Cleaning**:
   - Removed responses starting with apology phrases ("I'm sorry", "I am sorry", "I apologize", "Given the directive")
   - Cleaned text between "---" markers
   - Standardized text formatting

2. **Label Standardization**:
   - Maintained consistent label format across all sources
   - Special handling for '0_not_relevant' labels from specific sources

3. **Source Tracking**:
   - Added source identifiers to track data origin
   - Preserved dataset provenance information

</details>

## Dataset Structure

The dataset is split into training and testing sets with the following features:

```python
DatasetDict({
    'train': Dataset({
        features: ['identifier', 'text', 'label'],
        num_examples: <num_examples>
    }),
    'test': Dataset({
        features: ['identifier', 'text', 'label'],
        num_examples: <num_examples>
    })
})
```

### Features:

- **identifier**: String identifying the source dataset
- **text**: The main text content
- **label**: Classification label

### Labels:

  - `0_not_relevant`: No relevant claim detected or claims that don't fit other categories
  - `1_not_happening`: Claims denying the occurrence of global warming and its effects - Global warming is not happening. Climate change is NOT leading to melting ice (such as glaciers, sea ice, and permafrost), increased extreme weather, or rising sea levels. Cold weather also shows that climate change is not happening
  - `2_not_human`: Claims denying human responsibility in climate change - Greenhouse gases from humans are not the causing climate change.
  - `3_not_bad`: Claims minimizing or denying negative impacts of climate change - The impacts of climate change will not be bad and might even be beneficial.
  - `4_solutions_harmful_unnecessary`: Claims against climate solutions - Climate solutions are harmful or unnecessary
  - `5_science_is_unreliable`: Claims questioning climate science validity - Climate science is uncertain, unsound, unreliable, or biased.
  - `6_proponents_biased`: Claims attacking climate scientists and activists - Climate scientists and proponents of climate action are alarmist, biased, wrong, hypocritical, corrupt, and/or politically motivated.
  - `7_fossil_fuels_needed`: Claims promoting fossil fuel necessity - We need fossil fuels for economic growth, prosperity, and to maintain our standard of living.


![Label Distribution Train](label_distribution_train.png)

![Label Source Heatmap Train](label_source_heatmap_train.png)

![Source Distribution Train](source_distribution_train.png)


## Usage

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("Tonic/Climate-Guard-Toxic-Agent")

# Access training data
train_data = dataset['train']

# Access test data
test_data = dataset['test']
```

<details>
  <summary><h3> Dataset Statistics - 👇🏻Click to expand </h3> </summary>

