repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
lostindarkmath/pedantic-python-decorators | pedantic/type_checking_logic/check_types.py | _get_base_generic | python | def _get_base_generic(cls: Any) -> Any:
origin = cls.__origin__ if hasattr(cls, '__origin__') else None
name = cls._name if hasattr(cls, '_name') else None
if name is not None:
return getattr(typing, name)
elif origin is not None:
return origin
return cls | >>> from typing import List, Union, Tuple, Callable, Dict, Set
>>> _get_base_generic(List)
typing.List
>>> _get_base_generic(List[float])
typing.List
>>> _get_base_generic(List[List[float]])
typing.List
>>> _get_base_generic(List[Union[int, float]])
typing.List
>>> _get_base_generic(Tuple)
typing.Tuple
>>> _get_base_generic(Tuple[float, int])
typing.Tuple
>>> _get_base_generic(Tuple[Union[int, float], str])
typing.Tuple
>>> _get_base_generic(Callable[..., int])
typing.Callable
>>> _get_base_generic(Callable[[Union[int, str], float], int])
typing.Callable
>>> _get_base_generic(Dict)
typing.Dict
>>> _get_base_generic(Dict[str, str])
typing.Dict
>>> _get_base_generic(Union)
typing.Union
>>> _get_base_generic(Union[float, int, str])
typing.Union
>>> _get_base_generic(Set)
typing.Set
>>> _get_base_generic(Set[int])
typing.Set | https://github.com/lostindarkmath/pedantic-python-decorators/blob/66865a958a36440b48e790f22ea42d2beb725b16/pedantic/type_checking_logic/check_types.py#L413-L455 | import inspect
import typing
from io import BytesIO, StringIO, BufferedWriter, TextIOWrapper
from typing import Any, Dict, Iterable, ItemsView, Callable, Union, Optional, Tuple, Mapping, TypeVar, NewType
import collections
import sys
from pedantic.constants import TypeVar as TypeVar_
from pedantic.exceptions import PedanticTypeCheckException, PedanticTypeVarMismatchException, PedanticException
def _assert_value_matches_type(value: Any,
type_: Any,
err: str,
type_vars: Dict[TypeVar_, Any],
key: Optional[str] = None,
msg: Optional[str] = None
) -> None:
if not _check_type(value=value, type_=type_, err=err, type_vars=type_vars):
t = type(value)
value = f'{key}={value}' if key is not None else str(value)
if not msg:
msg = f'{err}Type hint is incorrect: Argument {value} of type {t} does not match expected type {type_}.'
raise PedanticTypeCheckException(msg)
def _check_type(value: Any, type_: Any, err: str, type_vars: Dict[TypeVar_, Any]) -> bool:
if type_ is None:
return value == type_
elif isinstance(type_, str):
class_name = value.__class__.__name__
base_class_name = value.__class__.__base__.__name__
return class_name == type_ or base_class_name == type_
if isinstance(type_, tuple):
raise PedanticTypeCheckException(f'{err}Use "Tuple[]" instead of "{type_}" as type hint.')
if isinstance(type_, list):
raise PedanticTypeCheckException(f'{err}Use "List[]" instead of "{type_}" as type hint.')
if type_ is tuple:
raise PedanticTypeCheckException(f'{err}Use "Tuple[]" instead of "tuple" as type hint.')
if type_ is list:
raise PedanticTypeCheckException(f'{err}Use "List[]" instead of "list" as type hint.')
if type_ is dict:
raise PedanticTypeCheckException(f'{err}Use "Dict[]" instead of "dict" as type hint.')
if type_ is set:
raise PedanticTypeCheckException(f'{err}Use "Set[]" instead of "set" as type hint.')
if type_ is frozenset:
raise PedanticTypeCheckException(f'{err}Use "FrozenSet[]" instead of "frozenset" as type hint.')
if type_ is type:
raise PedanticTypeCheckException(f'{err}Use "Type[]" instead of "type" as type hint.')
try:
return _is_instance(obj=value, type_=type_, type_vars=type_vars)
except PedanticTypeCheckException as ex:
raise PedanticTypeCheckException(f'{err} {ex}')
except PedanticTypeVarMismatchException as ex:
raise PedanticTypeVarMismatchException(f'{err} {ex}')
except (AttributeError, Exception) as ex:
raise PedanticTypeCheckException(
f'{err}An error occurred during type hint checking. Value: {value} Annotation: '
f'{type_} Mostly this is caused by an incorrect type annotation. Details: {ex} ')
def _is_instance(obj: Any, type_: Any, type_vars: Dict[TypeVar_, Any]) -> bool:
if not _has_required_type_arguments(type_):
raise PedanticTypeCheckException(
f'The type annotation "{type_}" misses some type arguments e.g. '
f'"typing.Tuple[Any, ...]" or "typing.Callable[..., str]".')
if type_.__module__ == 'typing':
if _is_generic(type_):
origin = _get_base_generic(type_)
else:
origin = type_
name = _get_name(origin)
if name in _SPECIAL_INSTANCE_CHECKERS:
validator = _SPECIAL_INSTANCE_CHECKERS[name]
return validator(obj, type_, type_vars)
if type_ == typing.BinaryIO:
return isinstance(obj, (BytesIO, BufferedWriter))
elif type_ == typing.TextIO:
return isinstance(obj, (StringIO, TextIOWrapper))
if _is_generic(type_):
python_type = type_.__origin__
if not isinstance(obj, python_type):
return False
base = _get_base_generic(type_)
type_args = _get_type_arguments(cls=type_)
if base in _ORIGIN_TYPE_CHECKERS:
validator = _ORIGIN_TYPE_CHECKERS[base]
return validator(obj, type_args, type_vars)
assert base.__base__ == typing.Generic, f'Unknown base: {base}'
return isinstance(obj, base)
if isinstance(type_, TypeVar):
constraints = type_.__constraints__
if len(constraints) > 0 and type(obj) not in constraints:
return False
if _is_forward_ref(type_=type_.__bound__):
return type(obj).__name__ == type_.__bound__.__forward_arg__
if type_.__bound__ is not None and not isinstance(obj, type_.__bound__):
return False
if type_ in type_vars:
other = type_vars[type_]
if type_.__contravariant__:
if not _is_subtype(sub_type=other, super_type=obj.__class__):
raise PedanticTypeVarMismatchException(
f'For TypeVar {type_} exists a type conflict: value {obj} has type {type(obj)} but TypeVar {type_} '
f'was previously matched to type {other}')
else:
if not _is_instance(obj=obj, type_=other, type_vars=type_vars):
raise PedanticTypeVarMismatchException(
f'For TypeVar {type_} exists a type conflict: value {obj} has type {type(obj)} but TypeVar {type_} '
f'was previously matched to type {other}')
type_vars[type_] = type(obj)
return True
if _is_forward_ref(type_=type_):
return type(obj).__name__ == type_.__forward_arg__
if _is_type_new_type(type_):
return isinstance(obj, type_.__supertype__)
if hasattr(obj, '_asdict'):
if hasattr(type_, '_field_types'):
field_types = type_._field_types
elif hasattr(type_, '__annotations__'):
field_types = type_.__annotations__
else:
return False
if not obj._asdict().keys() == field_types.keys():
return False
return all([_is_instance(obj=obj._asdict()[k], type_=v, type_vars=type_vars) for k, v in field_types.items()])
return isinstance(obj, type_)
def _is_forward_ref(type_: Any) -> bool:
return hasattr(typing, 'ForwardRef') and isinstance(type_, typing.ForwardRef) or hasattr(typing, '_ForwardRef') and isinstance(type_, typing._ForwardRef)
def _is_type_new_type(type_: Any) -> bool:
return type_.__qualname__ == NewType('name', int).__qualname__
def _get_name(cls: Any) -> str:
if hasattr(cls, '_name'):
return cls._name
elif hasattr(cls, '__name__'):
return cls.__name__
else:
return type(cls).__name__[1:]
def _is_generic(cls: Any) -> bool:
if hasattr(typing, '_SpecialGenericAlias') and isinstance(cls, typing._SpecialGenericAlias):
return True
elif hasattr(typing, '_GenericAlias'):
if isinstance(cls, typing._GenericAlias):
return True
if isinstance(cls, typing._SpecialForm):
return cls not in {Any}
elif isinstance(cls, (typing.GenericMeta, typing._Union, typing._Optional, typing._ClassVar)):
return True
return False
def _has_required_type_arguments(cls: Any) -> bool:
base: str = _get_name(cls=cls)
num_type_args = len(_get_type_arguments(cls=cls))
if base in NUM_OF_REQUIRED_TYPE_ARGS_EXACT:
return NUM_OF_REQUIRED_TYPE_ARGS_EXACT[base] == num_type_args
elif base in NUM_OF_REQUIRED_TYPE_ARGS_MIN:
return NUM_OF_REQUIRED_TYPE_ARGS_MIN[base] <= num_type_args
return True
def _get_type_arguments(cls: Any) -> Tuple[Any, ...]:
result = ()
if hasattr(cls, '__args__'):
result = cls.__args__
origin = _get_base_generic(cls=cls)
if origin != cls and ((origin is Callable) or (origin is collections.abc.Callable)) and result[0] is not Ellipsis:
result = (list(result[:-1]), result[-1])
result = result or ()
return result if '[' in str(cls) else () | Apache License 2.0 |
seung-lab/chunkflow | chunkflow/chunk/base.py | Chunk.ndoffset | python | def ndoffset(self) -> tuple:
if self.ndim == 4:
return (0, *self.voxel_offset)
else:
return self.voxel_offset | make the voxel offset have the same dimension with array | https://github.com/seung-lab/chunkflow/blob/0e032cdf4f2ba104af4f7809ac11df17352384ed/chunkflow/chunk/base.py#L395-L402 | from typing import Union
import os
from numbers import Number
import h5py
import numpy as np
import nrrd
from numpy.core.numerictypes import issubdtype
from numpy.lib.mixins import NDArrayOperatorsMixin
from scipy.ndimage import gaussian_filter
import tifffile
import cc3d
from cloudvolume.lib import yellow, Bbox
from chunkflow.lib.bounding_boxes import BoundingBox
from .validate import validate_by_template_matching
class Chunk(NDArrayOperatorsMixin):
def __init__(self, array: np.ndarray, voxel_offset: tuple = None, voxel_size: tuple = None):
assert isinstance(array, np.ndarray) or isinstance(array, Chunk)
self.array = array
if voxel_offset is None:
if isinstance(array, Chunk):
self.array = array.array
voxel_offset = array.voxel_offset
else:
voxel_offset = (0, 0, 0)
if voxel_offset is not None:
if len(voxel_offset) == 4:
assert voxel_offset[0] == 0
voxel_offset = voxel_offset[1:]
assert len(voxel_offset) == 3
self.voxel_offset = voxel_offset
self.voxel_size = voxel_size
if voxel_size is not None:
assert len(voxel_size) == 3
assert np.alltrue([vs > 0 for vs in voxel_size])
assert array.ndim >= 3 and array.ndim <= 4
_HANDLED_TYPES = (np.ndarray, Number)
@classmethod
def from_array(cls, array: np.ndarray, bbox: BoundingBox, voxel_size: tuple = None):
return cls(array, voxel_offset=bbox.minpt, voxel_size=voxel_size)
@classmethod
def from_bbox(cls, bbox: BoundingBox, dtype: type = np.uint8,
voxel_size: tuple=None, all_zero: bool=False):
assert isinstance(bbox, BoundingBox)
size = bbox.maxpt - bbox.minpt
return cls.create(size=size, dtype=dtype, voxel_offset=bbox.minpt,
voxel_size=voxel_size, all_zero=all_zero)
@classmethod
def create(cls, size: tuple = (64, 64, 64),
dtype: type = np.uint8, voxel_offset: tuple = (0, 0, 0),
voxel_size: tuple = None,
all_zero: bool = False):
if isinstance(dtype, str):
dtype = np.dtype(dtype)
if all_zero:
chunk = np.zeros(size, dtype=dtype)
else:
ix, iy, iz = np.meshgrid(*[np.linspace(0, 1, n) for
n in size[-3:]], indexing='ij')
chunk = np.abs(np.sin(4 * (ix + iy + iz)))
if len(size) == 4:
chunk = np.expand_dims(chunk, axis=0)
chunk = np.repeat(chunk, size[0], axis=0)
if np.dtype(dtype) == np.uint8:
chunk = (chunk * 255).astype( dtype )
elif np.dtype(dtype) == np.uint32:
chunk = (chunk>0.5).astype(dtype)
elif np.issubdtype(dtype, np.floating):
chunk = chunk.astype(dtype)
else:
raise NotImplementedError()
return cls(chunk, voxel_offset=voxel_offset, voxel_size=voxel_size)
def clone(self):
return Chunk(self.array.copy(),
voxel_offset=self.voxel_offset, voxel_size=self.voxel_size)
@classmethod
def from_nrrd(cls, file_name: str, voxel_offset: tuple=None, dtype: str = None,
voxel_size: tuple=None):
arr, _ = nrrd.read(file_name)
if dtype:
arr = arr.astype(dtype)
return cls(arr, voxel_offset=voxel_offset, voxel_size=voxel_size)
def to_nrrd(self, file_name: str=None):
if file_name is None:
file_name = f'{self.bbox.to_filename()}.nrrd'
elif not file_name.endswith('.nrrd'):
file_name += f'_{self.bbox.to_filename()}.nrrd'
print('write chunk to file: ', file_name)
nrrd.write(file_name, self.array)
@classmethod
def from_tif(cls, file_name: str, voxel_offset: tuple=None, dtype: str = None,
voxel_size: tuple=None):
arr = tifffile.imread(file_name)
if dtype:
arr = arr.astype(dtype)
print(f'read tif chunk with size of {arr.shape}, voxel offset: {voxel_offset}, voxel size: {voxel_size}')
return cls(arr, voxel_offset=voxel_offset, voxel_size=voxel_size)
def to_tif(self, file_name: str=None):
if file_name is None:
file_name = f'{self.bbox.to_filename()}.tif'
print('write chunk to file: ', file_name)
if self.array.dtype==np.float32:
print(yellow('transforming data type from float32 to uint8'))
img = self.array*255
img = img.astype( np.uint8 )
else:
img = self.array
tifffile.imwrite(file_name, data=img)
@classmethod
def from_h5(cls, file_name: str,
voxel_offset: tuple=None,
dataset_path: str = None,
voxel_size: tuple = None,
cutout_start: tuple = None,
cutout_stop: tuple = None,
cutout_size: tuple = None,
zero_filling: bool = False,
dtype: str = None):
assert os.path.exists(file_name)
if cutout_start is not None and cutout_size is not None:
cutout_stop = tuple(t+s for t, s in zip(cutout_start, cutout_size))
if not h5py.is_hdf5(file_name):
assert cutout_start is not None
assert cutout_stop is not None
bbox = BoundingBox.from_list([*cutout_start, *cutout_stop])
file_name += f'{bbox.to_filename()}.h5'
if not os.path.exists(file_name) and zero_filling:
assert dtype is not None
print(f'file do not exist, will fill with zero: {file_name}')
return cls.from_bbox(bbox, dtype=dtype, voxel_size=voxel_size, all_zero=True)
with h5py.File(file_name, 'r') as f:
if dataset_path is None:
for key in f.keys():
if 'offset' not in key and 'unique' not in key:
dataset_path = key
break
dset = f[dataset_path]
if voxel_offset is None:
if 'voxel_offset' in f:
voxel_offset = tuple(f['voxel_offset'])
else:
voxel_offset = (0, 0, 0)
if voxel_size is None:
if 'voxel_size' in f:
voxel_size = tuple(f['voxel_size'])
else:
voxel_size = (1, 1, 1)
if cutout_start is None:
cutout_start = voxel_offset
if cutout_size is None:
cutout_size = dset.shape[-3:]
if cutout_stop is None:
cutout_stop = tuple(t+s for t, s in zip(cutout_start, cutout_size))
for c, v in zip(cutout_start, voxel_offset):
assert c >= v, "can only cutout after the global voxel offset."
