File size: 24,770 Bytes
52ffd21 96c4a84 52ffd21 74518dd 8b98cdf 61bda76 fcbb291 61bda76 8655fe8 61bda76 9292067 93a52a0 9292067 8c9bf28 61bda76 8c9bf28 61bda76 8c9bf28 61bda76 a6c88c1 61bda76 48cabb9 61bda76 ef16925 a6c88c1 61bda76 09212e6 61bda76 ef16925 61bda76 9292067 ef16925 61bda76 9292067 61bda76 ef16925 61bda76 48cabb9 61bda76 ef16925 61bda76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
---
dataset_info:
features:
- name: label
dtype: string
- name: identifier
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 71882488
num_examples: 82603
- name: test
num_bytes: 405966
num_examples: 1219
download_size: 31200331
dataset_size: 72288454
source_datasets:
- Tonic/climate-guard-thinking_data_nocomment_qwen_toxic_agent
- Tonic/climate-guard-synthetic_data_qwen_toxic_agent
- Tonic/climate-guard-thinking_data_nocomment_intern_toxic_agent
- Tonic/climate-guard-thinking_data_nocomment_phi4_toxic_agent
- Tonic/climate-guard-thinking_data_nocomment_yi_toxic_agent
- Tonic/climate-guard-synthetic_data_nocomment_yi_toxic_agent
- climate_fever
- QuotaClimat/frugalaichallenge-text-train
- takara-ai/QuotaClimat
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: mit
task_categories:
- text-classification
- zero-shot-classification
language:
- en
tags:
- climate
pretty_name: Climate Guard Toxic Agent
size_categories:
- 10K<n<100K
---
# Climate Guard - Toxic Agent - Dataset
## Dataset Description
This dataset is a comprehensive consolidation of multiple climate-related datasets, focusing on climate disinformation and factual climate information. It combines and standardizes data from various high-quality sources to create a robust resource for climate-related text classification tasks.
### Dataset Sources
The dataset incorporates data from the following sources:
- Tonic Climate Guard Series:
- [climate-guard-thinking_data_nocomment_qwen_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-thinking_data_nocomment_qwen_toxic_agent)
- [climate-guard-synthetic_data_qwen_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-synthetic_data_qwen_toxic_agent)
- [climate-guard-thinking_data_nocomment_intern_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-thinking_data_nocomment_intern_toxic_agent)
- [climate-guard-thinking_data_nocomment_phi4_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-thinking_data_nocomment_phi4_toxic_agent)
- [climate-guard-thinking_data_nocomment_yi_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-thinking_data_nocomment_yi_toxic_agent)
- [climate-guard-synthetic_data_yi_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-synthetic_data_yi_toxic_agent)
- [QuotaClimat/frugalaichallenge-text-train](https://huggingface.co/datasets/QuotaClimat/frugalaichallenge-text-train)
- [Climate FEVER dataset](https://huggingface.co/datasets/climate_fever)
- [Quota Climat dataset (12% random sample)](https://huggingface.co/datasets/takara-ai/QuotaClimat)
<details>
<summary><h3>Data Processing - 👇🏻Click to expand</h3></summary>
The dataset underwent several processing steps to ensure quality and consistency:
1. **Text Cleaning**:
- Removed responses starting with apology phrases ("I'm sorry", "I am sorry", "I apologize", "Given the directive")
- Cleaned text between "---" markers
- Standardized text formatting
2. **Label Standardization**:
- Maintained consistent label format across all sources
- Special handling for '0_not_relevant' labels from specific sources
3. **Source Tracking**:
- Added source identifiers to track data origin
- Preserved dataset provenance information
</details>
## Dataset Structure
The dataset is split into training and testing sets with the following features:
```python
DatasetDict({
'train': Dataset({
features: ['identifier', 'text', 'label'],
num_examples: <num_examples>
}),
'test': Dataset({
features: ['identifier', 'text', 'label'],
num_examples: <num_examples>
})
})
```
### Features:
- **identifier**: String identifying the source dataset
- **text**: The main text content
- **label**: Classification label
### Labels:
- `0_not_relevant`: No relevant claim detected or claims that don't fit other categories
- `1_not_happening`: Claims denying the occurrence of global warming and its effects - Global warming is not happening. Climate change is NOT leading to melting ice (such as glaciers, sea ice, and permafrost), increased extreme weather, or rising sea levels. Cold weather also shows that climate change is not happening
- `2_not_human`: Claims denying human responsibility in climate change - Greenhouse gases from humans are not the causing climate change.
- `3_not_bad`: Claims minimizing or denying negative impacts of climate change - The impacts of climate change will not be bad and might even be beneficial.