```json
{
  "basic_stats": {
    "total_samples": {
      "train": 82603,
      "test": 1219
    },
    "label_distribution": {
      "train": {
        "3_not_bad": 11011,
        "4_solutions_harmful_unnecessary": 11597,
        "5_science_is_unreliable": 14609,
        "6_proponents_biased": 8494,
        "7_fossil_fuels_needed": 10585,
        "1_not_happening": 11380,
        "2_not_human": 11772,
        "0_not_relevant": 3155
      },
      "test": {
        "6_proponents_biased": 139,
        "2_not_human": 137,
        "3_not_bad": 97,
        "1_not_happening": 154,
        "5_science_unreliable": 160,
        "4_solutions_harmful_unnecessary": 160,
        "7_fossil_fuels_needed": 65,
        "0_not_relevant": 307
      }
    },
    "source_distribution": {
      "train": {
        "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1546,
        "climate-guard-synthetic_data_qwen_toxic_agent": 32209,
        "climate-guard-thinking_data_nocomment_intern_toxic_agent": 3297,
        "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 28510,
        "climate-guard-thinking_data_nocomment_yi_toxic_agent": 1687,
        "climate-guard-synthetic_data_yi_toxic_agent": 3789,
        "frugal_challenge_train": 1311,
        "climate_fever": 654,
        "quota_climat": 9600
      },
      "test": {
        "frugal_challenge_test": 1219
      }
    },
    "label_source_incidence": {
      "train": {
        "counts": {
          "3_not_bad": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 207,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4116,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 478,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4332,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 218,
            "climate-guard-synthetic_data_yi_toxic_agent": 496,
            "quota_climat": 1164
          },
          "4_solutions_harmful_unnecessary": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 223,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4760,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 473,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4112,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 236,
            "climate-guard-synthetic_data_yi_toxic_agent": 557,
            "quota_climat": 1236
          },
          "5_science_is_unreliable": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 300,
            "climate-guard-synthetic_data_qwen_toxic_agent": 5454,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 604,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 6091,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 318,
            "climate-guard-synthetic_data_yi_toxic_agent": 656,
            "quota_climat": 1186
          },
          "6_proponents_biased": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 167,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4535,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 389,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 1389,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 234,
            "climate-guard-synthetic_data_yi_toxic_agent": 544,
            "quota_climat": 1236
          },
          "7_fossil_fuels_needed": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 205,
            "climate-guard-synthetic_data_qwen_toxic_agent": 3979,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 424,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4143,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 217,
            "climate-guard-synthetic_data_yi_toxic_agent": 476,
            "quota_climat": 1141
          },
          "1_not_happening": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 227,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4700,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 466,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 3976,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 236,
            "climate-guard-synthetic_data_yi_toxic_agent": 548,
            "quota_climat": 1227
          },
          "2_not_human": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 217,
            "climate-guard-synthetic_data_qwen_toxic_agent": 4665,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 463,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4467,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 228,
            "climate-guard-synthetic_data_yi_toxic_agent": 512,
            "quota_climat": 1220
          },
          "0_not_relevant": {
            "frugal_challenge_train": 1311,
            "climate_fever": 654,
            "quota_climat": 1190
          }
        },
        "percentages": {
          "3_not_bad": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.879938243574607,
            "climate-guard-synthetic_data_qwen_toxic_agent": 37.38080101716466,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.3411134320225235,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 39.34247570611207,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 1.979838343474707,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.504586322768141,
            "quota_climat": 10.571246934883298
          },
          "4_solutions_harmful_unnecessary": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9229110976976806,
            "climate-guard-synthetic_data_qwen_toxic_agent": 41.04509787013883,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.07864102785203,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 35.45744589117875,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.0350090540657066,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.802966284383892,
            "quota_climat": 10.657928774683107
          },
          "5_science_is_unreliable": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 2.053528646724622,
            "climate-guard-synthetic_data_qwen_toxic_agent": 37.33315079745363,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.134437675405572,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 41.693476623998905,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.176740365528099,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.490382640837839,
            "quota_climat": 8.118283250051338
          },
          "6_proponents_biased": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9660937132093244,
            "climate-guard-synthetic_data_qwen_toxic_agent": 53.390628679067575,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.579703319990582,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 16.352719566753002,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.7548858017424065,
            "climate-guard-synthetic_data_yi_toxic_agent": 6.404520838238757,
            "quota_climat": 14.551448080998352
          },
          "7_fossil_fuels_needed": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9367028814359941,
            "climate-guard-synthetic_data_qwen_toxic_agent": 37.590930562116206,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.005668398677374,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 39.140292867264996,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.050070854983467,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.496929617383089,
            "quota_climat": 10.779404818138875
          },
          "1_not_happening": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9947275922671353,
            "climate-guard-synthetic_data_qwen_toxic_agent": 41.30052724077329,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.094903339191564,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 34.93848857644991,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.0738137082601056,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.815465729349736,
            "quota_climat": 10.782073813708259
          },
          "2_not_human": {
            "climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.8433571185864763,