assert len(cutout_start) == 3
assert len(cutout_stop) == 3
dset = dset[...,
cutout_start[0]-voxel_offset[0]:cutout_stop[0]-voxel_offset[0],
cutout_start[1]-voxel_offset[1]:cutout_stop[1]-voxel_offset[1],
cutout_start[2]-voxel_offset[2]:cutout_stop[2]-voxel_offset[2],
]
print(f"""read from HDF5 file: {file_name} and start with {cutout_start}, \
ends with {cutout_stop}, size is {cutout_size}, voxel size is {voxel_size}.""")
arr = np.asarray(dset)
if arr.dtype == np.dtype('<f4'):
arr = arr.astype('float32')
elif arr.dtype == np.dtype('<f8'):
arr = arr.astype('float64')
print('new chunk voxel offset: {}'.format(cutout_start))
return cls(arr, voxel_offset=cutout_start, voxel_size=voxel_size)
def to_h5(self, file_name: str, with_offset: bool=True,
chunk_size: tuple=(64,64,64),
with_unique: bool= True,
compression="gzip",
voxel_size: tuple = None):
if chunk_size:
assert len(chunk_size) == 3
if not file_name.endswith('.h5'):
file_name += self.bbox.to_filename() + '.h5'
print('write chunk to file: ', file_name)
if os.path.exists(file_name):
print(yellow(f'deleting existing file: {file_name}'))
os.remove(file_name)
with h5py.File(file_name, 'w') as f:
f.create_dataset('/main', data=self.array, chunks=chunk_size, compression=compression)
if voxel_size is None and self.voxel_size is not None:
voxel_size = self.voxel_size
if voxel_size is not None:
f.create_dataset('/voxel_size', data=voxel_size)
if with_offset and self.voxel_offset is not None:
f.create_dataset('/voxel_offset', data=self.voxel_offset)
if with_unique and self.is_segmentation:
unique = np.unique(self.array)
if unique[0]:
unique = unique[1:]
f.create_dataset('/unique_nonzeros', data = unique)
return file_name
def __array__(self):
return self.array
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.get('out', ())
for x in inputs + out:
if not isinstance(x, self._HANDLED_TYPES + (Chunk,)):
return NotImplemented
inputs = tuple(x.array if isinstance(x, Chunk) else x
for x in inputs)
if out:
kwargs['out'] = tuple(
x.array if isinstance(x, Chunk) else x
for x in out)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple:
return tuple(type(self)(x, voxel_offset=self.voxel_offset, voxel_size=self.voxel_size) for x in result)
elif method == 'at':
return None
elif isinstance(result, Number):
return result
elif isinstance(result, np.ndarray):
return type(self)(result, voxel_offset=self.voxel_offset, voxel_size=self.voxel_size)
else:
return result
def __getitem__(self, index):
return self.array[index]
def __setitem__(self, key, value):
self.array[key] = value
def __repr__(self):
return f'array: {self.array}\n voxel offset: {self.voxel_offset} \n voxel size: {self.voxel_size}'
def __eq__(self, value):
if isinstance(value, type(self)):
return np.array_equal(self.array, value.array) and np.array_equal(
self.voxel_offset, value.voxel_offset)
elif isinstance(value, Number):
return np.all(self.array==value)
elif isinstance(value, np.ndarray):
return np.all(self.array == value)
else:
raise NotImplementedError
def set_properties(self, properties: dict):
if 'voxel_offset' in properties:
self.voxel_offset = properties['voxel_offset']
if 'voxel_size' in properties:
self.voxel_size = properties['voxel_size']
@property
def properties(self) -> dict:
props = dict()
if self.voxel_offset is not None or self.voxel_offset != (0, 0, 0):
props['voxel_offset'] = self.voxel_offset
if self.voxel_size is not None or self.voxel_size != (1, 1, 1):
props['voxel_size'] = self.voxel_size
return props
@property
def slices(self) -> tuple:
return tuple(
slice(o, o + s) for o, s in zip(self.ndoffset, self.shape))
@property
def is_image(self) -> bool:
return self.array.ndim == 3 and self.array.dtype == np.uint8
@property
def is_segmentation(self) -> bool:
return self.array.ndim == 3 and (np.issubdtype(
self.array.dtype, np.integer) or np.issubdtype(
self.dtype, np.bool8)) and self.array.dtype != np.uint8
@property
def is_affinity_map(self) -> bool:
return self.array.ndim == 4 and self.shape[0] == 3 and self.array.dtype == np.float32
@property
def is_probability_map(self) -> bool:
return self.array.ndim == 4 and self.array.dtype == np.float32
@property | Apache License 2.0 |
twisted/axiom | axiom/tags.py | Catalog.tagNames | python | def tagNames(self):
return self.store.query(_TagName, _TagName.catalog == self).getColumn("name") | Return an iterator of unicode strings - the unique tag names which have
been applied objects in this catalog. | https://github.com/twisted/axiom/blob/28191ede99287e9a87c1ff561b831f7d80aaa2fe/axiom/tags.py#L83-L88 | from epsilon.extime import Time
from axiom.item import Item
from axiom.attributes import text, reference, integer, AND, timestamp
class Tag(Item):
typeName = 'tag'
schemaVersion = 1
name = text(doc="""
The short string which is being applied as a tag to an Item.
""")
created = timestamp(doc="""
When this tag was applied to the Item to which it applies.
""")
object = reference(doc="""
The Item to which this tag applies.
""")
catalog = reference(doc="""
The L{Catalog} item in which this tag was created.
""")
tagger = reference(doc="""
An optional reference to the Item which is responsible for this tag's
existence.
""")
class _TagName(Item):
typeName = 'tagname'
name = text(doc="""
The short string which uniquely represents this tag.
""", indexed=True)
catalog = reference(doc="""
The L{Catalog} item in which this tag exists.
""")
class Catalog(Item):
typeName = 'tag_catalog'
schemaVersion = 2
tagCount = integer(default=0)
def tag(self, obj, tagName, tagger=None):
if self.store.findFirst(Tag,
AND(Tag.object == obj,
Tag.name == tagName,
Tag.catalog == self)):
return
self.store.findOrCreate(_TagName, name=tagName, catalog=self)
self.tagCount += 1
Tag(store=self.store, object=obj,
name=tagName, catalog=self,
created=Time(), tagger=tagger) | MIT License |
fredhutch/proxmox-tools | prox/cmdprox.py | ssh_exec | python | def ssh_exec(user, pwd, commands, host):
if not isinstance(commands, list):
print('commands parameter in ssh_exec needs to be a list')
return False
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(
paramiko.AutoAddPolicy())
ssh.connect(host, username=user, password=pwd)
for command in commands:
stdin, stdout, stderr = ssh.exec_command(command)
for line in stdout.readlines():
print(line.strip()) | execute list of commands via ssh | https://github.com/fredhutch/proxmox-tools/blob/cfd4d7333969d3ad8af80f15be56d0d5052fee4e/prox/cmdprox.py#L949-L961 | import sys, os, subprocess, re, platform, getpass, argparse, logging, hostlist
import time, warnings, functools, random, json, requests, paramiko, socket
try:
import easygui
except:
pass
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
try:
from .pyproxmox import *
except:
from pyproxmox import *
logging.basicConfig(level=logging.WARNING)
__app__ = 'Proxmox command line deployment tool'
PROXHOST = os.getenv('PPROXHOST', 'proxa1.fhcrc.org')
REALM = os.getenv('PREALM', 'FHCRC.ORG')
LXCIMAGE = os.getenv('PLXCIMAGE', 'proxnfs:vztmpl/ubuntu-16.04-standard_16.04-1_amd64.tar.gz')
STORLOC = os.getenv('PSTORLOC', 'proxZFS')
STORNET = os.getenv('PSTORNET', 'proxnfs')
USERDB = os.getenv('PUSERDB', 'https://toolbox.fhcrc.org/json/sc_users.json')
EXCLUDEHOSTS = ['proxa5']
CHEFVERSION = '12.19.36'
homedir = os.path.expanduser("~")
def parse_arguments():
parser = argparse.ArgumentParser(prog='prox ',
description='a tool for deploying resources from proxmox ' + '(LXC containers or VMs)')
parser.add_argument( '--debug', '-g', dest='debug', action='store_true', default=False,
help="verbose output for all commands")
subparsers = parser.add_subparsers(dest="subcommand", help='sub-command help')
parser_ssh = subparsers.add_parser('assist', aliases=['gui'],
help='navigate application via GUI (experimental)')
parser_ssh = subparsers.add_parser('ssh', aliases=['connect'],
help='connect to first host via ssh')
parser_ssh.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox ssh host1 host2 host3')
parser_list = subparsers.add_parser('list', aliases=['ls', 'show'],
help='list hosts(s) with status, size and contact (optional)')
parser_list.add_argument( '--all', '-a', dest='all', action='store_true', default=False,
help="show all hosts (LXC and KVM)")
parser_list.add_argument( '--contacts', '-c', dest='contacts', action='store_true', default=False,
help="show the technical contact / owner of the machine")
parser_list.add_argument( '--snapshots', '-s', dest='listsnap', action='store_true', default=False,
help="list machine snapshots that can be rolled back")
parser_list.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox modify host1 host2 host3')
parser_start = subparsers.add_parser('start', aliases=['run'],
help='start the host(s)')
parser_start.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox start host1 host2 host3')
parser_stop = subparsers.add_parser('stop', aliases=['shutdown'],
help='stop the host(s)')
parser_stop.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox stop host1 host2 host3')
parser_destroy = subparsers.add_parser('destroy', aliases=['delete', 'rm'],
help='delete the hosts(s) from disk')
parser_destroy.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox destroy host1 host2 host3')
parser_modify = subparsers.add_parser('modify', aliases=['mod'],
help='modify the config of one or more hosts')
parser_modify.add_argument('--mem', '-m', dest='mem', action='store', default='0',
help='Memory allocation for the machine, e.g. 4G or 512')
parser_modify.add_argument('--disk', '-d', dest='disk', action='store', default='0',
help='disk storage allocated to the machine.')
parser_modify.add_argument('--cores', '-c', dest='cores', action='store', default='0',
help='Number of cores to be allocated for the machine.')
parser_modify.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox modify host1 host2 host3')
parser_snap = subparsers.add_parser('snap', aliases=['snapshot'],
help='take a snapshot of the host')
parser_snap.add_argument('--description', '-d', dest='snapdesc', action='store', default='',
help='description of the snapshot')
parser_snap.add_argument('snapname', action='store',
help='name of the snapshot')
parser_snap.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox snap host1 host2 host3')
parser_rollback = subparsers.add_parser('rollback', aliases=['rb'],
help='roll back a snapshot')
parser_rollback.add_argument('snapname', action='store',
help='name of the snapshot')
parser_rollback.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox snap host1 host2 host3')
parser_new = subparsers.add_parser('new', aliases=['create'],
help='create one or more new hosts')
parser_new.add_argument('--runlist', '-r', dest='runlist', action='store', default='',
help='a local shell script file or a command to execute after install')
parser_new.add_argument('--node', '-N', dest='node', action='store', default='',
help='Hostname of Proxmox node that will be used for install')
parser_new.add_argument('--mem', '-m', dest='mem', action='store', default='512',
help='Memory allocation for the machine, e.g. 4G or 512 Default: 512')
parser_new.add_argument('--disk', '-d', dest='disk', action='store', default='4',
help='disk storage allocated to the machine. Default: 4')
parser_new.add_argument('--cores', '-c', dest='cores', action='store', default='2',
help='Number of cores to be allocated for the machine. Default: 2')
parser_new.add_argument('--ubuntu', '-u', dest='ubuntu', action='store', default='',
help='Ubuntu version: 14.04, 16.04, 17.10 or 18.04')
parser_new.add_argument( '--store-net', '-s', dest='stornet', action='store_true', default=False,
help="use networked storage with backup (nfs, ceph) instead of local storage")
parser_new.add_argument( '--docker', '-o', dest='docker', action='store_true', default=False,
help="install latest docker-ce on new machine")
parser_new.add_argument( '--bootstrap', '-b', dest='bootstrap', action='store_true', default=False,
help="auto-configure the system using Chef.")
parser_new.add_argument( '--no-bootstrap', '-n', dest='nobootstrap', action='store_true', default=False,
help="do not auto-configure the system using Chef.")
parser_new.add_argument('hosts', action='store', default=[], nargs='*',
help='hostname(s) of VM/containers (separated by space), ' +
' example: prox new host1 host2 host3')
return parser.parse_args()
def main():
uselxc = True
usegui = False
user = getpass.getuser()
if not args.subcommand:
print('usage: prox <command> [options] host1 host2 host3')
print(' Please run "prox --help"')
return False
if args.subcommand == 'assist':
if 'DISPLAY' in os.environ.keys() or sys.platform == 'win32':
usegui = True
if args.debug:
print('Debugging ....')
print(args, l)
if args.subcommand in ['straaange', 'oppptions']:
prn("This feature is not yet implemented.", usegui)
return False
check_ssh_agent()
check_ssh_auth(user)
pwd = os.getenv('proxpw', '')
if pwd == '':
pwd = os.getenv('PROXPW', '')
if pwd == '':
pwd = getpwd("Password for '%s':" % user, usegui)
if pwd == '':
return False
loginname = user + '@' + REALM
if user == 'root':
loginname = user + '@pam'
if args.subcommand in ['ssh', 'connect']:
ret = subprocess.run("ssh -i %s/.ssh/id_rsa_prox %s"
% (homedir, args.hosts[0]), shell=True)
return True
a = prox_auth(PROXHOST, loginname, pwd, True)
if a.ticket is None:
prn('Could not get an authentication ticket. Wrong password?', usegui)
return False
p = pyproxmox(a)
pool = p.getPools()['data'][0]['poolid']
nodelist = p.getNodes()['data']
nodes = []
hosttempl = {}
templlist = []
ourmachines = {}
oursnaps = {}
if args.subcommand in ['list', 'ls', 'show']:
if args.contacts or args.listsnap:
prn("please wait ...")
for n in nodelist:
node = n['node']
if node in EXCLUDEHOSTS:
continue
nodes.append(node)
try:
conts = p.getContainers(node)['data']
except:
continue
for c in conts:
descr = ''
if args.subcommand in ['list', 'ls', 'show']:
if args.contacts:
descr = parse_contact(p,node,c['vmid'])
if args.listsnap:
shots = p.getContainerSnapshots(node,c['vmid'])['data']
oursnaps[int(c['vmid'])] = shots
ourmachines[int(c['vmid'])] = [c['vmid'], c[
'name'], c['type'], c['status'], node, int(c['maxmem'])/
1024/1024/1024, c['cpus'], int(c['maxdisk'])/1024/1024/1024,
descr]
if args.subcommand in ['list', 'ls', 'show']:
if args.all == True:
vms = p.getNodeVirtualIndex(node)['data']
for v in vms:
if args.contacts:
descr = parse_contact_vm(p,node,v['vmid'])
if v['template'] == 1:
hosttempl[v['name']] = [node, v['vmid']]
templlist.append(v['name'])
else:
ourmachines[int(v['vmid'])] = [v['vmid'], v[
'name'], 'kvm', v['status'], node, '', '', 0, descr]
vmids = []
if args.hosts != []:
vmids = getvmids(ourmachines, args.hosts)
print('')
if args.subcommand in ['list', 'ls', 'show'] or (
args.subcommand in [
'start', 'stop', 'destroy', 'modify', 'mod'] and not vmids):
prn(' {0: <5} {1: <20} {2: <5} {3: <9} {4: <8} {5: <5} {6: <3} {7: <5} {8: <10}'.format(
'vmid', 'name', 'type', 'status', 'node' , 'mem', 'cpu', 'disk', ''))
prn(' {0: <5} {1: <20} {2: <5} {3: <9} {4: <8} {5: <5} {6: <3} {7: <5} {8: <10}'.format(
'----', '--------------------', '----', '--------', '-------', '-----', '---', '-----', ''))
recip = []
for k, v in sorted(ourmachines.items()):
prn(' {0: <5} {1: <20.20} {2: <5} {3: <9} {4: <8} {5: <5} {6: <3} {7: <5.0f} {8: <10}'.format(*v))
recip.append(v[-1])
if args.subcommand in ['list', 'ls', 'show']:
if args.listsnap and k in oursnaps.keys():
for snap in oursnaps[k]:
sparent = ''
sdescription = ''
if 'parent' in snap.keys():
sparent = snap['parent']
if 'description' in snap.keys():
sdescription = snap['description']
sdescription = sdescription.replace('\n', ' ')
if snap['name'] != 'current':
prn(' snapshot: {:<15} parent: {:<15} descr: {:<25} {:<10}'.format(
snap['name'] , sparent, sdescription, ''))
if args.subcommand in ['list', 'ls', 'show']:
if args.contacts:
recip = filter(None,uniq(recip))
prn("\nContact list: " + '; '.join(recip))
if args.subcommand in ['assist', 'gui']:
if not usegui:
print('running "prox assist" command which will guide you '
'through a number of choices, however no GUI is available')
return False
chce = []
msg = ("Running 'prox assist'! Please select from the list "
"below or 'Cancel' and run 'prox --help' for other options. "
"Example: 'prox new mybox1 mybox2 mybox3' will create "
"3 Linux machines.")
chce = easygui.choicebox(msg, __app__,['New linux machine',
'New docker host', 'New virtual machine', 'List machines',
'Start machine', 'Stop machine', 'Modify machine',
'Destroy machine'])
if not chce:
return False
if chce.startswith('New '):
args.subcommand = 'new'
if chce != "New linux machine":
uselxc = False
else:
msg = ("Please select the size of your machine. "
"Memory sizes are in MB, unless you add G "
"(e.g. 1G). Disk sizes are always in GB\n."
