upload
Browse files- README.md +3 -0
- bbc-text.csv +0 -0
- prepare.py +36 -0
- test.jsonl +0 -0
- train.jsonl +0 -0
README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# BBC News Topic Classification
|
2 |
+
|
3 |
+
Dataset on [BBC News Topic Classification](https://www.kaggle.com/yufengdev/bbc-text-categorization/data): 2225 articles, each labeled under one of 5 categories: business, entertainment, politics, sport or tech.
|
bbc-text.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
prepare.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from collections import Counter
|
3 |
+
import json
|
4 |
+
import random
|
5 |
+
|
6 |
+
|
7 |
+
df = pd.read_csv("bbc-text.csv")
|
8 |
+
df.fillna('', inplace=True)
|
9 |
+
print(df)
|
10 |
+
|
11 |
+
label2id = {label: idx for idx, label in enumerate(df['category'].unique())}
|
12 |
+
|
13 |
+
rows = [{'text': row['text'].strip(),
|
14 |
+
'label': label2id[row['category']],
|
15 |
+
'label_text': row['category'],
|
16 |
+
} for idx, row in df.iterrows()]
|
17 |
+
|
18 |
+
random.seed(42)
|
19 |
+
random.shuffle(rows)
|
20 |
+
|
21 |
+
num_test = 1000
|
22 |
+
splits = {'test': rows[0:num_test], 'train': rows[num_test:]}
|
23 |
+
|
24 |
+
print("Train:", len(splits['train']))
|
25 |
+
print("Test:", len(splits['test']))
|
26 |
+
|
27 |
+
num_labels = Counter()
|
28 |
+
|
29 |
+
for row in splits['test']:
|
30 |
+
num_labels[row['label']] += 1
|
31 |
+
print(num_labels)
|
32 |
+
|
33 |
+
for split in ['train', 'test']:
|
34 |
+
with open(f'{split}.jsonl', 'w') as fOut:
|
35 |
+
for row in splits[split]:
|
36 |
+
fOut.write(json.dumps(row)+"\n")
|
test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|