File size: 1,541 Bytes
504c6ae
 
 
 
 
 
 
 
 
 
 
8ff8f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0de543e
8ff8f60
 
0de543e
 
8ff8f60
504c6ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
license: other
license_name: varies
license_link: LICENSE
---

# Data for the Arctic Embed walkthrough

This dataset coresponds to the walkthrough example for using the [Arctic Embed training code in ArcticTraining](https://github.com/snowflakedb/ArcticTraining/blob/main/projects/arctic_embed/examples/finetune_models/README.md). See [that README](https://github.com/snowflakedb/ArcticTraining/blob/main/projects/arctic_embed/examples/finetune_models/README.md) for more details.


## Example: Selective downloads via Git LFS

Since this dataset contains various intermediate files not necessary for training, it can be helpful to use the Git LFS backend of Hugging Face Datasets to pull select files.

``` shell
# First, ensure you have installed git-lfs (see `https://git-lfs.com/` for documentation).
git lfs install

# Clone the full precomputed data repository without large files as our `data/` directory.
mv ./data/.gitignore ./data.gitignore
rmdir ./data
GIT_LFS_SKIP_SMUDGE=1 git clone https://hf.co/datasets/Snowflake/arctic-embed-ft-v1.git ./data
mv ./data.gitignore ./data/.gitignore

# Ensure we have all the files you need for training downloaded from LFS.
cd arctic-embed-ft-v1/
git lfs pull --include="combined/pretokenized/example_dot95/,eval/"

# Optional: Download more large files (e.g. everything but the very large precomputed embeddings).
git lfs pull --exclude="*embeddings*"
```

<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=11c9f5e7-c00f-43e8-8c22-630379baeb05" />