"Please start small, you can always resize."
)
title = "Configuring Machine Size"
fieldNames = ["Memory", "# Cores", "Disk Size"]
fieldValues = ['512M', '2', '4G']
fieldValues = easygui.multenterbox(msg, title,
fieldNames, fieldValues)
if fieldValues:
args.mem, args.cores, args.disk = fieldValues
else:
return False
elif chce.startswith('List '):
args.subcommand = 'list'
elif chce.startswith('Start '):
args.subcommand = 'start'
elif chce.startswith('Stop '):
args.subcommand = 'stop'
elif chce.startswith('Modify '):
args.subcommand = 'modify'
elif chce.startswith('Destroy '):
args.subcommand = 'destroy'
else:
args.subcommand = 'assist'
if args.subcommand in ['new', 'create', 'modify', 'mod', 'assist', 'gui']:
lxccores = re.sub("[^0-9^.]", "", args.cores)
lxcdisk = int(re.sub("[^0-9^.]", "", args.disk))
lxcmem = int(re.sub("[^0-9^.]", "", args.mem))
if "G" in args.mem.upper() or lxcmem <= 64:
lxcmem = lxcmem*1024
if args.subcommand in ['start', 'run']:
if not vmids:
vmids.append(input('\nenter vmid to start:'))
if vmids[-1] == '':
prn('vmid is required', usegui)
return False
start_machines(p, ourmachines, vmids, usegui=False)
pingwait(ourmachines[vmids[0]][1],1)
if args.subcommand in ['stop', 'shutdown']:
if not vmids:
vmids.append(input('\nnot found, enter vmid to stop:'))
if vmids[-1] == '':
prn("no vmid entered", usegui)
return False
for vmid in vmids:
machine = ourmachines[vmid]
if machine[3] == 'stopped':
prn('Machine "%s" is already stopped!' % machine[1], usegui)
continue
if machine[2] == 'kvm':
ret = p.stopVirtualMachine(machine[4], vmid)['data']
if ret:
print(ret)
else:
prn("host with id %s not yet stopped!" % vmid, usegui)
for i in range(15):
time.sleep(1)
ret = p.getVirtualStatus(machine[4], vmid)['data']
prn(
'Machine {0: <4}: {1}, cpu: {2:.0%} '.format(
vmid, ret['status'], ret['cpu']))
if ret['status'] == 'stopped':
break
else:
ret = p.stopLXCContainer(machine[4], vmid)['data']
print(ret)
if args.subcommand in ['modify', 'mod']:
if not vmids:
vmids.append(int(input('\nnot found, enter vmid to modify:')))
if vmids[-1] == '':
prn("no vmid entered", usegui)
return False
for vmid in vmids:
machine = ourmachines[vmid]
if machine[2] == 'kvm':
prn("currently cannot modify virtual machines.", usegui)
else:
ccfg = p.getContainerConfig(machine[4], vmid)['data']
rootstr=ccfg['rootfs']
post_data = {}
post_data2 = {}
if ccfg['cpulimit'] != lxccores and lxccores != '0':
post_data['cpulimit'] = lxccores
if ccfg['memory'] != lxcmem and lxcmem > 0:
post_data['memory'] = lxcmem
if machine[3] == 'stopped':
if lxcdisk > 0:
post_data['rootfs'] = re.sub(r",size=[0-9]+G", ",size=%sG"
% lxcdisk, rootstr)
else:
post_data2 = {}
if lxcdisk > 0:
post_data2['disk'] = 'rootfs'
post_data2['size'] = '%sG' % lxcdisk
ret = p.resizeLXCContainer(machine[4], vmid,
post_data2)['data']
if iserr(ret,400):
prn ('Error 40X, could not resize disk. ' 'You may need to shutdown the machine to resize a disk', usegui)
elif iserr(ret,500):
prn ('Error 50X, could not resize disk', usegui)
else:
pass
if post_data != {}:
ret = p.setLXCContainerOptions(machine[4], vmid,
post_data)['data']
if iserr(ret,400):
prn ('Error 40X, could not set machine options', usegui)
elif iserr(ret,500):
prn ('Error 50X, could not set machine options', usegui)
if post_data != {} or post_data2 != {}:
ret = p.getContainerConfig(machine[4], vmid)['data']
print ('Machine reconfigured. New settings '
'cores: %s, mem: %s MB, rootfs: %s '
% (ret['cpulimit'], ret['memory'],
ret['rootfs'])
)
else:
prn('No changes made', usegui)
if args.subcommand in ['destroy', 'delete']:
if not vmids:
vmids.append(input('\nnot found, enter vmid to destroy:'))
if vmids[-1] == '':
return False
for vmid in vmids:
if not int(vmid) in ourmachines:
prn('machine with id %s does not exist' % vmid)
return False
machine = ourmachines[vmid]
if machine[3] != 'stopped':
print(
'Machine "%s" needs to be stopped before it can be destroyed!' %
machine[1])
continue
if machine[2] == 'kvm':
ret = p.deleteVirtualMachine(machine[4], vmid)['data']
print(ret)
else:
ret = p.deleteLXCContainer(machine[4], vmid)['data']
print(ret)
hip = '127.0.0.1'
try:
hip = socket.gethostbyname(machine[1])
except:
pass
ret = subprocess.run("ssh-keygen -R %s,%s > /dev/null 2>&1"
% (machine[1], hip), shell=True)
if args.subcommand in ['snap', 'snapshot']:
if not vmids:
vmids.append(input('\nnot found, enter vmid to snapshot:'))
if vmids[-1] == '':
return False
for vmid in vmids:
if not int(vmid) in ourmachines:
prn('machine with id %s does not exist' % vmid)
return False
machine = ourmachines[vmid]
if machine[2] == 'kvm':
print('KVM machines are currently not supported')
continue
else:
post_data = {
'description': args.snapdesc,
'snapname': args.snapname}
ret = p.snapshotLXCContainer(machine[4],vmid,post_data)['data']
print(ret)
if args.subcommand in ['rollback', 'rb']:
if not vmids:
vmids.append(input('\nnot found, enter vmid to snapshot:'))
if vmids[-1] == '':
return False
for vmid in vmids:
if not int(vmid) in ourmachines:
prn('machine with id %s does not exist' % vmid)
return False
machine = ourmachines[vmid]
if machine[2] == 'kvm':
print('KVM machines are currently not supported')
continue
else:
post_data = {
'snapname': args.snapname}
ret = p.rollbackSnapshotLXCContainer(machine[4],vmid,args.snapname)['data']
print(ret)
if args.subcommand in ['new', 'create', 'make']:
myhosts = hostdedupe(ourmachines, args.hosts)
if len(myhosts) == 0:
msg=("enter the hostname(s) you want to deploy (separated by "
"space, no domain name): ")
myhosts = def_input(msg, usegui)
myhosts = myhosts.split(' ')
if not myhosts or myhosts == '':
prn('hostname(s) are required', usegui)
return False
desc = 'testing'
if len(args.hosts) == 0:
msg=("What is the description/purpose of the system(s)? (e.g. "
"testing, development, other")
desc = def_input(msg, 'testing', usegui)
storage = STORLOC
if len(args.hosts) == 0:
if yn_choice(
"Do you want to use local storage on host (for better performance) ?") == 'n':
storage = STORNET
if args.stornet:
storage = STORNET
newhostids = []
if uselxc:
newcontid = 0
for h in myhosts:
if hostexists(h):
if not yn_choice('Host "%s" already exists in DNS. ' 'This hostname will not be used. Do you still ' 'want to continue?' % h, default='n'):
return False
if args.node == '':
mynode = random.choice(nodes)
else:
mynode = args.node
print('installing container on node "%s" !!! ' % mynode)
oldcontid = newcontid
for i in range(10):
newcontid = p.getClusterVmNextId()['data']
if oldcontid != newcontid:
break
time.sleep(1)
prn(
'creating host %s with ID %s in pool %s' %
(h, newcontid, pool))
try:
mydummy = LXCIMAGE
except:
LXCIMAGE = 'proxnfs:vztmpl/ubuntu-16.04-standard_16.04-1_amd64.tar.gz'
if args.ubuntu == '14.04':
LXCIMAGE = 'proxnfs:vztmpl/ubuntu-14.04-standard_14.04-1_amd64.tar.gz'
if args.ubuntu == '16.04':
LXCIMAGE = 'proxnfs:vztmpl/ubuntu-16.04-standard_16.04-1_amd64.tar.gz'
elif args.ubuntu == '17.10':
LXCIMAGE = 'proxnfs:vztmpl/ubuntu-17.10-standard_17.10-1_amd64.tar.gz'
elif args.ubuntu == '18.04':
LXCIMAGE = 'proxnfs:vztmpl/ubuntu-18.04-standard_18.04-1_amd64.tar.gz'
post_data = {
'ostemplate': LXCIMAGE,
'cpulimit': lxccores,
'memory': lxcmem,
'rootfs': lxcdisk,
'vmid': newcontid,
'description': build_notes(user, pool, desc),
'hostname': h,
'password': pwd,
'storage': storage,
'pool': pool,
'net0': 'name=eth0,bridge=vmbr0,ip=dhcp'}
ret = p.createLXCContainer(mynode, post_data)['data']
print(' ...%s' % ret)
newhostids.append(int(newcontid))
ourmachines[int(newcontid)] = [newcontid, h, 'lxc',
'stopped', mynode]
start_machines(p, ourmachines, newhostids, usegui=False)
pingwait(myhosts[-1],1)
idrsapub = ''
if os.path.exists('%s/.ssh/id_rsa_prox.pub' % homedir):
idrsapub = '%s/.ssh/id_rsa_prox.pub' % homedir
for h in myhosts:
if idrsapub != '':
ssh_exec('root', pwd, ['mkdir -p .ssh',], h)
sftp_put('root', pwd, idrsapub, '.ssh/id_rsa_prox.pub', h)
ssh_exec('root', pwd, ['cat .ssh/id_rsa_prox.pub >> .ssh/authorized_keys',], h)
ssh_exec('root', pwd, ['echo "session required pam_mkhomedir.so skel=/etc/skel/ umask=0022" >> /etc/pam.d/common-account',], h)
ssh_exec('root', pwd, ['echo "%s ALL=(ALL:ALL) NOPASSWD:ALL" > /etc/sudoers.d/zz_%s'
% (user, user), 'chmod 440 /etc/sudoers.d/%s' % user], h)
hip = '127.0.0.1'
try:
hip = socket.gethostbyname(h)
except:
pass
ret = subprocess.run("ssh-keygen -R %s,%s > /dev/null 2>&1"
% (h, hip), shell=True)
ret = subprocess.run("ssh-keyscan -t rsa %s >> %s/.ssh/known_hosts 2>/dev/null"
% (h, homedir), shell=True)
if args.docker:
print('\ninstalling docker....')
install_docker(pwd, h)
print ('\nfixing docker and restarting services...')