            "climate-guard-synthetic_data_qwen_toxic_agent": 39.627930682976555,
            "climate-guard-thinking_data_nocomment_intern_toxic_agent": 3.933061501868841,
            "climate-guard-thinking_data_nocomment_phi4_toxic_agent": 37.94597349643221,
            "climate-guard-thinking_data_nocomment_yi_toxic_agent": 1.9367991845056065,
            "climate-guard-synthetic_data_yi_toxic_agent": 4.349303431872239,
            "quota_climat": 10.36357458375807
          },
          "0_not_relevant": {
            "frugal_challenge_train": 41.55309033280507,
            "climate_fever": 20.72900158478605,
            "quota_climat": 37.717908082408876
          }
        }
      },
      "test": {
        "counts": {
          "6_proponents_biased": {
            "frugal_challenge_test": 139
          },
          "2_not_human": {
            "frugal_challenge_test": 137
          },
          "3_not_bad": {
            "frugal_challenge_test": 97
          },
          "1_not_happening": {
            "frugal_challenge_test": 154
          },
          "5_science_unreliable": {
            "frugal_challenge_test": 160
          },
          "4_solutions_harmful_unnecessary": {
            "frugal_challenge_test": 160
          },
          "7_fossil_fuels_needed": {
            "frugal_challenge_test": 65
          },
          "0_not_relevant": {
            "frugal_challenge_test": 307
          }
        },
        "percentages": {
          "6_proponents_biased": {
            "frugal_challenge_test": 100.0
          },
          "2_not_human": {
            "frugal_challenge_test": 100.0
          },
          "3_not_bad": {
            "frugal_challenge_test": 100.0
          },
          "1_not_happening": {
            "frugal_challenge_test": 100.0
          },
          "5_science_unreliable": {
            "frugal_challenge_test": 100.0
          },
          "4_solutions_harmful_unnecessary": {
            "frugal_challenge_test": 100.0
          },
          "7_fossil_fuels_needed": {
            "frugal_challenge_test": 100.0
          },
          "0_not_relevant": {
            "frugal_challenge_test": 100.0
          }
        }
      }
    }
  },
  "text_stats": {
    "train": {
      "avg_length": 111.46446254978633,
      "median_length": 77.0,
      "std_length": 114.89517560291323,
      "min_length": 0,
      "max_length": 965,
      "total_words": 9207299
    },
    "test": {
      "avg_length": 46.73502871205906,
      "median_length": 37.0,
      "std_length": 37.74882897285664,
      "min_length": 4,
      "max_length": 454,
      "total_words": 56970
    }
  },
  "vocabulary_stats": {
    "train": {
      "vocabulary_size": 70216,
      "total_tokens": 9207299,
      "unique_tokens_ratio": 0.007626123578695554
    },
    "test": {
      "vocabulary_size": 10676,
      "total_tokens": 56970,
      "unique_tokens_ratio": 0.18739687554853432
    }
  },
  "label_patterns": {
    "train": {
      "dominant_sources_per_label": {
        "3_not_bad": {
          "main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
          "percentage": 39.34247570611207
        },
        "4_solutions_harmful_unnecessary": {
          "main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
          "percentage": 41.04509787013883
        },
        "5_science_is_unreliable": {
          "main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
          "percentage": 41.693476623998905
        },
        "6_proponents_biased": {
          "main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
          "percentage": 53.390628679067575
        },
        "7_fossil_fuels_needed": {
          "main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
          "percentage": 39.140292867264996
        },
        "1_not_happening": {
          "main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
          "percentage": 41.30052724077329
        },
        "2_not_human": {
          "main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
          "percentage": 39.627930682976555
        },
        "0_not_relevant": {
          "main_source": "frugal_challenge_train",
          "percentage": 41.55309033280507
        }
      },
      "label_diversity_per_source": {
        "climate-guard-thinking_data_nocomment_qwen_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.9322811905174009
        },
        "climate-guard-synthetic_data_qwen_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.9412569930894747
        },
        "climate-guard-thinking_data_nocomment_intern_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.9376010166020219
        },
        "climate-guard-thinking_data_nocomment_phi4_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.8879859048798708
        },
        "climate-guard-thinking_data_nocomment_yi_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.9375508611483394
        },
        "climate-guard-synthetic_data_yi_toxic_agent": {
          "unique_labels": 7,
          "entropy": 1.941023858626436
        },
        "frugal_challenge_train": {
          "unique_labels": 1,
          "entropy": 0.0
        },
        "climate_fever": {
          "unique_labels": 1,
          "entropy": 0.0
        },
        "quota_climat": {
          "unique_labels": 8,
          "entropy": 2.0790581410796753
        }
      },
      "source_bias_analysis": {
        "climate-guard-thinking_data_nocomment_qwen_toxic_agent": {
          "kl_divergence": 0.0395716559443841
        },
        "climate-guard-synthetic_data_qwen_toxic_agent": {
          "kl_divergence": 0.045281501914864145
        },
        "climate-guard-thinking_data_nocomment_intern_toxic_agent": {
          "kl_divergence": 0.039965634146765544
        },
        "climate-guard-thinking_data_nocomment_phi4_toxic_agent": {
          "kl_divergence": 0.06259067672088119
        },
        "climate-guard-thinking_data_nocomment_yi_toxic_agent": {
          "kl_divergence": 0.044481091436281824
        },
        "climate-guard-synthetic_data_yi_toxic_agent": {
          "kl_divergence": 0.04597417615615136
        },
        "frugal_challenge_train": {
          "kl_divergence": 3.265057483962074
        },
        "climate_fever": {
          "kl_divergence": 3.265057483962074
        },
        "quota_climat": {
          "kl_divergence": 0.07482175184545027
        }
      }
    },
    "test": {
      "dominant_sources_per_label": {
        "6_proponents_biased": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "2_not_human": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "3_not_bad": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "1_not_happening": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "5_science_unreliable": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "4_solutions_harmful_unnecessary": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "7_fossil_fuels_needed": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        },
        "0_not_relevant": {
          "main_source": "frugal_challenge_test",
          "percentage": 100.0
        }
      },
      "label_diversity_per_source": {
        "frugal_challenge_test": {
          "unique_labels": 8,
          "entropy": 1.9926606322233085
        }
      },
      "source_bias_analysis": {
        "frugal_challenge_test": {
          "kl_divergence": 0.0
        }
      }
    }
  }
}
```
</details>

## Intended Uses

This dataset is designed for:
- Training climate disinformation detection models
- Developing fact-checking systems
- Analyzing climate-related discourse patterns
- Research in climate communication

## Limitations

- The dataset may contain some inherent biases from source datasets
- Some sources are synthetic or AI-generated data
- Language is primarily English
- Coverage may vary across different types of climate disinformation

## Citation

If you use this dataset, please cite both this consolidated version and the original source datasets:

```bibtex
@dataset{consolidated_climate_dataset,
    author = {Joseph Pollack},
    title = {Climate Guard Toxic Agent - Dataset},
    year = {2024},
    publisher = {Hugging Face},
    url = {https://huggingface.co/datasets/Tonic/Climate-Guard-Toxic-Agent}
}
```

```bibtex
@article{coan2021computer,
  title={Computer-assisted classification of contrarian claims about climate change},
  author={Coan, Travis G and Boussalis, Constantine and Cook, John and others},
  journal={Scientific Reports},
  volume={11},
  number={22320},
  year={2021},
  publisher={Nature Publishing Group},
  doi={10.1038/s41598-021-01714-4}
}
```

## License

This dataset is released under the same licenses as its source datasets. Please refer to individual source datasets for specific license information.

## Contact

For questions or issues regarding this dataset, [please open a community comment or descriptive PR](https://huggingface.co/datasets/Tonic/Climate-Guard-Toxic-Agent/discussions).

## Acknowledgments

We thank the creators and maintainers of all source datasets used in this consolidation:
- The Tonic AI team
- QuotaClimat team
- Climate FEVER dataset creators
- Takara AI team
- All other contributors to the source datasets

## Updates and Maintenance

This dataset will be periodically updated to:
- Fix any identified issues
- Include new relevant source datasets
- Improve data quality and consistency

Last updated: [Current Date]
Version: 1.0.0