- `4_solutions_harmful_unnecessary`: Claims against climate solutions - Climate solutions are harmful or unnecessary
- `5_science_is_unreliable`: Claims questioning climate science validity - Climate science is uncertain, unsound, unreliable, or biased.
- `6_proponents_biased`: Claims attacking climate scientists and activists - Climate scientists and proponents of climate action are alarmist, biased, wrong, hypocritical, corrupt, and/or politically motivated.
- `7_fossil_fuels_needed`: Claims promoting fossil fuel necessity - We need fossil fuels for economic growth, prosperity, and to maintain our standard of living.



## Usage
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("Tonic/Climate-Guard-Toxic-Agent")
# Access training data
train_data = dataset['train']
# Access test data
test_data = dataset['test']
```
<details>
<summary><h3> Dataset Statistics - 👇🏻Click to expand </h3> </summary>
```json
{
"basic_stats": {
"total_samples": {
"train": 82603,
"test": 1219
},
"label_distribution": {
"train": {
"3_not_bad": 11011,
"4_solutions_harmful_unnecessary": 11597,
"5_science_is_unreliable": 14609,
"6_proponents_biased": 8494,
"7_fossil_fuels_needed": 10585,
"1_not_happening": 11380,
"2_not_human": 11772,
"0_not_relevant": 3155
},
"test": {
"6_proponents_biased": 139,
"2_not_human": 137,
"3_not_bad": 97,
"1_not_happening": 154,
"5_science_unreliable": 160,
"4_solutions_harmful_unnecessary": 160,
"7_fossil_fuels_needed": 65,
"0_not_relevant": 307
}
},
"source_distribution": {
"train": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1546,
"climate-guard-synthetic_data_qwen_toxic_agent": 32209,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 3297,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 28510,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 1687,
"climate-guard-synthetic_data_yi_toxic_agent": 3789,
"frugal_challenge_train": 1311,
"climate_fever": 654,
"quota_climat": 9600
},
"test": {
"frugal_challenge_test": 1219
}
},
"label_source_incidence": {
"train": {
"counts": {
"3_not_bad": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 207,
"climate-guard-synthetic_data_qwen_toxic_agent": 4116,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 478,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4332,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 218,
"climate-guard-synthetic_data_yi_toxic_agent": 496,
"quota_climat": 1164
},
"4_solutions_harmful_unnecessary": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 223,
"climate-guard-synthetic_data_qwen_toxic_agent": 4760,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 473,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4112,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 236,
"climate-guard-synthetic_data_yi_toxic_agent": 557,
"quota_climat": 1236
},
"5_science_is_unreliable": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 300,
"climate-guard-synthetic_data_qwen_toxic_agent": 5454,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 604,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 6091,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 318,
"climate-guard-synthetic_data_yi_toxic_agent": 656,
"quota_climat": 1186
},
"6_proponents_biased": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 167,
"climate-guard-synthetic_data_qwen_toxic_agent": 4535,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 389,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 1389,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 234,
"climate-guard-synthetic_data_yi_toxic_agent": 544,
"quota_climat": 1236
},
"7_fossil_fuels_needed": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 205,
"climate-guard-synthetic_data_qwen_toxic_agent": 3979,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 424,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4143,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 217,
"climate-guard-synthetic_data_yi_toxic_agent": 476,
"quota_climat": 1141
},
"1_not_happening": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 227,
"climate-guard-synthetic_data_qwen_toxic_agent": 4700,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 466,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 3976,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 236,
"climate-guard-synthetic_data_yi_toxic_agent": 548,
"quota_climat": 1227
},
"2_not_human": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 217,
"climate-guard-synthetic_data_qwen_toxic_agent": 4665,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 463,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 4467,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 228,
"climate-guard-synthetic_data_yi_toxic_agent": 512,
"quota_climat": 1220
},
"0_not_relevant": {
"frugal_challenge_train": 1311,
"climate_fever": 654,
"quota_climat": 1190
}
},
"percentages": {
"3_not_bad": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.879938243574607,
"climate-guard-synthetic_data_qwen_toxic_agent": 37.38080101716466,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.3411134320225235,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 39.34247570611207,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 1.979838343474707,