fixcmds = ['sed -i "s/^ExecStartPre=\/sbin\/modprobe overlay/ExecStartPre=-\/sbin\/modprobe overlay/" /lib/systemd/system/containerd.service']
fixcmds.append('systemctl daemon-reload')
fixcmds.append('systemctl restart containerd docker')
ssh_exec('root', pwd, fixcmds, h)
loginuser='root@'
dobootstrap = False
if args.bootstrap:
dobootstrap = True
elif args.nobootstrap:
dobootstrap = False
else:
if yn_choice("\nDo you want to install the SciComp base config (e.g. user login) ?"):
dobootstrap = True
if dobootstrap:
loginuser=''
if os.path.exists('%s/.chef' % homedir):
ret = easy_par(run_chef_knife, myhosts)
else:
func = functools.partial(run_chef_client, pwd)
ret = easy_par(func, myhosts)
if idrsapub != '':
for h in myhosts:
ssh_exec(user, pwd, ['mkdir -p .ssh',], h)
sftp_put(user, pwd, idrsapub, '.ssh/id_rsa_prox.pub', h)
ssh_exec(user, pwd, ['cat .ssh/id_rsa_prox.pub >> .ssh/authorized_keys',], h)
else:
run_chef_knife('hostname')
if args.runlist != '':
func = functools.partial(runlist_exec, pwd)
ret = easy_par(func, myhosts)
prn("**** login: ssh %s%s" % (loginuser,myhosts[0]))
ret = subprocess.run("ssh %s%s"
% (loginuser, myhosts[0]), shell=True)
else:
myimage = args.image
if myimage == '':
if not usegui:
msg="Please enter a template name"
myimage = def_input(msg, ','.join(templlist))
else:
msg=("Please enter a template name or just hit enter "
"to select from a list:")
myimage = easygui.choicebox(msg, __app__,
','.join(templlist))
if myimage == ','.join(templlist) and usegui:
myimage = easygui.choicebox(
'You must select a image or template name', __app__, templlist)
if not myimage or myimage == ','.join(templlist) or myimage == '':
prn('image is required')
return False
notes = build_notes(user, pool)
for h in myhosts:
newvmid = p.getClusterVmNextId()['data']
prn(
'creating host %s with VM ID %s in pool %s' %
(h, newvmid, pool))
post_data = {
'newid': newvmid,
'name': h,
'description': notes,
'pool': pool
}
ret = p.cloneVirtualMachine(
hosttempl[myimage][0],
hosttempl[myimage][1],
post_data)['data']
print(' ...' + ret)
newhostids.append(newvmid)
if yn_choice("Do you want to start the machine(s) now?"):
for n in newhostids:
print('Starting host %s ..' % n)
ret = p.startVirtualMachine(
hosttempl[myimage][0], n)['data']
print(' ...' + ret)
pingwait(myhosts[0],7)
else:
prn('Please start the host with "prox start <hostname>"', usegui)
print('')
def parse_contact(p,node,vmid):
found = ''
cfg = p.getContainerConfig(node,vmid)['data']
if 'description' in cfg.keys() :
m = re.search('technical_contact: (.+?)@', cfg['description'])
if m:
found = m.group(1)
return found
def parse_contact_vm(p,node,vmid):
found = ''
cfg = p.getVirtualConfig(node,vmid)['data']
if 'description' in cfg.keys() :
m = re.search('technical_contact: (.+?)@', cfg['description'])
if m:
found = m.group(1)
return found
def start_machines(p, ourmachines, vmids, usegui=False):
for vmid in vmids:
machine = ourmachines[vmid]
ret = None
sleeptime = 1
if machine[3] == 'running':
prn('Machine "%s" is already running!' % machine[1], usegui)
continue
print('Starting host %s ..' % vmid)
if machine[2] == 'kvm':
ret = p.startVirtualMachine(machine[4], vmid)['data']
print('...%s' % ret)
for i in range(25):
time.sleep(sleeptime)
ret = p.getVirtualStatus(machine[4], vmid)['data']
print('Machine {0: <4}: {1}, cpu: {2:.0%} '.format(
vmid, ret['status'], ret['cpu']))
if ret['cpu'] > 0.2:
break
else:
ret = None
for i in range(15):
ret = p.startLXCContainer(machine[4], vmid)['data']
if isinstance(ret, str):
print(' ...%s' % ret)
break
time.sleep(sleeptime)
sleeptime+=1
print('starting host %s, re-try %s' % (vmid, i))
if not isinstance(ret, str):
print("Failed starting host id %s !" % vmid)
continue
sleeptime = 1
for i in range(15):
time.sleep(sleeptime)
sleeptime+=1
ret = p.getContainerStatus(machine[4], vmid)['data']
if not isinstance(ret, int):
prn(
'Machine {0: <4}: {1}, cpu: {2:.0%} '.format(
vmid, ret['status'], ret['cpu']))
if ret['status'] == 'running':
break
else:
print(' ...Error %s' % ret)
if isinstance(ret, int):
prn("Failed starting host id %s !" % vmid)
continue
def run_chef_knife(host):
knife = "knife bootstrap --no-host-key-verify " "--ssh-user root --ssh-identity-file %s/.ssh/id_rsa_prox " "--environment scicomp_prod " "--bootstrap-version %s " '--server-url "https://chef.fhcrc.org/organizations/cit" ' "--run-list 'role[cit-base]','role[scicomp_base]' " "--node-name %s " "%s" % (homedir,CHEFVERSION,host,host)
if host == 'hostname':
print('you can also execute this knife command manually:')
print('************************************')
print(knife)
print('************************************')
else:
if os.path.exists('%s/.chef' % homedir):
print('*** executing knife command:')
print(knife)
ret = subprocess.run(knife, shell=True)
else:
print ('chef/knife config dir %s/.chef does not exist.' % homedir)
def run_chef_client(pwd, host):
chefclient = "chef-client --environment scicomp_prod " "--validation_key /root/.chef/cit-validator.pem " "--runlist role[cit-base],role[scicomp_base] "
print ('\nbootstrapping chef-client configs on %s ... please wait a few minutes ... !!!\n' % host)
cmdlist = ['dpkg -i /opt/chef/tmp/chef_amd64.deb', chefclient]
ssh_exec('root', pwd, cmdlist, host)
def check_ssh_auth(user):
if os.path.exists('%s/.ssh/id_rsa_prox' % homedir):
return True
else:
ret = subprocess.run("ssh-keygen -q -t rsa -f %s/.ssh/id_rsa_prox -C prox-%s -N ''"
% (homedir, user), shell=True)
def check_ssh_agent():
SSH_AUTH_SOCK = os.getenv('SSH_AUTH_SOCK', '')
if SSH_AUTH_SOCK == '':
print("\nYou don't have ssh-agent running, please execute this command:")
if os.path.exists('%s/.ssh/id_rsa' % homedir):
print("eval $(ssh-agent -s); ssh-add\n")
else:
print("eval $(ssh-agent -s)\n")
else:
if os.path.exists('%s/.ssh/id_rsa_prox' % homedir):
ret = subprocess.run("ssh-add %s/.ssh/id_rsa_prox > /dev/null 2>&1"
% homedir, shell=True)
def runlist_exec(pwd, myhost):
prn('***** Executing run list %s on host %s........' % (args.runlist, myhost))
rlist = os.path.expanduser(args.runlist.strip())
if os.path.exists(rlist):
with open(rlist) as f:
commands = f.read().splitlines()
prn('*** Running commands %s' % commands)
ssh_exec('root', pwd, commands, myhost)
else:
ssh_exec('root', pwd, [args.runlist.strip(),], myhost)
def install_docker(pwd, myhost):
cmd = []
cmd.append('apt-get update')
cmd.append('apt-get install -y apt-transport-https ca-certificates curl software-properties-common')
cmd.append('apt-get install -y gpg-agent')
cmd.append('curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -')
cmd.append('add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"')
cmd.append('apt-get update')
cmd.append('apt-get install -y docker-ce')
ssh_exec('root', pwd, cmd, myhost) | Apache License 2.0 |
derfies/panda3d-editor | src/pandaEditor/ui/mainFrame.py | MainFrame.OnFileSave | python | def OnFileSave(self, evt, saveAs=False):
if self.base.doc.file_path is None or saveAs:
filePath = self._GetSavePath()
if filePath:
self.base.doc.file_path = filePath
else:
return
self.base.doc.save() | Save the document. | https://github.com/derfies/panda3d-editor/blob/a50939bd4bfa5c22d27a9ddee090717e8d95f404/src/pandaEditor/ui/mainFrame.py#L248-L262 | import os
import sys
import wx
import wx.aui
import wx.propgrid as wxpg
from pubsub import pub
import panda3d.core as pm
import p3d
from direct.showbase.PythonUtil import getBase as get_base
from wxExtra import utils as wxUtils, ActionItem
from wxExtra.logpanel import LogPanel
from wxExtra import AuiManagerConfig, CustomAuiToolBar, CustomMenu
from pandaEditor import commands as cmds
from pandaEditor.constants import MODEL_EXTENSIONS
from pandaEditor.ui.viewport import Viewport
from pandaEditor.ui.resourcesPanel import ResourcesPanel
from pandaEditor.ui.sceneGraphPanel import SceneGraphPanel
from pandaEditor.ui.propertiesPanel import PropertiesPanel
from pandaEditor.ui.preferenceseditor import PreferencesEditor
from pandaEditor.ui.createdialog import CreateDialog
FRAME_TITLE = 'Panda Editor 0.1'
TBAR_ICON_SIZE = (24, 24)
WILDCARD_SCENE = '.xml|*.xml'
WILDCARD_P3D = '.p3d|*.p3d'
ID_FILE_NEW = wx.NewId()
ID_FILE_OPEN = wx.NewId()
ID_FILE_SAVE = wx.NewId()
ID_FILE_SAVE_AS = wx.NewId()
ID_FILE_IMPORT = wx.NewId()
ID_FILE_PROJ = wx.NewId()
ID_PROJ_NEW = wx.NewId()
ID_PROJ_SET = wx.NewId()
ID_PROJ_BUILD = wx.NewId()
ID_EDIT_UNDO = wx.NewId()
ID_EDIT_REDO = wx.NewId()
ID_EDIT_GROUP = wx.NewId()
ID_EDIT_UNGROUP = wx.NewId()
ID_EDIT_PARENT = wx.NewId()
ID_EDIT_UNPARENT = wx.NewId()
ID_EDIT_DUPLICATE = wx.NewId()
ID_EDIT_WRITE_BAM_FILE = wx.NewId()
ID_EDIT_EXPORT_OBJ = wx.NewId()
ID_MODIFY_PHYSICS = wx.NewId()
ID_XFORM_SEL = wx.NewId()
ID_XFORM_POS = wx.NewId()
ID_XFORM_ROT = wx.NewId()
ID_XFORM_SCL = wx.NewId()
ID_XFORM_WORLD = wx.NewId()
ID_VIEW_GRID = wx.NewId()
ID_VIEW_TOP = wx.NewId()
ID_VIEW_BOTTOM = wx.NewId()
ID_VIEW_FRONT = wx.NewId()
ID_VIEW_BACK = wx.NewId()
ID_VIEW_RIGHT = wx.NewId()
ID_VIEW_LEFT = wx.NewId()
ID_CREATE_PREFAB = wx.NewId()
ID_LAYOUT_GAME = wx.NewId()
ID_LAYOUT_EDITOR = wx.NewId()
ID_LAYOUT_BOTH = wx.NewId()
ID_WIND_PANEL = wx.NewId()
ID_WIND_FILE_TOOLBAR = wx.NewId()
ID_WIND_EDIT_TOOLBAR = wx.NewId()
ID_WIND_MODIFY_TOOLBAR = wx.NewId()
ID_WIND_XFORM_TOOLBAR = wx.NewId()
ID_WIND_LAYOUT_TOOLBAR = wx.NewId()
ID_WIND_VIEWPORT = wx.NewId()
ID_WIND_SCENE_GRAPH = wx.NewId()
ID_WIND_LIGHT_LINKER = wx.NewId()
ID_WIND_PROPERTIES = wx.NewId()
ID_WIND_RESOURCES = wx.NewId()
ID_WIND_LOG = wx.NewId()
ID_WIND_PREFERENCES = wx.NewId()
ID_PLAY = wx.NewId()
ID_PAUSE = wx.NewId()
class MainFrame(wx.Frame):
def __init__(self, base, *args, **kwargs):
super().__init__(*args, **kwargs)
self.base = base
self.preMaxPos = None
self.preMaxSize = None
self.Bind(wx.EVT_CLOSE, self.OnClose)
self.Bind(wx.EVT_KEY_UP, p3d.wxPanda.OnKeyUp)
self.Bind(wx.EVT_KEY_DOWN, p3d.wxPanda.OnKeyDown)
self.Bind(wx.EVT_SIZE, self.OnSize)
self.Bind(wx.EVT_MOVE, self.OnMove)
pub.subscribe(self.OnUpdate, 'Update')
self.cfg = wx.Config('pandaEditor')
self.BuildFileActions()
self.BuildEditActions()
self.BuildModifyActions()
self.BuildXformActions()
self.BuildLayoutActions()
self.pnlViewport = Viewport(self.base, self)
self.pnlSceneGraph = SceneGraphPanel(self)
self.pnlProps = PropertiesPanel(self)
self.pnlRsrcs = ResourcesPanel(self)
self.pnlLog = LogPanel(self)
self.BuildAuiManager()
self.mb = wx.MenuBar()
self.BuildViewMenu()
self.BuildCreateMenu()
self.BuildWindowMenu()
self.BuildMenuBar()
self.RebuildPanelMenu()
self.OnUpdateWindowMenu(None)
def _GetSavePath(self):
defaultDir = ''
defaultFile = ''
if self.base.doc.file_path is not None:
defaultDir, defaultFile = os.path.split(self.base.doc.file_path)
elif self.base.project.path is not None:
defaultDir = self.base.project.GetScenesDirectory()
filePath = wxUtils.file_save_dialog('Save Scene As', WILDCARD_SCENE, defaultDir=defaultDir, defaultFile=defaultFile)
if filePath and os.path.exists(filePath):
msg = ''.join(['The file "', filePath, '" already exists.\nDo you want to replace it?'])
if wxUtils.YesNoDialog(msg, 'Replace File?', wx.ICON_WARNING) == wx.ID_NO:
return False
return filePath
def _CheckForSave(self):
if self.base.doc.dirty:
msg = ''.join(['The document "', self.base.doc.title, '" was modified after last save.\nSave changes before continuing?'])
result = wxUtils.YesNoCancelDialog(msg, 'Save Changes?', wx.ICON_WARNING)
if result == wx.ID_YES:
self.OnFileSave(None)
elif result == wx.ID_CANCEL:
return False
return True
def OnClose(self, evt):
if not self._CheckForSave():
evt.Veto()
return
self.auiCfg.Save()
if self.preMaxPos is not None:
self.auiCfg.SavePosition(*self.preMaxPos)
if self.preMaxSize is not None:
self.auiCfg.SaveSize(*self.preMaxSize)
if self.base.project.path is not None:
self.cfg.Write('projDirPath', self.base.project.path)
self.Show(False)
try:
base
except NameError:
sys.exit()
base.userExit()
def OnFileNew(self, evt):
if not self._CheckForSave():
return
self.base.CreateScene()
self.base.doc.on_refresh()
def OnFileOpen(self, evt, filePath=None):
if not self._CheckForSave():
return
if filePath is None:
scnsDirPath = self.base.project.GetScenesDirectory()
if scnsDirPath is None:
scnsDirPath = os.getcwd()
filePath = wxUtils.file_open_dialog('Open Scene', WILDCARD_SCENE,
defaultDir=scnsDirPath)
if filePath:
self.base.CreateScene(filePath)
self.base.doc.load() | MIT License |
obi-wan3/ob13-cogs | mentionhelp/mentionhelp.py | MentionHelp._mention_help | python | async def _mention_help(self, ctx: commands.Context): | Send a message when a user mentions the bot (with no other text). | https://github.com/obi-wan3/ob13-cogs/blob/716527f8581e0345802ea2626d43324f87edf941/mentionhelp/mentionhelp.py#L79-L80 | import re
import discord
from redbot.core import commands, Config
class MentionHelp(commands.Cog):
def __init__(self, bot):
self.bot = bot
self.config = Config.get_conf(self, 14000605, force_registration=True)
default_guild = {
"toggle": True
}
default_global = {
"toggle": True,
"message": None,
"embed": False
}
self.config.register_guild(**default_guild)
self.config.register_global(**default_global)
@commands.Cog.listener("on_message_without_command")
async def _message_listener(self, message: discord.Message):
if (
message.author.bot or
not await self.config.toggle()
):
return
if message.guild and (
await self.bot.cog_disabled_in_guild(self, message.guild) or
not await self.config.guild(message.guild).toggle()
):
return
mention = re.compile(rf"<@!?{self.bot.user.id}>")
destination = message.channel if message.guild else message.author
if message.guild and not destination.permissions_for(message.guild.me).send_messages:
return
to_send = await self.config.message()
if mention.fullmatch(message.content.strip()) and self.bot.user.id in [u.id for u in message.mentions] and to_send:
if (await self.config.embed()) and ((not message.guild) or destination.permissions_for(message.guild.me).embed_links):
return await destination.send(embed=discord.Embed(description=to_send, color=await self.bot.get_embed_color(destination)))
return await destination.send(to_send)
@commands.group(name="mentionhelp") | MIT License |
medtagger/medtagger | backend/medtagger/repositories/label_tags.py | enable | python | def enable(label_tag_key: str) -> None:
enabling_query = LabelTag.query.filter(LabelTag.key == label_tag_key)
updated = enabling_query.update({'disabled': False}, synchronize_session='fetch')
if not updated:
raise InternalErrorException(f'Label Tag "{label_tag_key}" was not enabled due to unknown database error.') | Enable existing Label Tag. | https://github.com/medtagger/medtagger/blob/8b7575e55764a95d2040f3b9bcd23b6ff846ecaa/backend/medtagger/repositories/label_tags.py#L75-L80 | from typing import List
from medtagger.database import db_transaction_session
from medtagger.database.models import LabelTag
from medtagger.definitions import LabelTool
from medtagger.exceptions import InternalErrorException
from medtagger.types import TaskID
def get_all_tags(include_disabled: bool = False) -> List[LabelTag]:
query = LabelTag.query
if not include_disabled:
query = query.filter(~LabelTag.disabled)
return query.order_by(LabelTag.key).all()
def get_label_tag_by_key(label_tag_key: str) -> LabelTag:
return LabelTag.query.filter(LabelTag.key == label_tag_key).one()
def add_new_tag(key: str, name: str, tools: List[LabelTool], task_id: TaskID) -> LabelTag:
label_tag = LabelTag(key, name, tools)
label_tag.task_id = task_id
with db_transaction_session() as session:
session.add(label_tag)
return label_tag
def delete_tag_by_key(key: str) -> None:
with db_transaction_session() as session:
session.query(LabelTag).filter(LabelTag.key == key).delete()
def update(key: str, name: str = None, tools: List[LabelTool] = None, task_id: TaskID = None) -> LabelTag:
label_tag = get_label_tag_by_key(key)
if name:
label_tag.name = name
if tools:
label_tag.tools = tools
if task_id:
label_tag.task_id = task_id
with db_transaction_session() as session:
session.add(label_tag)
return label_tag
def disable(label_tag_key: str) -> None:
disabling_query = LabelTag.query.filter(LabelTag.key == label_tag_key)
updated = disabling_query.update({'disabled': True}, synchronize_session='fetch')
if not updated:
raise InternalErrorException(f'Label Tag "{label_tag_key}" was not disabled due to unknown database error.') | Apache License 2.0 |
linmx0130/ya_mxdet | train_faster_rcnn.py | train_dataset | python | def train_dataset():
train_dataset = VOCDataset(annotation_dir=cfg.annotation_dir,
img_dir=cfg.img_dir,
dataset_index=cfg.dataset_index,
transform=train_transformation,
resize_func=img_resize)
return train_dataset | prepare a custom dataset
return: train_dataset | https://github.com/linmx0130/ya_mxdet/blob/eaa6de7faf819f3720d8dac64c57a42dec38eed7/train_faster_rcnn.py#L37-L47 | from faster_rcnn.config import cfg
from VOCDataset import VOCDataset
from faster_rcnn.faster_rcnn import FasterRCNN
import mxnet as mx
from faster_rcnn.utils import random_flip, imagenetNormalize, img_resize, random_square_crop, select_class_generator, bbox_inverse_transform, softmax_celoss_with_ignore
from faster_rcnn.rpn_gt_opr import rpn_gt_opr
from faster_rcnn.rpn_proposal import proposal_train
import os
import argparse
import logging
import time
def logging_system():
global args
logger = logging.getLogger("training")
logger.setLevel(logging.INFO)
fh = logging.FileHandler(os.path.join(args.save_path, args.logger), 'w')
formatter = logging.Formatter(
'[%(asctime)s - %(name)s - %(filename)s:%(lineno)d - %(levelname)s] %(message)s'
)
fh.setFormatter(formatter)
logger.addHandler(fh)
ch = logging.StreamHandler()
logger.addHandler(ch)
return logger
def train_transformation(data, label):
data, label = random_flip(data, label)
data = imagenetNormalize(data)
return data, label | MIT License |
usc-isi-i2/rltk | rltk/record.py | remove_raw_object | python | def remove_raw_object(cls):
cls._remove_raw_object = True
return cls | Decorator for Record class.
