--- dataset_info: features: - name: F1 dtype: int64 - name: F2 dtype: int64 - name: F3 dtype: int64 - name: F4 dtype: int64 - name: F5 dtype: int64 - name: Acc_Fin_x dtype: int64 - name: Acc_Fin_y dtype: int64 - name: Acc_Fin_z dtype: int64 - name: Acc_Palm_x dtype: int64 - name: Acc_Palm_y dtype: int64 - name: Acc_Palm_z dtype: int64 - name: Acc_Arm_x dtype: int64 - name: Acc_Arm_y dtype: int64 - name: Acc_Arm_z dtype: int64 - name: label dtype: string splits: - name: train num_bytes: 14440 num_examples: 120 download_size: 11081 dataset_size: 14440 configs: - config_name: default data_files: - split: train path: data/train-* --- # Sensor-Based Motion Data Dataset ## Description This dataset contains **sensor-based motion data** collected from multiple files, each representing different recording sessions. It captures acceleration readings from various body parts, making it valuable for **human activity recognition, biomechanics analysis, and motion classification**. ## Dataset Details ### **Columns:** - **F1, F2, F3, F4, F5** – Feature values representing signal intensities or raw sensor readings. - **Acc_Fin_x, Acc_Fin_y, Acc_Fin_z** – Accelerometer readings from the **fingers** in **x, y,** and **z** directions. - **Acc_Palm_x, Acc_Palm_y, Acc_Palm_z** – Accelerometer readings from the **palm** in **x, y,** and **z** directions. - **Acc_Arm_x, Acc_Arm_y, Acc_Arm_z** – Accelerometer readings from the **arm** in **x, y,** and **z** directions. ### **Notes:** - The dataset consists of **multiple files**, each containing sensor readings over time. - Values are likely recorded at **a fixed sampling rate**, making the dataset useful for **time-series analysis**. - The dataset can be applied to **motion recognition, gesture classification,** and **biomechanical research**. ## Use Cases - **Human activity recognition** – Classify different hand and arm movements. - **Gesture-based interface development** – Use motion data for interactive systems. - **Sports and rehabilitation analytics** – Analyze motion patterns for performance and recovery tracking. - **Machine learning applications** – Train models for predictive motion analysis. ## How to Use You can load the dataset using the `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("Tarakeshwaran/Hackathon-Dataset_Round_2_test") print(dataset)