File size: 3,091 Bytes
aedc0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: cc-by-4.0
---

# MIBench

This dataset is from our EMNLP'24 (main conference) paper [MIBench: Evaluating Multimodal Large Language Models over Multiple Images](https://arxiv.org/abs/2407.15272)

## Introduction

<div align="center">
    <img src="overview.webp" alt="Overview" style="width: 500px; height: auto;">
</div>

**MIBench** covers 13 sub-tasks in three typical multi-image scenarios: Multi-Image Instruction, Multimodal Knowledge-Seeking and Multimodal In-Context Learning.

- **Multi-Image Instruction**: This scenario includes instructions for perception, comparison and reasoning across multiple input images. According to the semantic types of the instructions, it is divided into five sub-tasks: General Comparison, Subtle Difference, Visual Referring, Temporal Reasoning and Logical Reasoning.

- **Multimodal Knowledge-Seeking**: This scenario examines the ability of MLLMs to acquire relevant information from external knowledge, which is provided in an interleaved image-text format. Based on the forms of external knowledge, we categorize this scenario into four sub-tasks: Fine-grained Visual Recognition, Text-Rich Images VQA, Vision-linked Textual Knowledge and Text-linked Visual Knowledge.

- **Multimodal In-Context Learning**: In-context learning is another popular scenario, in which MLLMs respond to visual questions while being provided with a series of multimodal demonstrations. To evaluate the model’s MIC ability in a fine-grained manner, we categorize the MIC scenario into four distinct tasks: Close-ended VQA, Open-ended VQA, Hallucination and Demo-based Task Learning.

## Examples

The following image shows the examples of the multi-image scenarios with a total of 13 sub-tasks. The correct answers are marked in blue.
![](example.webp)

## Data format
Below shows an example of the dataset format. The `<image>` in the `question` field indicates the location of the images. Note that to ensure better reproducibility, for the Multimodal In-Context Learning scenario, we store the context information of different shots in the `context` field.

```
{
    "id": "general_comparison_1",
    "image": [
        "image/general_comparison/test1-902-0-img0.png",
        "image/general_comparison/test1-902-0-img1.png"
    ],
    "question": "Left image is <image>. Right image is <image>. Question: Is the subsequent sentence an accurate portrayal of the two images? One lemon is cut in half and has both halves facing outward.",
    "options": [
        "Yes",
        "No"
    ],
    "answer": "Yes",
    "task": "general_comparison",
    "type": "multiple-choice",
    "context": null
},
```


## Citation
If you find this dataset useful for your work, please consider citing our paper:
```
@article{liu2024mibench,
  title={Mibench: Evaluating multimodal large language models over multiple images},
  author={Liu, Haowei and Zhang, Xi and Xu, Haiyang and Shi, Yaya and Jiang, Chaoya and Yan, Ming and Zhang, Ji and Huang, Fei and Yuan, Chunfeng and Li, Bing and others},
  journal={arXiv preprint arXiv:2407.15272},
  year={2024}
}
```