If a Record class is decorated, raw_object will be removed once all mark properties are cached. | https://github.com/usc-isi-i2/rltk/blob/aee10ed5dd561583e60db3373ed82fe1208da1e9/rltk/record.py#L75-L81 | import re
from typing import Callable
re_record_id = re.compile(r'^[^*]{1,255}$')
re_valid_property_name = re.compile(r'^[A-Za-z_]{1}[\w]*$')
class Record(object):
_remove_raw_object = False
def __init__(self, raw_object):
self.raw_object = raw_object
@property
def id(self):
raise NotImplementedError
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return self.id == other.id
class cached_property(property):
def __init__(self, func):
self.func = func
def __get__(self, obj, cls):
if obj is None:
return self
cached_name = self.func.__name__
if cached_name not in obj.__dict__:
obj.__dict__[cached_name] = self.func(obj)
value = obj.__dict__.get(cached_name)
return value
def __reduce__(self):
return cached_property.__new__, (cached_property,), {'func': self.func} | MIT License |
google-research/long-range-arena | lra_benchmarks/models/reformer/reformer.py | ReformerDualEncoder.apply | python | def apply(self,
inputs1,
inputs2,
vocab_size=None,
inputs1_positions=None,
inputs2_positions=None,
inputs1_segmentation=None,
inputs2_segmentation=None,
use_bfloat16=False,
emb_dim=512,
num_heads=8,
num_layers=6,
qkv_dim=512,
mlp_dim=2048,
max_len=2048,
train=False,
dropout_rate=0.1,
attention_dropout_rate=0.1,
classifier=True,
classifier_pool='CLS',
num_classes=2,
interaction=None):
encoder = ReformerEncoder.shared(
inputs_positions=inputs1_positions,
inputs_segmentation=inputs1_segmentation,
vocab_size=vocab_size,
use_bfloat16=use_bfloat16,
emb_dim=emb_dim,
num_heads=num_heads,
num_layers=num_layers,
qkv_dim=qkv_dim,
mlp_dim=mlp_dim,
max_len=max_len,
train=train,
dropout_rate=dropout_rate,
attention_dropout_rate=attention_dropout_rate,
name='encoder')
inputs1_encoded = encoder(inputs1)
inputs2_encoded = encoder(inputs2)
encoded = common_layers.classifier_head_dual(
inputs1_encoded,
inputs2_encoded,
num_classes,
mlp_dim,
pooling_mode=classifier_pool,
interaction=interaction)
return encoded | Applies Transformer model on text similarity.
A deliberate choice to distinguish this from NLI because
we may want to do different things to the model later. Dual Encoding
mode enforces that we do not do cross attention between pairs.
Args:
inputs1: input data.
inputs2: target data.
vocab_size: size of the input vocabulary.
inputs1_positions: input subsequence positions for packed examples.
inputs2_positions: target subsequence positions for packed examples.
inputs1_segmentation: input segmentation info for packed examples.
inputs2_segmentation: target segmentation info for packed examples.
use_bfloat16: bool: whether use bfloat16.
emb_dim: dimension of embedding.
num_heads: number of heads.
num_layers: number of layers.
qkv_dim: dimension of the query/key/value.
mlp_dim: dimension of the mlp on top of attention block.
max_len: maximum length.
train: whether it is training.
dropout_rate: dropout rate.
attention_dropout_rate: dropout rate for attention weights.
classifier: boolean, to use classifier.
classifier_pool: str, supports "MEAN", "MAX" pooling.
num_classes: int, number of classification classes.
interaction: str
Returns:
output of a transformer decoder. | https://github.com/google-research/long-range-arena/blob/09c2916c3f33a07347dcc70c8839957d3c9d4062/lra_benchmarks/models/reformer/reformer.py#L204-L284 | from flax import nn
import jax.numpy as jnp
from lra_benchmarks.models.layers import common_layers
from lra_benchmarks.models.reformer import reformer_attention
class ReformerBlock(nn.Module):
def apply(self,
inputs,
qkv_dim,
mlp_dim,
num_heads,
dtype=jnp.float32,
causal_mask=False,
inputs_segmentation=None,
padding_mask=None,
dropout_rate=0.1,
attention_dropout_rate=0.1,
deterministic=False,
cache=None):
assert inputs.ndim == 3
x = nn.LayerNorm(inputs)
x = reformer_attention.ReformerSelfAttention(
x,
num_heads=num_heads,
qkv_features=qkv_dim,
causal_mask=causal_mask,
padding_mask=padding_mask,
kernel_init=nn.initializers.xavier_uniform(),
bias_init=nn.initializers.normal(stddev=1e-6),
bias=False,
broadcast_dropout=False,
dropout_rate=attention_dropout_rate,
deterministic=deterministic,
cache=cache)
x = nn.dropout(x, rate=dropout_rate, deterministic=deterministic)
x = x + inputs
y = nn.LayerNorm(x)
y = common_layers.MlpBlock(
y,
mlp_dim=mlp_dim,
dropout_rate=dropout_rate,
deterministic=deterministic)
return x + y
class ReformerEncoder(nn.Module):
def apply(self,
inputs,
vocab_size,
inputs_positions=None,
inputs_segmentation=None,
shared_embedding=None,
use_bfloat16=False,
emb_dim=512,
num_heads=8,
dtype=jnp.float32,
num_layers=6,
qkv_dim=512,
mlp_dim=2048,
max_len=512,
train=True,
dropout_rate=0.1,
attention_dropout_rate=0.1,
learn_pos_emb=False,
classifier=False,
classifier_pool='CLS',
num_classes=10):
assert inputs.ndim == 2
src_padding_mask = (inputs > 0)[..., None]
if shared_embedding is None:
input_embed = nn.Embed.partial(
num_embeddings=vocab_size,
features=emb_dim,
embedding_init=nn.initializers.normal(stddev=1.0))
else:
input_embed = shared_embedding
x = inputs.astype('int32')
x = input_embed(x)
if classifier and classifier_pool == 'CLS':
cls = self.param('cls', (1, 1, emb_dim), nn.initializers.zeros)
cls = jnp.tile(cls, [x.shape[0], 1, 1])
x = jnp.concatenate([cls, x], axis=1)
max_len += 1
src_padding_mask = jnp.concatenate(
[src_padding_mask[:, :1], src_padding_mask], axis=1)
pe_init = nn.initializers.normal(stddev=0.02) if learn_pos_emb else None
x = common_layers.AddPositionEmbs(
x,
inputs_positions=inputs_positions,
posemb_init=pe_init,
max_len=max_len,
name='posembed_input')
x = nn.dropout(x, rate=dropout_rate, deterministic=not train)
if use_bfloat16:
x = x.astype(jnp.bfloat16)
dtype = jnp.bfloat16
else:
dtype = jnp.float32
for lyr in range(num_layers):
x = ReformerBlock(
x,
qkv_dim=qkv_dim,
mlp_dim=mlp_dim,
num_heads=num_heads,
dtype=dtype,
padding_mask=src_padding_mask,
inputs_segmentation=inputs_segmentation,
dropout_rate=dropout_rate,
attention_dropout_rate=attention_dropout_rate,
deterministic=not train,
name=f'encoderblock_{lyr}')
encoded = nn.LayerNorm(x, dtype=dtype, name='encoder_norm')
if classifier:
encoded = common_layers.classifier_head(
encoded, num_classes, mlp_dim, pooling_mode=classifier_pool)
return encoded
class ReformerDualEncoder(nn.Module): | Apache License 2.0 |
beartype/beartype | beartype/_decor/_code/_pep/pepcode.py | _unmemoize_pep_code | python | def _unmemoize_pep_code(
data: BeartypeData,
func_wrapper_code: str,
pith_repr: str,
hint_forwardrefs_class_basename: tuple,
) -> str:
assert data.__class__ is BeartypeData, f'{repr(data)} not @beartype data.'
assert isinstance(func_wrapper_code, str), (
f'{repr(func_wrapper_code)} not string.')
assert isinstance(pith_repr, str), f'{repr(pith_repr)} not string.'
assert isinstance(hint_forwardrefs_class_basename, Iterable), (
f'{repr(hint_forwardrefs_class_basename)} not iterable.')
func_wrapper_code = replace_str_substrs(
text=func_wrapper_code,
old=PEP_CODE_PITH_ROOT_PARAM_NAME_PLACEHOLDER,
new=pith_repr,
)
if hint_forwardrefs_class_basename:
data.func_wrapper_locals[ARG_NAME_TYPISTRY] = bear_typistry
for hint_forwardref_class_basename in hint_forwardrefs_class_basename:
func_wrapper_code = replace_str_substrs(
text=func_wrapper_code,
old=(
f'{PEP_CODE_HINT_FORWARDREF_UNQUALIFIED_PLACEHOLDER_PREFIX}'
f'{hint_forwardref_class_basename}'
f'{PEP_CODE_HINT_FORWARDREF_UNQUALIFIED_PLACEHOLDER_SUFFIX}'
),
new=register_typistry_forwardref(
get_hint_pep484585_forwardref_classname_relative_to_object(
hint=hint_forwardref_class_basename, obj=data.func)
),
)
return func_wrapper_code | Convert the passed memoized code snippet type-checking any parameter or
return of the decorated callable into a memoized code snippet type-checking
a specific parameter or return of that callable.
Specifically, this function (in order):
#. Globally replaces all references to the
:data:`PEP_CODE_PITH_ROOT_PARAM_NAME_PLACEHOLDER` placeholder substring
cached into this code with the passed ``pith_repr`` parameter.
#. Unmemoizes this code by globally replacing all relative forward
reference placeholder substrings cached into this code with Python
expressions evaluating to the classes referred to by those substrings
relative to that callable when accessed via the private
``__beartypistry`` parameter.
Parameters
----------
data : BeartypeData
Decorated callable to be type-checked.
func_wrapper_code : str
Memoized callable-agnostic code snippet type-checking any parameter or
return of the decorated callable.
pith_repr : str
Machine-readable representation of the name of this parameter or
return.
hint_forwardrefs_class_basename : tuple
Tuple of the unqualified classnames referred to by all relative forward
reference type hints visitable from the current root type hint.
Returns
----------
str
This memoized code unmemoized by globally resolving all relative
forward reference placeholder substrings cached into this code relative
to the currently decorated callable. | https://github.com/beartype/beartype/blob/9da0bbebe408d281d5bfb6cc203dc6969e241aa4/beartype/_decor/_code/_pep/pepcode.py#L237-L331 | from beartype.roar import BeartypeDecorHintPepException
from beartype._decor._cache.cachetype import (
bear_typistry,
register_typistry_forwardref,
)
from beartype._decor._code.codesnip import ARG_NAME_TYPISTRY
from beartype._decor._code._pep._pephint import pep_code_check_hint
from beartype._decor._code._pep._pepsnip import (
PARAM_KIND_TO_PEP_CODE_LOCALIZE,
PEP_CODE_CHECK_RETURN_PREFIX,
PEP_CODE_CHECK_RETURN_SUFFIX,
PEP_CODE_HINT_FORWARDREF_UNQUALIFIED_PLACEHOLDER_PREFIX,
PEP_CODE_HINT_FORWARDREF_UNQUALIFIED_PLACEHOLDER_SUFFIX,
PEP_CODE_PITH_ROOT_PARAM_NAME_PLACEHOLDER,
)
from beartype._decor._data import BeartypeData
from beartype._util.cache.utilcacheerror import reraise_exception_cached
from beartype._util.hint.pep.proposal.pep484585.utilpep484585ref import (
get_hint_pep484585_forwardref_classname_relative_to_object)
from beartype._util.kind.utilkinddict import update_mapping
from beartype._util.text.utiltextlabel import (
prefix_callable_decorated_param,
prefix_callable_decorated_return,
)
from beartype._util.text.utiltextmunge import replace_str_substrs
from collections.abc import Iterable
from inspect import Parameter
__all__ = ['STAR_IMPORTS_CONSIDERED_HARMFUL']
_RETURN_REPR = repr('return')
def pep_code_check_param(
data: BeartypeData,
hint: object,
param: Parameter,
param_index: int,
) -> str:
assert data.__class__ is BeartypeData, f'{repr(data)} not @beartype data.'
assert isinstance(param, Parameter), (
f'{repr(param)} not parameter metadata.')
assert isinstance(param_index, int), (
f'{repr(param_index)} not integer.')
PARAM_LOCALIZE_TEMPLATE = PARAM_KIND_TO_PEP_CODE_LOCALIZE.get(
param.kind, None)
if PARAM_LOCALIZE_TEMPLATE is None:
exception_prefix = prefix_callable_decorated_param(
func=data.func, param_name=param.name)
raise BeartypeDecorHintPepException(
f'{exception_prefix}kind {repr(param.kind)} '
f'currently unsupported by @beartype.'