"climate-guard-synthetic_data_yi_toxic_agent": 4.504586322768141,
"quota_climat": 10.571246934883298
},
"4_solutions_harmful_unnecessary": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9229110976976806,
"climate-guard-synthetic_data_qwen_toxic_agent": 41.04509787013883,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.07864102785203,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 35.45744589117875,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.0350090540657066,
"climate-guard-synthetic_data_yi_toxic_agent": 4.802966284383892,
"quota_climat": 10.657928774683107
},
"5_science_is_unreliable": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 2.053528646724622,
"climate-guard-synthetic_data_qwen_toxic_agent": 37.33315079745363,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.134437675405572,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 41.693476623998905,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.176740365528099,
"climate-guard-synthetic_data_yi_toxic_agent": 4.490382640837839,
"quota_climat": 8.118283250051338
},
"6_proponents_biased": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9660937132093244,
"climate-guard-synthetic_data_qwen_toxic_agent": 53.390628679067575,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.579703319990582,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 16.352719566753002,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.7548858017424065,
"climate-guard-synthetic_data_yi_toxic_agent": 6.404520838238757,
"quota_climat": 14.551448080998352
},
"7_fossil_fuels_needed": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9367028814359941,
"climate-guard-synthetic_data_qwen_toxic_agent": 37.590930562116206,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.005668398677374,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 39.140292867264996,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.050070854983467,
"climate-guard-synthetic_data_yi_toxic_agent": 4.496929617383089,
"quota_climat": 10.779404818138875
},
"1_not_happening": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.9947275922671353,
"climate-guard-synthetic_data_qwen_toxic_agent": 41.30052724077329,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 4.094903339191564,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 34.93848857644991,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 2.0738137082601056,
"climate-guard-synthetic_data_yi_toxic_agent": 4.815465729349736,
"quota_climat": 10.782073813708259
},
"2_not_human": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": 1.8433571185864763,
"climate-guard-synthetic_data_qwen_toxic_agent": 39.627930682976555,
"climate-guard-thinking_data_nocomment_intern_toxic_agent": 3.933061501868841,
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": 37.94597349643221,
"climate-guard-thinking_data_nocomment_yi_toxic_agent": 1.9367991845056065,
"climate-guard-synthetic_data_yi_toxic_agent": 4.349303431872239,
"quota_climat": 10.36357458375807
},
"0_not_relevant": {
"frugal_challenge_train": 41.55309033280507,
"climate_fever": 20.72900158478605,
"quota_climat": 37.717908082408876
}
}
},
"test": {
"counts": {
"6_proponents_biased": {
"frugal_challenge_test": 139
},
"2_not_human": {
"frugal_challenge_test": 137
},
"3_not_bad": {
"frugal_challenge_test": 97
},
"1_not_happening": {
"frugal_challenge_test": 154
},
"5_science_unreliable": {
"frugal_challenge_test": 160
},
"4_solutions_harmful_unnecessary": {
"frugal_challenge_test": 160
},
"7_fossil_fuels_needed": {
"frugal_challenge_test": 65
},
"0_not_relevant": {
"frugal_challenge_test": 307
}
},
"percentages": {
"6_proponents_biased": {
"frugal_challenge_test": 100.0
},
"2_not_human": {
"frugal_challenge_test": 100.0
},
"3_not_bad": {
"frugal_challenge_test": 100.0
},
"1_not_happening": {
"frugal_challenge_test": 100.0
},
"5_science_unreliable": {
"frugal_challenge_test": 100.0
},
"4_solutions_harmful_unnecessary": {
"frugal_challenge_test": 100.0
},
"7_fossil_fuels_needed": {
"frugal_challenge_test": 100.0
},
"0_not_relevant": {
"frugal_challenge_test": 100.0
}
}
}
}
},
"text_stats": {
"train": {
"avg_length": 111.46446254978633,
"median_length": 77.0,
"std_length": 114.89517560291323,
"min_length": 0,
"max_length": 965,
"total_words": 9207299
},
"test": {
"avg_length": 46.73502871205906,
"median_length": 37.0,
"std_length": 37.74882897285664,
"min_length": 4,
"max_length": 454,
"total_words": 56970
}
},
"vocabulary_stats": {
"train": {
"vocabulary_size": 70216,
"total_tokens": 9207299,
"unique_tokens_ratio": 0.007626123578695554
},
"test": {
"vocabulary_size": 10676,
"total_tokens": 56970,
"unique_tokens_ratio": 0.18739687554853432
}
},
"label_patterns": {
"train": {
"dominant_sources_per_label": {
"3_not_bad": {
"main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
"percentage": 39.34247570611207
},
"4_solutions_harmful_unnecessary": {
"main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
"percentage": 41.04509787013883
},
"5_science_is_unreliable": {
