Sh1man commited on
Commit
85da985
·
1 Parent(s): 8341731

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,71 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ru
4
+
5
+ license: cc-by-nc-4.0
6
+ task_categories:
7
+ - automatic-speech-recognition
8
+ size_categories:
9
+ - 10K<n<100K
10
+ tags:
11
+ - audio
12
+ - speech
13
+ - Russian
14
+ - ASR
15
+ - voice
16
+
17
+ dataset_info:
18
+ features:
19
+ - dtype: string
20
+ name: id
21
+ - dtype: string
22
+ name: path
23
+ - dtype: string
24
+ name: text
25
+ - dtype: float32
26
+ name: duration
27
+ - dtype: audio
28
+ name: audio
29
+
30
+ config_name: asr_calls_v2, buriy_audio_books_2, public_youtube700
31
+ splits:
32
+ - name: train
33
+ - name: validate
34
+
35
+ pretty_name: open_stt
36
+ ---
37
+
38
+ # open_stt Dataset
39
+
40
+ ## Dataset Description
41
+
42
+ open_stt is a Russian dataset for speech research.
43
+
44
+ ## Dataset Structure
45
+
46
+ This dataset is organized as follows:
47
+
48
+
49
+ ### asr_calls_v2 subset
50
+
51
+ | Split | Samples |
52
+ |-------|--------|
53
+ | train | 7770 |
54
+ | validate | 5180 |
55
+ | **Total** | **12950** |
56
+
57
+ ### buriy_audio_books_2 subset
58
+
59
+ | Split | Samples |
60
+ |-------|--------|
61
+ | train | 4710 |
62
+ | validate | 3140 |
63
+ | **Total** | **7850** |
64
+
65
+ ### public_youtube700 subset
66
+
67
+ | Split | Samples |
68
+ |-------|--------|
69
+ | train | 4386 |
70
+ | validate | 2925 |
71
+ | **Total** | **7311** |
metadata/asr_calls_v2/train.tsv ADDED
The diff for this file is too large to render. See raw diff
 
metadata/asr_calls_v2/validate.tsv ADDED
The diff for this file is too large to render. See raw diff
 
metadata/buriy_audio_books_2/train.tsv ADDED
The diff for this file is too large to render. See raw diff
 
metadata/buriy_audio_books_2/validate.tsv ADDED
The diff for this file is too large to render. See raw diff
 
metadata/public_youtube700/train.tsv ADDED
The diff for this file is too large to render. See raw diff
 
metadata/public_youtube700/validate.tsv ADDED
The diff for this file is too large to render. See raw diff
 