)
try:
(
code_param_check_pith,
func_wrapper_locals,
hint_forwardrefs_class_basename,
) = pep_code_check_hint(hint)
update_mapping(data.func_wrapper_locals, func_wrapper_locals)
code_param_check = _unmemoize_pep_code(
data=data,
func_wrapper_code=code_param_check_pith,
pith_repr=repr(param.name),
hint_forwardrefs_class_basename=hint_forwardrefs_class_basename,
)
except Exception as exception:
reraise_exception_cached(
exception=exception,
target_str=prefix_callable_decorated_param(
func=data.func, param_name=param.name),
)
code_param_localize = PARAM_LOCALIZE_TEMPLATE.format(
arg_name=param.name, arg_index=param_index)
return f'{code_param_localize}{code_param_check}'
def pep_code_check_return(data: BeartypeData, hint: object) -> str:
assert data.__class__ is BeartypeData, f'{repr(data)} not @beartype data.'
hint_forwardrefs_class_basename = ()
try:
(
code_return_check_pith,
func_wrapper_locals,
hint_forwardrefs_class_basename,
) = pep_code_check_hint(hint)
update_mapping(data.func_wrapper_locals, func_wrapper_locals)
code_return_check_prefix = PEP_CODE_CHECK_RETURN_PREFIX.format(
func_call_prefix=data.func_wrapper_code_call_prefix)
code_return_check_memoized = (
f'{code_return_check_prefix}'
f'{code_return_check_pith}'
f'{PEP_CODE_CHECK_RETURN_SUFFIX}'
)
code_return_check = _unmemoize_pep_code(
data=data,
func_wrapper_code=code_return_check_memoized,
pith_repr=_RETURN_REPR,
hint_forwardrefs_class_basename=hint_forwardrefs_class_basename,
)
except Exception as exception:
reraise_exception_cached(
exception=exception,
target_str=prefix_callable_decorated_return(data.func),
)
return code_return_check | MIT License |
visualcomputinginstitute/3d-semantic-segmentation | tools/lazy_decorator.py | lazy_property | python | def lazy_property(function):
attribute = '_cache_' + function.__name__
@property
@functools.wraps(function)
def decorator(self):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return decorator | caches the output of the property and just returns the value for next calls
:param function: property to be cached
:return: cached output of property | https://github.com/visualcomputinginstitute/3d-semantic-segmentation/blob/1dfc010b370a346902ad29460c9ad969c1892a97/tools/lazy_decorator.py#L10-L25 | import functools | MIT License |
nuagenetworks/vspk-python | vspk/v5_0/nuvirtualip.py | NUVirtualIP.associated_floating_ip_id | python | def associated_floating_ip_id(self):
return self._associated_floating_ip_id | Get associated_floating_ip_id value.
Notes:
Id of Floating IP address associated to this virtual ip
This attribute is named `associatedFloatingIPID` in VSD API. | https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v5_0/nuvirtualip.py#L253-L263 | from .fetchers import NUMetadatasFetcher
from .fetchers import NUGlobalMetadatasFetcher
from .fetchers import NUEventLogsFetcher
from bambou import NURESTObject
class NUVirtualIP(NURESTObject):
__rest_name__ = "virtualip"
__resource_name__ = "virtualips"
CONST_IP_TYPE_IPV6 = "IPV6"
CONST_IP_TYPE_IPV4 = "IPV4"
CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL"
CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE"
def __init__(self, **kwargs):
super(NUVirtualIP, self).__init__()
self._mac = None
self._ip_type = None
self._last_updated_by = None
self._virtual_ip = None
self._entity_scope = None
self._associated_floating_ip_id = None
self._subnet_id = None
self._external_id = None
self.expose_attribute(local_name="mac", remote_name="MAC", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="ip_type", remote_name="IPType", attribute_type=str, is_required=False, is_unique=False, choices=[u'IPV4', u'IPV6'])
self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="virtual_ip", remote_name="virtualIP", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL'])
self.expose_attribute(local_name="associated_floating_ip_id", remote_name="associatedFloatingIPID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="subnet_id", remote_name="subnetID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True)
self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.event_logs = NUEventLogsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self._compute_args(**kwargs)
@property
def mac(self):
return self._mac
@mac.setter
def mac(self, value):
self._mac = value
@property
def ip_type(self):
return self._ip_type
@ip_type.setter
def ip_type(self, value):
self._ip_type = value
@property
def last_updated_by(self):
return self._last_updated_by
@last_updated_by.setter
def last_updated_by(self, value):
self._last_updated_by = value
@property
def virtual_ip(self):
return self._virtual_ip
@virtual_ip.setter
def virtual_ip(self, value):
self._virtual_ip = value
@property
def entity_scope(self):
return self._entity_scope
@entity_scope.setter
def entity_scope(self, value):
self._entity_scope = value
@property | BSD 3-Clause New or Revised License |
v7labs/darwin-py | darwin/dataset/remote_dataset.py | RemoteDataset.push | python | def push(
self,
files_to_upload: Optional[List[Union[PathLike, LocalFile]]],
*,
blocking: bool = True,
multi_threaded: bool = True,
fps: int = 0,
as_frames: bool = False,
files_to_exclude: Optional[List[PathLike]] = None,
path: Optional[str] = None,
preserve_folders: bool = False,
progress_callback: Optional[ProgressCallback] = None,
file_upload_callback: Optional[FileUploadCallback] = None,
):
if files_to_exclude is None:
files_to_exclude = []
if files_to_upload is None:
raise ValueError("No files or directory specified.")
uploading_files = [item for item in files_to_upload if isinstance(item, LocalFile)]
search_files = [item for item in files_to_upload if not isinstance(item, LocalFile)]
generic_parameters_specified = path is not None or fps != 0 or as_frames is not False
if uploading_files and generic_parameters_specified:
raise ValueError("Cannot specify a path when uploading a LocalFile object.")
for found_file in find_files(search_files, files_to_exclude=files_to_exclude):
local_path = path
if preserve_folders:
source_files = [source_file for source_file in search_files if is_relative_to(found_file, source_file)]
if source_files:
local_path = str(found_file.relative_to(source_files[0]).parent)
uploading_files.append(LocalFile(found_file, fps=fps, as_frames=as_frames, path=local_path))
if not uploading_files:
raise ValueError("No files to upload, check your path, exclusion filters and resume flag")
handler = UploadHandler(self, uploading_files)
if blocking:
handler.upload(
multi_threaded=multi_threaded,
progress_callback=progress_callback,
file_upload_callback=file_upload_callback,
)
else:
handler.prepare_upload()
return handler | Uploads a local dataset (images ONLY) in the datasets directory.
Parameters
----------
files_to_upload : Optional[List[Union[PathLike, LocalFile]]]
List of files to upload. Those can be folders.
blocking : bool
If False, the dataset is not uploaded and a generator function is returned instead.
multi_threaded : bool
Uses multiprocessing to upload the dataset in parallel.
If blocking is False this has no effect.
files_to_exclude : Optional[PathLike]]
Optional list of files to exclude from the file scan. Those can be folders.
fps : int
When the uploading file is a video, specify its framerate.
as_frames: bool
When the uploading file is a video, specify whether it's going to be uploaded as a list of frames.
path: Optional[str]
Optional path to store the files in.
preserve_folders : bool
Specify whether or not to preserve folder paths when uploading
progress_callback: Optional[ProgressCallback]
Optional callback, called every time the progress of an uploading files is reported.
file_upload_callback: Optional[FileUploadCallback]
Optional callback, called every time a file chunk is uploaded.
Returns
-------
handler : UploadHandler
Class for handling uploads, progress and error messages | https://github.com/v7labs/darwin-py/blob/694253ec520ec32d791eb4a2d0b8acc9ad686b33/darwin/dataset/remote_dataset.py#L88-L168 | import json
import shutil
import tempfile
import zipfile
from datetime import datetime
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterator, List, Optional, Union
from urllib import parse
from darwin.dataset.download_manager import download_all_images_from_annotations
from darwin.dataset.identifier import DatasetIdentifier
from darwin.dataset.release import Release
from darwin.dataset.split_manager import split_dataset
from darwin.dataset.upload_manager import (
FileUploadCallback,
LocalFile,
ProgressCallback,
UploadHandler,
)
from darwin.dataset.utils import (
exhaust_generator,
get_annotations,
get_classes,
is_relative_to,
is_unix_like_os,
make_class_lists,
sanitize_filename,
)
from darwin.datatypes import AnnotationClass
from darwin.exceptions import NotFound, UnsupportedExportFormat
from darwin.exporter.formats.darwin import build_image_annotation
from darwin.item import DatasetItem, parse_dataset_item
from darwin.item_sorter import ItemSorter
from darwin.types import PathLike
from darwin.utils import find_files, parse_darwin_json, split_video_annotation, urljoin
from darwin.validators import name_taken, validation_error
from rich.console import Console
if TYPE_CHECKING:
from darwin.client import Client
class RemoteDataset:
def __init__(
self,
*,
client: "Client",
team: str,
name: str,
slug: str,
dataset_id: int,
image_count: int = 0,
progress: float = 0,
):
self.team = team
self.name = name
self.slug = slug or name
self.dataset_id = dataset_id
self.image_count = image_count
self.progress = progress
self.client = client
self.annotation_types = None
self.console: Console = Console() | MIT License |
prajdabre/yanmtt | transformers/src/transformers/models/t5/modeling_tf_t5.py | TFT5Attention.compute_bias | python | def compute_bias(self, query_length, key_length):
context_position = tf.range(query_length)[:, None]
memory_position = tf.range(key_length)[None, :]
relative_position = memory_position - context_position
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
)
values = self.relative_attention_bias(relative_position_bucket)
values = tf.expand_dims(
tf.transpose(values, [2, 0, 1]), axis=0
)
return values | Compute binned relative position bias | https://github.com/prajdabre/yanmtt/blob/4d329c3bcb81ca432d5947bb4673897086ee7f32/transformers/src/transformers/models/t5/modeling_tf_t5.py#L226-L240 | import copy
import itertools
import math
import warnings
from typing import Tuple
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...file_utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
input_processing,
keras_serializable,
shape_list,
)
from ...utils import logging
from .configuration_t5 import T5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "T5Config"
_TOKENIZER_FOR_DOC = "T5Tokenizer"
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
"t5-small",
"t5-base",
"t5-large",
"t5-3b",
"t5-11b",
]
class TFT5LayerNorm(tf.keras.layers.Layer):
def __init__(self, epsilon=1e-6, **kwargs):
super().__init__(**kwargs)
self.variance_epsilon = epsilon
def build(self, input_shape):
self.weight = self.add_weight("weight", shape=(input_shape[-1],), initializer="ones")
super().build(input_shape)
def call(self, hidden_states):
variance = tf.math.reduce_mean(tf.math.square(hidden_states), axis=-1, keepdims=True)
hidden_states = hidden_states * tf.math.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states
class TFT5DenseReluDense(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.wi = tf.keras.layers.Dense(config.d_ff, use_bias=False, name="wi")
self.wo = tf.keras.layers.Dense(config.d_model, use_bias=False, name="wo")
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.act = tf.keras.activations.relu
def call(self, hidden_states, training=False):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.wo(hidden_states)
return hidden_states
class TFT5GatedGeluDense(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.wi_0 = tf.keras.layers.Dense(config.d_ff, use_bias=False, name="wi_0")
self.wi_1 = tf.keras.layers.Dense(config.d_ff, use_bias=False, name="wi_1")
self.wo = tf.keras.layers.Dense(config.d_model, use_bias=False, name="wo")
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.act = get_tf_activation("gelu_new")
def call(self, hidden_states, training=False):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.wo(hidden_states)
return hidden_states
class TFT5LayerFF(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
if config.feed_forward_proj == "relu":
self.DenseReluDense = TFT5DenseReluDense(config, name="DenseReluDense")
elif config.feed_forward_proj == "gated-gelu":
self.DenseReluDense = TFT5GatedGeluDense(config, name="DenseReluDense")
else:
raise ValueError(
f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`"
)
self.layer_norm = TFT5LayerNorm(epsilon=config.layer_norm_epsilon, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
def call(self, hidden_states, training=False):
normed_hidden_states = self.layer_norm(hidden_states)
dense_output = self.DenseReluDense(normed_hidden_states, training=training)
hidden_states = hidden_states + self.dropout(dense_output, training=training)
return hidden_states
class TFT5Attention(tf.keras.layers.Layer):
NEW_ID = itertools.count()
def __init__(self, config, has_relative_attention_bias=False, **kwargs):
super().__init__(**kwargs)
self.layer_id = next(TFT5Attention.NEW_ID)
self.is_decoder = config.is_decoder
self.use_cache = config.use_cache
self.has_relative_attention_bias = has_relative_attention_bias
self.output_attentions = config.output_attentions
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.q = tf.keras.layers.Dense(self.inner_dim, use_bias=False, name="q")
self.k = tf.keras.layers.Dense(self.inner_dim, use_bias=False, name="k")
self.v = tf.keras.layers.Dense(self.inner_dim, use_bias=False, name="v")
self.o = tf.keras.layers.Dense(self.d_model, use_bias=False, name="o")
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
if self.has_relative_attention_bias:
self.relative_attention_bias = tf.keras.layers.Embedding(
self.relative_attention_num_buckets,
self.n_heads,
name="relative_attention_bias",
)
self.pruned_heads = set()
def prune_heads(self, heads):
raise NotImplementedError
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += tf.dtypes.cast(tf.math.greater(relative_position, 0), tf.int32) * num_buckets
relative_position = tf.math.abs(relative_position)
else:
relative_position = -tf.math.minimum(relative_position, 0)
max_exact = num_buckets // 2
is_small = tf.math.less(relative_position, max_exact)
relative_position_if_large = max_exact + tf.dtypes.cast(
tf.math.log(tf.dtypes.cast(relative_position, tf.float32) / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact),
tf.int32,
)
relative_position_if_large = tf.math.minimum(relative_position_if_large, num_buckets - 1)
relative_buckets += tf.where(is_small, relative_position, relative_position_if_large)
return relative_buckets | MIT License |
asteroid-team/asteroid | asteroid/dsp/overlap_add.py | LambdaOverlapAdd.ola_forward | python | def ola_forward(self, x):
assert x.ndim == 3
batch, channels, n_frames = x.size()
unfolded = torch.nn.functional.unfold(
x.unsqueeze(-1),
kernel_size=(self.window_size, 1),
padding=(self.window_size, 0),
stride=(self.hop_size, 1),
)
out = []
n_chunks = unfolded.shape[-1]
for frame_idx in range(n_chunks):
frame = self.nnet(unfolded[..., frame_idx])
if frame_idx == 0:
assert frame.ndim == 3, "nnet should return (batch, n_src, time)"
if self.n_src is not None:
assert frame.shape[1] == self.n_src, "nnet should return (batch, n_src, time)"
n_src = frame.shape[1]
frame = frame.reshape(batch * n_src, -1)
if frame_idx != 0 and self.reorder_chunks:
frame = _reorder_sources(frame, out[-1], n_src, self.window_size, self.hop_size)
if self.use_window:
frame = frame * self.window
else:
frame = frame / (self.window_size / self.hop_size)
out.append(frame)
out = torch.stack(out).reshape(n_chunks, batch * n_src, self.window_size)
out = out.permute(1, 2, 0)
out = torch.nn.functional.fold(
out,
(n_frames, 1),
kernel_size=(self.window_size, 1),
padding=(self.window_size, 0),
stride=(self.hop_size, 1),
)
return out.squeeze(-1).reshape(batch, n_src, -1) | Heart of the class: segment signal, apply func, combine with OLA. | https://github.com/asteroid-team/asteroid/blob/64e10e9de840ada77719ff4fa280be42a19aa51c/asteroid/dsp/overlap_add.py#L84-L131 | import torch
from torch import nn
from ..losses.pit_wrapper import PITReorder
class LambdaOverlapAdd(torch.nn.Module):
def __init__(
self,
nnet,
n_src,
window_size,
hop_size=None,
window="hanning",
reorder_chunks=True,
enable_grad=False,
):
super().__init__()
assert window_size % 2 == 0, "Window size must be even"
self.nnet = nnet
self.window_size = window_size
self.hop_size = hop_size if hop_size is not None else window_size // 2
self.n_src = n_src
self.in_channels = getattr(nnet, "in_channels", None)
if window:
from scipy.signal import get_window
window = get_window(window, self.window_size).astype("float32")
window = torch.from_numpy(window)
self.use_window = True
else:
self.use_window = False
self.register_buffer("window", window)
self.reorder_chunks = reorder_chunks
self.enable_grad = enable_grad | MIT License |
conchylicultor/musicgenerator | deepmusic/modulemanager.py | ModuleManager.save | python | def save(self, config_group):
config_group[self.name] = ' '.join([self.module_name] + self.module_parameters) | Save the current module parameters
Args:
config_group (dict): dictionary where to write the configuration | https://github.com/conchylicultor/musicgenerator/blob/adea76dccaba923b7d3807082ec6f5b512d16bb9/deepmusic/modulemanager.py#L111-L117 | from collections import OrderedDict
class ModuleManager:
def __init__(self, name):
self.name = name
self.modules = OrderedDict()
self.module_instance = None
self.module_name = ''
self.module_parameters = []
def register(self, module):
assert not module.get_module_id() in self.modules
self.modules[module.get_module_id()] = module
def get_modules_ids(self):
return self.modules.keys()
def get_chosen_name(self):
return self.module_name
def get_module(self):
assert self.module_instance is not None
return self.module_instance
def build_module(self, args):
assert self.module_instance is None
module_args = getattr(args, self.name)
self.module_name = module_args[0]
self.module_parameters = module_args[1:]
self.module_instance = self.modules[self.module_name](args, *self.module_parameters)
return self.module_instance
def add_argparse(self, group_args, comment):
assert len(self.modules.keys())
keys = list(self.modules.keys())
group_args.add_argument(
'--{}'.format(self.name),
type=str,
nargs='+',
default=[keys[0]],
help=comment + ' Choices available: {}'.format(', '.join(keys))
) | Apache License 2.0 |
markblundeberg/openswap | lib/util.py | bh2u | python | def bh2u(x):
return hfu(x).decode('ascii') | str with hex representation of a bytes-like object
>>> x = bytes((1, 2, 10))
>>> bh2u(x)
'01020A'
:param x: bytes
:rtype: str | https://github.com/markblundeberg/openswap/blob/7de04aa80dab79bebe4b64483011dad70a48694c/lib/util.py#L356-L367 | import binascii
import os, sys, re, json
from collections import defaultdict
from datetime import datetime
import decimal
from decimal import Decimal
import traceback
import threading
import hmac
import stat
from .i18n import _
import queue
def inv_dict(d):
return {v: k for k, v in d.items()}
base_units = {'BCH':8, 'mBCH':5, 'cash':2}
fee_levels = [_('Within 25 blocks'), _('Within 10 blocks'), _('Within 5 blocks'), _('Within 2 blocks'), _('In the next block')]
def normalize_version(v):
return [int(x) for x in re.sub(r'(\.0+)*$','', v).split(".")]