"main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
"percentage": 41.693476623998905
},
"6_proponents_biased": {
"main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
"percentage": 53.390628679067575
},
"7_fossil_fuels_needed": {
"main_source": "climate-guard-thinking_data_nocomment_phi4_toxic_agent",
"percentage": 39.140292867264996
},
"1_not_happening": {
"main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
"percentage": 41.30052724077329
},
"2_not_human": {
"main_source": "climate-guard-synthetic_data_qwen_toxic_agent",
"percentage": 39.627930682976555
},
"0_not_relevant": {
"main_source": "frugal_challenge_train",
"percentage": 41.55309033280507
}
},
"label_diversity_per_source": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": {
"unique_labels": 7,
"entropy": 1.9322811905174009
},
"climate-guard-synthetic_data_qwen_toxic_agent": {
"unique_labels": 7,
"entropy": 1.9412569930894747
},
"climate-guard-thinking_data_nocomment_intern_toxic_agent": {
"unique_labels": 7,
"entropy": 1.9376010166020219
},
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": {
"unique_labels": 7,
"entropy": 1.8879859048798708
},
"climate-guard-thinking_data_nocomment_yi_toxic_agent": {
"unique_labels": 7,
"entropy": 1.9375508611483394
},
"climate-guard-synthetic_data_yi_toxic_agent": {
"unique_labels": 7,
"entropy": 1.941023858626436
},
"frugal_challenge_train": {
"unique_labels": 1,
"entropy": 0.0
},
"climate_fever": {
"unique_labels": 1,
"entropy": 0.0
},
"quota_climat": {
"unique_labels": 8,
"entropy": 2.0790581410796753
}
},
"source_bias_analysis": {
"climate-guard-thinking_data_nocomment_qwen_toxic_agent": {
"kl_divergence": 0.0395716559443841
},
"climate-guard-synthetic_data_qwen_toxic_agent": {
"kl_divergence": 0.045281501914864145
},
"climate-guard-thinking_data_nocomment_intern_toxic_agent": {
"kl_divergence": 0.039965634146765544
},
"climate-guard-thinking_data_nocomment_phi4_toxic_agent": {
"kl_divergence": 0.06259067672088119
},
"climate-guard-thinking_data_nocomment_yi_toxic_agent": {
"kl_divergence": 0.044481091436281824
},
"climate-guard-synthetic_data_yi_toxic_agent": {
"kl_divergence": 0.04597417615615136
},
"frugal_challenge_train": {
"kl_divergence": 3.265057483962074
},
"climate_fever": {
"kl_divergence": 3.265057483962074
},
"quota_climat": {
"kl_divergence": 0.07482175184545027
}
}
},
"test": {
"dominant_sources_per_label": {
"6_proponents_biased": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"2_not_human": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"3_not_bad": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"1_not_happening": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"5_science_unreliable": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"4_solutions_harmful_unnecessary": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"7_fossil_fuels_needed": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
},
"0_not_relevant": {
"main_source": "frugal_challenge_test",
"percentage": 100.0
}
},
"label_diversity_per_source": {
"frugal_challenge_test": {
"unique_labels": 8,
"entropy": 1.9926606322233085
}
},
"source_bias_analysis": {
"frugal_challenge_test": {
"kl_divergence": 0.0
}
}
}
}
}
```
</details>
## Intended Uses
This dataset is designed for:
- Training climate disinformation detection models
- Developing fact-checking systems
- Analyzing climate-related discourse patterns
- Research in climate communication
## Limitations
- The dataset may contain some inherent biases from source datasets
- Some sources are synthetic or AI-generated data
- Language is primarily English
- Coverage may vary across different types of climate disinformation
## Citation
If you use this dataset, please cite both this consolidated version and the original source datasets:
```bibtex
@dataset{consolidated_climate_dataset,
author = {Joseph Pollack},
title = {Climate Guard Toxic Agent - Dataset},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/Tonic/Climate-Guard-Toxic-Agent}
}
```
```bibtex
@article{coan2021computer,
title={Computer-assisted classification of contrarian claims about climate change},
author={Coan, Travis G and Boussalis, Constantine and Cook, John and others},
journal={Scientific Reports},
volume={11},
number={22320},
year={2021},
publisher={Nature Publishing Group},
doi={10.1038/s41598-021-01714-4}
}
```
## License
This dataset is released under the same licenses as its source datasets. Please refer to individual source datasets for specific license information.
## Contact
For questions or issues regarding this dataset, [please open a community comment or descriptive PR](https://huggingface.co/datasets/Tonic/Climate-Guard-Toxic-Agent/discussions).
## Acknowledgments
We thank the creators and maintainers of all source datasets used in this consolidation:
- The Tonic AI team
- QuotaClimat team
- Climate FEVER dataset creators
- Takara AI team
- All other contributors to the source datasets
## Updates and Maintenance
This dataset will be periodically updated to:
- Fix any identified issues
- Include new relevant source datasets
- Improve data quality and consistency
Last updated: [Current Date]
Version: 1.0.0 |