import os import json import datasets from sklearn.model_selection import train_test_split _DATASET_LABELS = ['O', 'B-NORP', 'I-NORP', 'B-DATE', 'I-DATE', 'B-PRODUCT', 'I-PRODUCT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-LAW', 'I-LAW', 'B-TIME', 'I-TIME', 'B-CARDINAL', 'I-CARDINAL', 'B-LANGUAGE', 'I-LANGUAGE', 'B-ORDINAL', 'I-ORDINAL', 'B-LOC', 'I-LOC', 'B-GPE', 'I-GPE', 'B-PERSON', 'I-PERSON', 'B-ORG', 'I-ORG'] class Custom(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description='', features=datasets.Features( { 'id': datasets.Value('string'), 'tokens': datasets.Sequence(datasets.Value('string')), 'ner_tags': datasets.Sequence( datasets.features.ClassLabel( names=_DATASET_LABELS ) ), } ), supervised_keys=None, homepage='', citation='', ) def _split_generators(self, dl_manager): data_path = dl_manager.download_and_extract("data.jsonl") with open(data_path, 'r') as file: lines = file.readlines() train_lines, valid_lines = train_test_split(lines, test_size=0.2, random_state=42) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'lines': train_lines}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'lines': valid_lines}), ] def _generate_examples(self, lines): for guid, line in enumerate(lines): data = json.loads(line) yield guid, { 'id': str(guid), 'tokens': data['words'], 'ner_tags': data['pos'], }