class NotEnoughFunds(Exception): pass
class ExcessiveFee(Exception): pass
class InvalidPassword(Exception):
def __str__(self):
return _("Incorrect password")
class FileImportFailed(Exception):
def __str__(self):
return _("Failed to import file.")
class FileImportFailedEncrypted(FileImportFailed):
def __str__(self):
return (_('Failed to import file.') + ' ' +
_('Perhaps it is encrypted...') + '\n' +
_('Importing encrypted files is not supported.'))
class UserCancelled(Exception):
pass
class MyEncoder(json.JSONEncoder):
def default(self, obj):
from .transaction import Transaction
if isinstance(obj, Transaction):
return obj.as_dict()
return super(MyEncoder, self).default(obj)
class PrintError(object):
def diagnostic_name(self):
return self.__class__.__name__
def print_error(self, *msg):
print_error("[%s]" % self.diagnostic_name(), *msg)
def print_stderr(self, *msg):
print_stderr("[%s]" % self.diagnostic_name(), *msg)
def print_msg(self, *msg):
print_msg("[%s]" % self.diagnostic_name(), *msg)
class ThreadJob(PrintError):
def run(self):
pass
class DebugMem(ThreadJob):
def __init__(self, classes, interval=30):
self.next_time = 0
self.classes = classes
self.interval = interval
def mem_stats(self):
import gc
self.print_error("Start memscan")
gc.collect()
objmap = defaultdict(list)
for obj in gc.get_objects():
for class_ in self.classes:
if isinstance(obj, class_):
objmap[class_].append(obj)
for class_, objs in objmap.items():
self.print_error("%s: %d" % (class_.__name__, len(objs)))
self.print_error("Finish memscan")
def run(self):
if time.time() > self.next_time:
self.mem_stats()
self.next_time = time.time() + self.interval
class DaemonThread(threading.Thread, PrintError):
def __init__(self):
threading.Thread.__init__(self)
self.parent_thread = threading.currentThread()
self.running = False
self.running_lock = threading.Lock()
self.job_lock = threading.Lock()
self.jobs = []
def add_jobs(self, jobs):
with self.job_lock:
self.jobs.extend(jobs)
def run_jobs(self):
with self.job_lock:
for job in self.jobs:
try:
job.run()
except Exception as e:
traceback.print_exc(file=sys.stderr)
def remove_jobs(self, jobs):
with self.job_lock:
for job in jobs:
self.jobs.remove(job)
def start(self):
with self.running_lock:
self.running = True
return threading.Thread.start(self)
def is_running(self):
with self.running_lock:
return self.running and self.parent_thread.is_alive()
def stop(self):
with self.running_lock:
self.running = False
def on_stop(self):
if 'ANDROID_DATA' in os.environ:
try:
import jnius
jnius.detach()
self.print_error("jnius detach")
except ImportError:
pass
self.print_error("stopped")
is_verbose = True
def set_verbosity(b):
global is_verbose
is_verbose = b
class cachedproperty(object):
def __init__(self, f):
self.f = f
def __get__(self, obj, type):
obj = obj or type
value = self.f(obj)
setattr(obj, self.f.__name__, value)
return value
def print_error(*args):
if not is_verbose: return
print_stderr(*args)
def print_stderr(*args):
args = [str(item) for item in args]
sys.stderr.write(" ".join(args) + "\n")
sys.stderr.flush()
def print_msg(*args):
args = [str(item) for item in args]
sys.stdout.write(" ".join(args) + "\n")
sys.stdout.flush()
def json_encode(obj):
try:
s = json.dumps(obj, sort_keys = True, indent = 4, cls=MyEncoder)
except TypeError:
s = repr(obj)
return s
def json_decode(x):
try:
return json.loads(x, parse_float=Decimal)
except:
return x
def constant_time_compare(val1, val2):
return hmac.compare_digest(to_bytes(val1, 'utf8'), to_bytes(val2, 'utf8'))
def profiler(func):
def do_profile(func, args, kw_args):
n = func.__name__
t0 = time.time()
o = func(*args, **kw_args)
t = time.time() - t0
print_error("[profiler]", n, "%.4f"%t)
return o
return lambda *args, **kw_args: do_profile(func, args, kw_args)
def android_ext_dir():
try:
import jnius
env = jnius.autoclass('android.os.Environment')
except ImportError:
from android.os import Environment as env
return env.getExternalStorageDirectory().getPath()
def android_data_dir():
try:
import jnius
context = jnius.autoclass('org.kivy.android.PythonActivity').mActivity
except ImportError:
from com.chaquo.python import Python
context = Python.getPlatform().getApplication()
return context.getFilesDir().getPath() + '/data'
def android_headers_dir():
try:
import jnius
d = android_ext_dir() + '/org.electron.electron'
if not os.path.exists(d):
os.mkdir(d)
return d
except ImportError:
return android_data_dir()
def ensure_sparse_file(filename):
if os.name == "nt":
try:
os.system("fsutil sparse setFlag \""+ filename +"\" 1")
except:
pass
def get_headers_dir(config):
return android_headers_dir() if 'ANDROID_DATA' in os.environ else config.path
def assert_datadir_available(config_path):
path = config_path
if os.path.exists(path):
return
else:
raise FileNotFoundError(
'Electron Cash datadir does not exist. Was it deleted while running?' + '\n' +
'Should be at {}'.format(path))
def assert_file_in_datadir_available(path, config_path):
if os.path.exists(path):
return
else:
assert_datadir_available(config_path)
raise FileNotFoundError(
'Cannot find file but datadir is there.' + '\n' +
'Should be at {}'.format(path))
def assert_bytes(*args):
try:
for x in args:
assert isinstance(x, (bytes, bytearray))
except:
print('assert bytes failed', list(map(type, args)))
raise
def assert_str(*args):
for x in args:
assert isinstance(x, str)
def to_string(x, enc):
if isinstance(x, (bytes, bytearray)):
return x.decode(enc)
if isinstance(x, str):
return x
else:
raise TypeError("Not a string or bytes like object")
def to_bytes(something, encoding='utf8'):
if isinstance(something, bytes):
return something
if isinstance(something, str):
return something.encode(encoding)
elif isinstance(something, bytearray):
return bytes(something)
else:
raise TypeError("Not a string or bytes like object")
bfh = bytes.fromhex
hfu = binascii.hexlify | MIT License |
spilchen/yahoo_fantasy_api | yahoo_fantasy_api/league.py | League.edit_date | python | def edit_date(self):
if self.edit_date_cache is None:
json = self.yhandler.get_settings_raw(self.league_id)
t = objectpath.Tree(json)
edit_key = t.execute('$..edit_key[0]')
self.edit_date_cache = datetime.datetime.strptime(edit_key, '%Y-%m-%d').date()
return self.edit_date_cache | Return the next day that you can edit the lineups.
:return: edit date
:rtype: :class: datetime.date | https://github.com/spilchen/yahoo_fantasy_api/blob/867444eecffe46541c9c099f4ffc06ab5c178bd2/yahoo_fantasy_api/league.py#L579-L591 | import yahoo_fantasy_api as yfa
from yahoo_fantasy_api import yhandler
import objectpath
import datetime
import re
class League:
def __init__(self, sc, league_id):
self.sc = sc
self.league_id = league_id
self.yhandler = yhandler.YHandler(sc)
self.current_week_cache = None
self.end_week_cache = None
self.week_date_range_cache = {}
self.free_agent_cache = {}
self.waivers_cache = None
self.taken_players_cache = None
self.stat_categories_cache = None
self.settings_cache = None
self.edit_date_cache = None
self.positions_cache = None
self.stats_id_map = None
self.player_details_cache = {}
def inject_yhandler(self, yhandler):
self.yhandler = yhandler
def to_team(self, team_key):
tm = yfa.Team(self.sc, team_key)
tm.inject_yhandler(self.yhandler)
return tm
def standings(self):
json = self.yhandler.get_standings_raw(self.league_id)
t = objectpath.Tree(json)
num_teams = int(t.execute('$..count[0]'))
standings = []
for i in range(num_teams):
team = {}
for e in t.execute('$..teams.."{}".team[0]'.format(i)):
if isinstance(e, list):
for td in e:
if "team_key" in td or 'name' in td:
self._merge_dicts(team, td, [])
elif "team_standings" in e:
self._merge_dicts(team, e['team_standings'], [])
standings.append(team)
return standings
def teams(self):
json = self.yhandler.get_standings_raw(self.league_id)
t = objectpath.Tree(json)
num_teams = int(t.execute('$..count[0]'))
teams = {}
for i in range(num_teams):
team = {}
key = None
for e in t.execute('$..teams.."{}".team[0][0]'.format(i)):
if "team_key" in e:
key = e['team_key']
if isinstance(e, dict):
self._merge_dicts(team, e, [])
teams[key] = team
return teams
def matchups(self, week=None):
json = self.yhandler.get_scoreboard_raw(self.league_id, week=week)
return json
def settings(self):
if self.settings_cache is None:
json = self.yhandler.get_settings_raw(self.league_id)
data = {}
if "fantasy_content" in json:
content = json["fantasy_content"]
if "league" in content:
self._merge_dicts(data, content["league"][0], [])
self._merge_dicts(data,
content["league"][1]["settings"][0],
["roster_positions", "stat_categories"])
self.settings_cache = data
return self.settings_cache
def stat_categories(self):
if self.stat_categories_cache is None:
t = objectpath.Tree(self.yhandler.get_settings_raw(self.league_id))
json = t.execute('$..stat_categories..stat')
simple_stat = []
for s in json:
if 'is_only_display_stat' not in s:
simple_stat.append({"display_name": s["display_name"],
"position_type": s["position_type"]})
self.stat_categories_cache = simple_stat
return self.stat_categories_cache
def team_key(self):
t = objectpath.Tree(self.yhandler.get_teams_raw())
json = t.execute('$..(team_key)')
for t in json:
if t['team_key'].startswith(self.league_id):
return t['team_key']
def current_week(self):
if self.current_week_cache is None:
t = objectpath.Tree(self.yhandler.get_scoreboard_raw(
self.league_id))
self.current_week_cache = int(t.execute('$..current_week[0]'))
return self.current_week_cache
def end_week(self):
if self.end_week_cache is None:
t = objectpath.Tree(
self.yhandler.get_scoreboard_raw(self.league_id))
self.end_week_cache = int(t.execute('$..end_week[0]'))
return self.end_week_cache
def week_date_range(self, week):
if week <= self.current_week() or week == 1:
return self._date_range_of_played_or_current_week(week)
elif week == self.current_week() + 1:
(cur_st, cur_end) = self._date_range_of_played_or_current_week(
week - 1)
req_st = cur_end + datetime.timedelta(days=1)
req_end = cur_end + datetime.timedelta(days=7)
return (req_st, req_end)
else:
raise RuntimeError("Cannot request date range more than one week "
"past the current week. The requested week is "
"{}, but current week is {}.".format(
week, self.current_week()))
def free_agents(self, position):
if position not in self.free_agent_cache:
self.free_agent_cache[position] = self._fetch_players(
'FA', position=position)
return self.free_agent_cache[position]
def waivers(self):
if not self.waivers_cache:
self.waivers_cache = self._fetch_players('W')
return self.waivers_cache
def taken_players(self):
if not self.taken_players_cache:
self.taken_players_cache = self._fetch_players('T')
return self.taken_players_cache
def _fetch_players(self, status, position=None):
PLAYERS_PER_PAGE = 25
plyrs = []
plyrIndex = 0
while plyrIndex % PLAYERS_PER_PAGE == 0:
j = self.yhandler.get_players_raw(self.league_id, plyrIndex,
status, position=position)
(num_plyrs_on_pg, fa_on_pg) = self._players_from_page(j)
if len(fa_on_pg) == 0:
break
plyrs += fa_on_pg
plyrIndex += num_plyrs_on_pg
return plyrs
def _players_from_page(self, page):
fa = []
if len(page['fantasy_content']['league'][1]['players']) == 0:
return (0, fa)
t = objectpath.Tree(page)
pct_owns = self._pct_owned_from_page(iter(list(t.execute(
'$..percent_owned.(coverage_type,value)'))))
for i, pct_own in zip(range(0, t.execute('$..players.count[0]')*2, 2),
pct_owns):
path = '$..players..player[{}].'.format(i) + "(name,player_id,position_type,status,eligible_positions)"
obj = list(t.execute(path))
plyr = {}
for ele in obj:
for k in ele.keys():
plyr[k] = ele[k]
plyr['player_id'] = int(plyr['player_id'])
plyr['name'] = plyr['name']['full']
plyr['eligible_positions'] = [e['position'] for e in
plyr['eligible_positions']]
plyr['percent_owned'] = pct_own
if "status" not in plyr:
plyr["status"] = ""
if plyr["status"] != "NA":
fa.append(plyr)
return (i/2 + 1, fa)
def _pct_owned_from_page(self, po_it):
po = []
i = 0
try:
while True:
ele = next(po_it)
if "coverage_type" in ele:
po.append(0)
i += 1
if "value" in ele:
po[i-1] = ele['value']
except StopIteration:
pass
return po
def _date_range_of_played_or_current_week(self, week):
if week not in self.week_date_range_cache:
t = objectpath.Tree(self.yhandler.get_scoreboard_raw(
self.league_id, week))
j = t.execute('$..(week_start,week_end)[0]')
self.week_date_range_cache[week] = (
datetime.datetime.strptime(j['week_start'], "%Y-%m-%d").date(),
datetime.datetime.strptime(j['week_end'], "%Y-%m-%d").date())
return self.week_date_range_cache[week]
def player_details(self, player):
if isinstance(player, int):
player = [player]
self._cache_player_details(player)
players = []
if isinstance(player, list):
for p in player:
players.append(self.player_details_cache[p])
elif player in self.player_details_cache:
assert(isinstance(self.player_details_cache[player], list))
players = self.player_details_cache[player]
return players
def percent_owned(self, player_ids):
t = objectpath.Tree(self.yhandler.get_percent_owned_raw(
self.league_id, player_ids))
player_ids = t.execute("$..player_id")
it = t.execute("$..(player_id,full,value)")
po = []
try:
while True:
plyr = {"player_id": int(next(it)["player_id"]),
"name": next(it)["full"],
"percent_owned": next(it)["value"]}
po.append(plyr)
except StopIteration:
pass
return po
def ownership(self, player_ids):
t = objectpath.Tree(self.yhandler.get_player_ownership_raw(self.league_id, player_ids))
owner_details = t.execute("$..(player_id,ownership_type,owner_team_name)")
ownership = {}
try:
while True:
player_id = next(owner_details)['player_id']
ownership_details = next(owner_details)
ownership[player_id] = ownership_details
except StopIteration:
pass
return ownership | MIT License |
iristyle/chocolateypackages | EthanBrown.SublimeText2.WebPackages/tools/PackageCache/SublimeLinter/sublimelinter/modules/libs/pyflakes/checker.py | Checker._runDeferred | python | def _runDeferred(self, deferred):
for handler, scope in deferred:
self.scopeStack = scope
handler() | Run the callables in C{deferred} using their associated scope stack. | https://github.com/iristyle/chocolateypackages/blob/8c9833710577de6db6e8b1db5d9196e19e19d117/EthanBrown.SublimeText2.WebPackages/tools/PackageCache/SublimeLinter/sublimelinter/modules/libs/pyflakes/checker.py#L229-L235 | import __builtin__
import os.path
import _ast
from pyflakes import messages
try:
import ast
iter_child_nodes = ast.iter_child_nodes
except (ImportError, AttributeError):
def iter_child_nodes(node, astcls=_ast.AST):
for name in node._fields:
field = getattr(node, name, None)
if isinstance(field, astcls):
yield field
elif isinstance(field, list):
for item in field:
yield item
class Binding(object):
def __init__(self, name, source):
self.name = name
self.source = source
self.used = False
def __str__(self):
return self.name
def __repr__(self):
return '<%s object %r from line %r at 0x%x>' % (self.__class__.__name__,
self.name,
self.source.lineno,
id(self))
class UnBinding(Binding):
class Importation(Binding):
def __init__(self, name, source):
self.fullName = name
name = name.split('.')[0]
super(Importation, self).__init__(name, source)
class Argument(Binding):
class Assignment(Binding):
class FunctionDefinition(Binding):
pass
class ExportBinding(Binding):
def names(self):
names = []
if isinstance(self.source, _ast.List):
for node in self.source.elts:
if isinstance(node, _ast.Str):
names.append(node.s)
return names
class Scope(dict):
importStarred = False
def __repr__(self):
return '<%s at 0x%x %s>' % (self.__class__.__name__, id(self), dict.__repr__(self))
def __init__(self):
super(Scope, self).__init__()
class ClassScope(Scope):
pass
class FunctionScope(Scope):
def __init__(self):
super(FunctionScope, self).__init__()
self.globals = {}
class ModuleScope(Scope):
pass
_MAGIC_GLOBALS = ['__file__', '__builtins__']
class Checker(object):
nodeDepth = 0
traceTree = False
def __init__(self, tree, filename='(none)'):
self._deferredFunctions = []
self._deferredAssignments = []
self.dead_scopes = []
self.messages = []
self.filename = filename
self.scopeStack = [ModuleScope()]
self.futuresAllowed = True
self.handleChildren(tree)
self._runDeferred(self._deferredFunctions)
self._deferredFunctions = None
self._runDeferred(self._deferredAssignments)
self._deferredAssignments = None
del self.scopeStack[1:]
self.popScope()
self.check_dead_scopes()
def deferFunction(self, callable):
self._deferredFunctions.append((callable, self.scopeStack[:]))
def deferAssignment(self, callable):
self._deferredAssignments.append((callable, self.scopeStack[:])) | MIT License |
artyompal/tpu_models | models/official/detection/evaluation/coco_utils.py | generate_annotation_file | python | def generate_annotation_file(groundtruth_generator,
annotation_file):
groundtruths = {}
tf.logging.info('Loading groundtruth annotations from dataset to memory...')