n_shards.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "asr_calls_v2": {
3
+ "train": 1,
4
+ "validate": 1
5
+ },
6
+ "buriy_audio_books_2": {
7
+ "train": 1,
8
+ "validate": 1
9
+ },
10
+ "public_youtube700": {
11
+ "train": 1,
12
+ "validate": 1
13
+ }
14
+ }
open_stt.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Datasets Authors
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Open STT Dataset"""
16
+
17
+ import csv
18
+ import os
19
+ import json
20
+
21
+ import datasets
22
+ from tqdm import tqdm
23
+
24
+
25
+ _DESCRIPTION = """open_stt is a Russian dataset for speech research."""
26
+
27
+ _CITATION = """None"""
28
+
29
+ _HOMEPAGE = "https://github.com/snakers4/open_stt"
30
+ _LICENSE = "CC-BY-NC. Commercial usage available after agreement with dataset authors"
31
+
32
+ _BASE_URL = "https://huggingface.co/datasets/Sh1man/silero_open_stt/resolve/main/"
33
+ _AUDIO_URL = _BASE_URL + "data/{subset}/{split}/{subset}_{split}_{shard_idx}.tar"
34
+ _METADATA_URL = _BASE_URL + "metadata/{subset}/{split}.tsv"
35
+ _N_SHARDS_URL = _BASE_URL + "n_shards.json"
36
+
37
+ # Информация о поднаборах
38
+ SUBSETS = {
39
+ "asr_calls_v2": {
40
+ "description": "Телефонные звонки на русском языке",
41
+ },
42
+ "buriy_audio_books_2": {
43
+ "description": "Аудиокниги на русском языке",
44
+ },
45
+ "public_youtube700": {
46
+ "description": "YouTube-видео с русской речью",
47
+ },
48
+ }
49
+
50
+
51
+ class OpenSttConfig(datasets.BuilderConfig):
52
+ """BuilderConfig для OpenStt."""
53
+
54
+ def __init__(self, name, subset, description, **kwargs):
55
+ """BuilderConfig для OpenStt.
56
+
57
+ Args:
58
+ name: Название набора данных
59
+ subset: Поднабор данных
60
+ description: Описание поднабора
61
+ **kwargs: Дополнительные аргументы для суперкласса
62
+ """
63
+ self.subset = subset
64
+ super(OpenSttConfig, self).__init__(
65
+ name=name,
66
+ version=datasets.Version("1.0.0"),
67
+ description=description,
68
+ **kwargs,
69
+ )
70
+
71
+
72
+ class OpenStt(datasets.GeneratorBasedBuilder):
73
+ """Аудио-датасет Open STT."""
74
+
75
+ VERSION = datasets.Version("1.0.0")
76
+ DEFAULT_WRITER_BATCH_SIZE = 1000
77
+
78
+ BUILDER_CONFIGS = [
79
+ OpenSttConfig(
80
+ name=subset,
81
+ subset=subset,
82
+ description=f"Open STT - {info['description']}",
83
+ )
84
+ for subset, info in SUBSETS.items()
85
+ ]
86
+
87
+ def _info(self):
88
+ features = datasets.Features(
89
+ {
90
+ "id": datasets.Value("string"),
91
+ "path": datasets.Value("string"),
92
+ "text": datasets.Value("string"),
93
+ "duration": datasets.Value("float32"),
94
+ "audio": datasets.Audio(sampling_rate=16000),
95
+ }
96
+ )
97
+
98
+ return datasets.DatasetInfo(
99
+ description=_DESCRIPTION,
100
+ features=features,
101
+ supervised_keys=None,
102
+ homepage=_HOMEPAGE,
103
+ license=_LICENSE,
104
+ citation=_CITATION
105
+ )
106
+
107
+ def _split_generators(self, dl_manager):
108
+ """Returns SplitGenerators."""
109
+ subset = self.config.subset
110
+
111
+ # Загружаем информацию о количестве шардов
112
+ n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
113
+ with open(n_shards_path, encoding="utf-8") as f:
114
+ n_shards = json.load(f)
115
+
116
+ # Проверяем наличие данных для выбранного поднабора
117
+ if subset not in n_shards:
118
+ raise ValueError(f"Subset {subset} not found in n_shards.json")
119
+
120
+ # Определяем доступные сплиты для этого поднабора
121
+ splits = list(n_shards[subset].keys())
122
+ if not splits:
123
+ raise ValueError(f"No splits found for subset {subset}")
124
+
125
+ # Создаем URLs для аудио файлов
126
+ audio_urls = {}
127
+ for split in splits:
128
+ if n_shards[subset][split] > 0:
129
+ audio_urls[split] = [
130
+ _AUDIO_URL.format(subset=subset, split=split, shard_idx=i)
131
+ for i in range(n_shards[subset][split])
132
+ ]
133
+
134
+ # Скачиваем ар��ивы
135
+ archive_paths = dl_manager.download(audio_urls)
136
+ local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
137
+
138
+ # Скачиваем метаданные
139
+ meta_urls = {split: _METADATA_URL.format(subset=subset, split=split) for split in splits}
140
+ meta_paths = dl_manager.download_and_extract(meta_urls)
141
+
142
+ # Определяем генераторы сплитов
143
+ split_generators = []
144
+ split_names = {
145
+ "train": datasets.Split.TRAIN,
146
+ "validate": datasets.Split.VALIDATION,
147
+ "test": datasets.Split.TEST,
148
+ }
149
+
150
+ for split in splits:
151
+ split_generators.append(
152
+ datasets.SplitGenerator(
153
+ name=split_names.get(split, split),
154
+ gen_kwargs={
155
+ "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
156
+ "archives": [dl_manager.iter_archive(path) for path in archive_paths[split]],
157
+ "meta_path": meta_paths[split],
158
+ },
159
+ ),
160
+ )
161
+
162
+ return split_generators
163
+
164
+ def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
165
+ """Yields examples."""
166
+ data_fields = list(self._info().features.keys())
167
+ metadata = {}
168
+
169
+ with open(meta_path, encoding="utf-8") as f:
170
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
171
+ for row in tqdm(reader, desc="Reading metadata..."):
172
+ # Проверяем наличие всех полей
173
+ for field in data_fields:
174
+ if field not in row and field != "audio":
175
+ row[field] = ""
176
+
177
+ metadata[row["path"]] = row
178
+
179
+ for i, audio_archive in enumerate(archives):
180
+ for path, file in audio_archive:
181
+ _, filename = os.path.split(path)
182
+ if filename in metadata:
183
+ result = dict(metadata[filename])
184
+ # set the audio feature and the path to the extracted file
185
+ path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
186
+ result["audio"] = {"path": path, "bytes": file.read()}
187
+ result["path"] = path
188
+ yield path, result
189
+