|
import gzip |
|
import json |
|
import os |
|
|
|
from matplotlib import pyplot as plt |
|
|
|
|
|
def load_stats(path: str) -> dict: |
|
stats: dict = {} |
|
for filename in os.listdir(path): |
|
file_path: str = os.path.join(path, filename) |
|
if os.path.isdir(filename): |
|
continue |
|
data: dict |
|
if filename.endswith('.gz'): |
|
with gzip.open(file_path, mode='rt') as file: |
|
data = json.loads(file.read()) |
|
else: |
|
with open(file_path, mode='rt') as file: |
|
data = json.loads(file.read()) |
|
print(f'Loaded stats from {file_path}') |
|
stats.update(**data) |
|
return stats |
|
|
|
|
|
def stat_filter(stats: dict, deviation_cutoff=(1.0, 0.0), clamp=(200.0, 2048.0), min_messages=4) -> list[dict]: |
|
cutoff_threshold: (float, float) = ( |
|
stats['wordsStdDev'] * deviation_cutoff[0], stats['wordsStdDev'] * deviation_cutoff[1]) |
|
if cutoff_threshold[1] <= 0: |
|
cutoff_threshold = (cutoff_threshold[0], stats['wordsMax']) |
|
cutoff_min: float = max(max(clamp[0], cutoff_threshold[0]), stats['wordsMean'] - cutoff_threshold[0]) |
|
cutoff_max: float = stats['wordsMean'] + cutoff_threshold[1] |
|
if clamp[1] > 0: |
|
cutoff_max = min(clamp[1], cutoff_max) |
|
|
|
conversations: list[dict] = [v for k, v in stats['conversations'].items() if |
|
v['wordsMax'] <= cutoff_max and v['wordsMin'] >= cutoff_min and v[ |
|
'messagesCount'] >= min_messages] |
|
print( |
|
f'Min: {cutoff_min:0.0f}\tMax: {cutoff_max:0.0f}\n' |
|
f'Clamped from {cutoff_threshold[0]:0.0f}, {cutoff_threshold[1]:0.0f}') |
|
print(f'{len(conversations)} conversations') |
|
|
|
return conversations |
|
|
|
|
|
def build_mean_word_plot(conv_stats: list[float], title: str = 'Conversation Message Mean Words', xlabel: str = 'Mean', |
|
ylabel: str = 'Conversations', text: str = '', |
|
**kwargs): |
|
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained') |
|
n, bins, patches = ax.hist(conv_stats, density=True, |
|
facecolor='C0', alpha=0.75, **kwargs) |
|
ax.set_title(title) |
|
ax.set_xlabel(xlabel) |
|
ax.set_ylabel(ylabel) |
|
plt.figtext(0, 0.95, text) |
|
|