|
import wandb
|
|
import d3rlpy
|
|
import argparse
|
|
import traceback
|
|
|
|
from d3rlpy.dataset import ReplayBuffer, InfiniteBuffer
|
|
from d3rlpy.preprocessing import StandardObservationScaler
|
|
from d3rlpy.logging import CombineAdapterFactory, FileAdapterFactory, TensorboardAdapterFactory
|
|
from fcev import FCEVEnv, load_drive_cycle
|
|
from d3rlpy.algos import (
|
|
TD3PlusBCConfig, IQLConfig, CQLConfig, BCQConfig,
|
|
CalQLConfig, AWACConfig, ReBRACConfig, TACRConfig,
|
|
PLASConfig, PRDCConfig, BEARConfig
|
|
)
|
|
|
|
from typing import Any, Optional
|
|
from d3rlpy.logging import WanDBAdapter
|
|
from d3rlpy.logging.logger import (
|
|
AlgProtocol,
|
|
LoggerAdapter,
|
|
LoggerAdapterFactory,
|
|
SaveProtocol,
|
|
)
|
|
|
|
|
|
class GWanDBAdapterFactory(LoggerAdapterFactory):
|
|
r"""WandB Logger Adapter Factory class.
|
|
|
|
This class creates instances of the WandB Logger Adapter for experiment
|
|
tracking.
|
|
|
|
Args:
|
|
project (Optional[str], optional): The name of the WandB project.
|
|
Defaults to None.
|
|
"""
|
|
|
|
_project: Optional[str]
|
|
|
|
def __init__(self, project: Optional[str] = None, experiment_name: Optional[str] = None,) -> None:
|
|
self._project = project
|
|
|
|
def create(
|
|
self, algo: AlgProtocol, experiment_name: str, n_steps_per_epoch: int
|
|
) -> LoggerAdapter:
|
|
return WanDBAdapter(
|
|
algo=algo,
|
|
experiment_name=experiment_name,
|
|
n_steps_per_epoch=n_steps_per_epoch,
|
|
project=self._project,
|
|
)
|
|
|
|
|
|
|
|
|
|
def get_algo_configs():
|
|
|
|
algo_configs = {
|
|
"TD3PlusBC": TD3PlusBCConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"IQL": IQLConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"CQL": CQLConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"BCQ": BCQConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"CalQL": CalQLConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"AWAC": AWACConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"ReBRAC": ReBRACConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), q_func_factory=d3rlpy.models.QRQFunctionFactory()),
|
|
"TACR": TACRConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"PLAS": PLASConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"PRDC": PRDCConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
"BEAR": BEARConfig(actor_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), critic_encoder_factory=d3rlpy.models.DefaultEncoderFactory(use_batch_norm=True, dropout_rate=0.2), observation_scaler=StandardObservationScaler()),
|
|
}
|
|
return algo_configs
|
|
|
|
|
|
def train(args):
|
|
algo_configs = get_algo_configs()
|
|
|
|
if args.algo not in algo_configs:
|
|
raise ValueError(f"Unsupported algorithm: {args.algo}")
|
|
|
|
|
|
with open(args.dataset_path, "rb") as f:
|
|
dataset = ReplayBuffer.load(f, InfiniteBuffer())
|
|
|
|
|
|
env = FCEVEnv(load_drive_cycle(args.drive_cycle))
|
|
|
|
config = algo_configs[args.algo]
|
|
algo = config.create(device=args.device)
|
|
|
|
|
|
logger_adapters = [
|
|
FileAdapterFactory(root_dir=f"d3rlpy_logs/{args.algo}"),
|
|
TensorboardAdapterFactory(root_dir=f"tensorboard_logs/{args.algo}")
|
|
]
|
|
if args.wandb:
|
|
logger_adapters.append(GWanDBAdapterFactory(experiment_name=f"{args.algo}-run", project=args.wandb_project))
|
|
|
|
logger_adapter = CombineAdapterFactory(logger_adapters)
|
|
|
|
try:
|
|
print(f"\n🚀 Starting training: {args.algo}")
|
|
|
|
algo.fit(
|
|
dataset,
|
|
n_steps=args.n_steps,
|
|
n_steps_per_epoch=args.n_steps_per_epoch,
|
|
logger_adapter=logger_adapter,
|
|
evaluators={
|
|
'init_value': d3rlpy.metrics.InitialStateValueEstimationEvaluator(),
|
|
'soft_opc': d3rlpy.metrics.SoftOPCEvaluator(return_threshold=100),
|
|
'action': d3rlpy.metrics.ContinuousActionDiffEvaluator(),
|
|
'environment': d3rlpy.metrics.EnvironmentEvaluator(env),
|
|
'Advantage': d3rlpy.metrics.DiscountedSumOfAdvantageEvaluator()
|
|
},
|
|
)
|
|
|
|
print(f"\n✅ Training finished for: {args.algo}")
|
|
|
|
except Exception as e:
|
|
print(f"\n❌ Training failed: {args.algo}")
|
|
print(traceback.format_exc())
|
|
wandb.finish()
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Offline RL training for FCEV")
|
|
|
|
parser.add_argument("--algo", type=str, default="AWAC",
|
|
choices=list(get_algo_configs().keys()),
|
|
help="Name of the offline RL algorithm")
|
|
parser.add_argument("--dataset-path", type=str, default="datasets/fcev-mpc-v1.h5",
|
|
help="Path to the .h5 dataset file")
|
|
parser.add_argument("--drive-cycle", type=str, default="CLTC-P-PartI.csv",
|
|
help="Path to the drive cycle CSV file")
|
|
parser.add_argument("--n-steps", type=int, default=10000,
|
|
help="Total number of training steps")
|
|
parser.add_argument("--n-steps-per-epoch", type=int, default=100,
|
|
help="Steps per epoch")
|
|
parser.add_argument("--device", type=str, default="cuda:0",
|
|
help="Training device (e.g., 'cpu', 'cuda:0')")
|
|
parser.add_argument("--wandb", action="store_true",
|
|
help="Enable WandB logging")
|
|
parser.add_argument("--wandb-project", type=str, default="fcev-offline-benchmark",
|
|
help="WandB project name (used only if --wandb is enabled)")
|
|
|
|
args = parser.parse_args()
|
|
train(args) |