for groundtruth in groundtruth_generator():
for k, v in six.iteritems(groundtruth):
if k not in groundtruths:
groundtruths[k] = [v]
else:
groundtruths[k].append(v)
gt_dataset = convert_groundtruths_to_coco_dataset(groundtruths)
tf.logging.info('Saving groundtruth annotations to the JSON file...')
with tf.gfile.Open(annotation_file, 'w') as f:
f.write(json.dumps(gt_dataset))
tf.logging.info('Done saving the JSON file...') | Generates COCO-style annotation JSON file given a groundtruth generator. | https://github.com/artyompal/tpu_models/blob/639306f30e085bb1cdb5b1118a4c96a2dbe14e3e/models/official/detection/evaluation/coco_utils.py#L345-L361 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import json
import numpy as np
from PIL import Image
from pycocotools import coco
from pycocotools import mask as mask_utils
import six
import tensorflow as tf
from dataloader import tf_example_decoder
from utils import box_utils
class COCOWrapper(coco.COCO):
def __init__(self, eval_type='box', annotation_file=None, gt_dataset=None):
if ((annotation_file and gt_dataset) or
((not annotation_file) and (not gt_dataset))):
raise ValueError('One and only one of `annotation_file` and `gt_dataset` '
'needs to be specified.')
if eval_type not in ['box', 'mask']:
raise ValueError('The `eval_type` can only be either `box` or `mask`.')
coco.COCO.__init__(self, annotation_file=annotation_file)
self._eval_type = eval_type
if gt_dataset:
self.dataset = gt_dataset
self.createIndex()
def loadRes(self, predictions):
res = coco.COCO()
res.dataset['images'] = copy.deepcopy(self.dataset['images'])
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
image_ids = [ann['image_id'] for ann in predictions]
if set(image_ids) != (set(image_ids) & set(self.getImgIds())):
raise ValueError('Results do not correspond to the current dataset!')
for ann in predictions:
x1, x2, y1, y2 = [ann['bbox'][0], ann['bbox'][0] + ann['bbox'][2],
ann['bbox'][1], ann['bbox'][1] + ann['bbox'][3]]
if self._eval_type == 'box':
ann['area'] = ann['bbox'][2] * ann['bbox'][3]
ann['segmentation'] = [
[x1, y1, x1, y2, x2, y2, x2, y1]]
elif self._eval_type == 'mask':
ann['bbox'] = mask_utils.toBbox(ann['segmentation'])
ann['area'] = mask_utils.area(ann['segmentation'])
res.dataset['annotations'] = copy.deepcopy(predictions)
res.createIndex()
return res
def convert_predictions_to_coco_annotations(predictions):
coco_predictions = []
num_batches = len(predictions['source_id'])
batch_size = predictions['source_id'][0].shape[0]
max_num_detections = predictions['detection_classes'][0].shape[1]
for i in range(num_batches):
for j in range(batch_size):
for k in range(max_num_detections):
ann = {}
ann['image_id'] = predictions['source_id'][i][j]
ann['category_id'] = predictions['detection_classes'][i][j, k]
boxes = predictions['detection_boxes'][i]
ann['bbox'] = [
boxes[j, k, 1],
boxes[j, k, 0],
boxes[j, k, 3] - boxes[j, k, 1],
boxes[j, k, 2] - boxes[j, k, 0]]
ann['score'] = predictions['detection_scores'][i][j, k]
if 'detection_masks' in predictions:
encoded_mask = mask_utils.encode(
np.asfortranarray(
predictions['detection_masks'][i][j, k].astype(np.uint8)))
ann['segmentation'] = encoded_mask
coco_predictions.append(ann)
for i, ann in enumerate(coco_predictions):
ann['id'] = i + 1
return coco_predictions
def convert_groundtruths_to_coco_dataset(groundtruths, label_map=None):
source_ids = np.concatenate(groundtruths['source_id'], axis=0)
heights = np.concatenate(groundtruths['height'], axis=0)
widths = np.concatenate(groundtruths['width'], axis=0)
gt_images = [{'id': int(i), 'height': int(h), 'width': int(w)} for i, h, w
in zip(source_ids, heights, widths)]
gt_annotations = []
num_batches = len(groundtruths['source_id'])
batch_size = groundtruths['source_id'][0].shape[0]
for i in range(num_batches):
for j in range(batch_size):
num_instances = groundtruths['num_detections'][i][j]
for k in range(num_instances):
ann = {}
ann['image_id'] = int(groundtruths['source_id'][i][j])
if 'is_crowds' in groundtruths:
ann['iscrowd'] = int(groundtruths['is_crowds'][i][j, k])
else:
ann['iscrowd'] = 0
ann['category_id'] = int(groundtruths['classes'][i][j, k])
boxes = groundtruths['boxes'][i]
ann['bbox'] = [
float(boxes[j, k, 1]),
float(boxes[j, k, 0]),
float(boxes[j, k, 3] - boxes[j, k, 1]),
float(boxes[j, k, 2] - boxes[j, k, 0])]
if 'areas' in groundtruths:
ann['area'] = float(groundtruths['areas'][i][j, k])
else:
ann['area'] = float(
(boxes[j, k, 3] - boxes[j, k, 1]) *
(boxes[j, k, 2] - boxes[j, k, 0]))
if 'masks' in groundtruths:
mask = Image.open(six.StringIO(groundtruths['masks'][i][j, k]))
width, height = mask.size
np_mask = (
np.array(mask.getdata()).reshape(height, width).astype(np.uint8))
np_mask[np_mask > 0] = 255
encoded_mask = mask_utils.encode(np.asfortranarray(np_mask))
ann['segmentation'] = encoded_mask
if 'areas' not in groundtruths:
ann['area'] = mask_utils.area(encoded_mask)
gt_annotations.append(ann)
for i, ann in enumerate(gt_annotations):
ann['id'] = i + 1
if label_map:
gt_categories = [{'id': i, 'name': label_map[i]} for i in label_map]
else:
category_ids = [gt['category_id'] for gt in gt_annotations]
gt_categories = [{'id': i} for i in set(category_ids)]
gt_dataset = {
'images': gt_images,
'categories': gt_categories,
'annotations': copy.deepcopy(gt_annotations),
}
return gt_dataset
class COCOGroundtruthGenerator(object):
def __init__(self, file_pattern, num_examples, include_mask):
self._file_pattern = file_pattern
self._num_examples = num_examples
self._include_mask = include_mask
self._dataset_fn = tf.data.TFRecordDataset
def _parse_single_example(self, example):
decoder = tf_example_decoder.TfExampleDecoder(
include_mask=self._include_mask)
decoded_tensors = decoder.decode(example)
image = decoded_tensors['image']
image_size = tf.shape(image)[0:2]
boxes = box_utils.denormalize_boxes(
decoded_tensors['groundtruth_boxes'], image_size)
groundtruths = {
'source_id': tf.string_to_number(
decoded_tensors['source_id'], out_type=tf.int64),
'height': decoded_tensors['height'],
'width': decoded_tensors['width'],
'num_detections': tf.shape(decoded_tensors['groundtruth_classes'])[0],
'boxes': boxes,
'classes': decoded_tensors['groundtruth_classes'],
'is_crowds': decoded_tensors['groundtruth_is_crowd'],
'areas': decoded_tensors['groundtruth_area'],
}
if self._include_mask:
groundtruths.update({
'masks': decoded_tensors['groundtruth_instance_masks_png'],
})
return groundtruths
def _build_pipeline(self):
dataset = tf.data.Dataset.list_files(self._file_pattern, shuffle=False)
dataset = dataset.apply(
tf.data.experimental.parallel_interleave(
lambda filename: self._dataset_fn(filename).prefetch(1),
cycle_length=32,
sloppy=False))
dataset = dataset.map(self._parse_single_example, num_parallel_calls=64)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
dataset = dataset.batch(1, drop_remainder=False)
return dataset
def __call__(self):
with tf.Graph().as_default():
dataset = self._build_pipeline()
groundtruth = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(self._num_examples):
groundtruth_result = sess.run(groundtruth)
yield groundtruth_result
def scan_and_generator_annotation_file(file_pattern,
num_samples,
include_mask,
annotation_file):
groundtruth_generator = COCOGroundtruthGenerator(
file_pattern, num_samples, include_mask)
generate_annotation_file(groundtruth_generator, annotation_file) | Apache License 2.0 |
e-loue/pyke | pyke/target_pkg.py | target_pkg.reset | python | def reset(self, check_sources = True):
if debug: print >> sys.stderr, "target_pkg.reset"
self.dirty = False
self.check_sources = check_sources
self.source_packages = {}
self.compiled_targets = set()
self.rb_names = set() | This should be called once by engine.__init__ prior to calling
add_source_package. | https://github.com/e-loue/pyke/blob/cfe95d8aaa06de123264f9b7f5bea20eb5924ecd/pyke/target_pkg.py#L180-L192 | from __future__ import with_statement
import os, os.path
import time
import sys
import re
import pyke
debug = False
Name_test = re.compile(r'[a-zA-Z_][a-zA-Z0-9_]*$')
class target_pkg(object):
def __init__(self, module_name, filename = None,
pyke_version = pyke.version,
loader = None, sources = None, compiler_version = 0):
self.package_name = module_name.rsplit('.', 1)[0]
if sources is None:
try:
target_package_dir = os.path.dirname(import_(self.package_name).__file__)
except ImportError:
if debug:
print >> sys.stderr, "target_pkg: no target package", self.package_name
last_dot = self.package_name.rfind('.')
if last_dot < 0:
assert filename is not None
package_parent_dir = os.path.dirname(os.path.dirname(filename))
else:
package_parent_dir = os.path.dirname(
import_(self.package_name[:last_dot]).__file__)
if filename is not None:
assert os.path.normpath(
os.path.abspath(package_parent_dir)) == os.path.normpath(
os.path.dirname(os.path.dirname(filename))), "Internal error: %r != %r" % (
os.path.normpath(
os.path.abspath(package_parent_dir)),
os.path.normpath(
os.path.dirname(os.path.dirname(filename))))
if debug:
print >> sys.stderr, "target_pkg package_parent_dir:", package_parent_dir
target_package_dir = os.path.join(package_parent_dir,
self.package_name[last_dot + 1:])
if debug:
print >> sys.stderr, "target_pkg target_package_dir:", target_package_dir
if not os.path.lexists(target_package_dir):
if debug:
print >> sys.stderr, "target_pkg: mkdir", target_package_dir
os.mkdir(target_package_dir)
init_filepath = os.path.join(target_package_dir, '__init__.py')
if debug:
print >> sys.stderr, "target_pkg init_filepath:", init_filepath
if not os.path.lexists(init_filepath):
if debug:
print >> sys.stderr, "target_pkg: creating", init_filepath
open(init_filepath, 'w').close()
filename = os.path.join(target_package_dir,
'compiled_pyke_files.py')
if filename.endswith('.py'):
self.filename = filename
else:
self.filename = filename[:-1]
self.directory = os.path.dirname(self.filename)
if debug:
print >> sys.stderr, "target_pkg:", self.package_name, self.filename
self.loader = loader
if compiler_version == pyke.compiler_version:
self.sources = sources if sources is not None else {}
elif self.loader is None:
self.sources = {}
else:
raise AssertionError("%s: wrong version of pyke, "
"running %s, compiled for %s" %
(module_name, pyke.version, pyke_version)) | MIT License |
zomux/deepy | deepy/trainers/base.py | NeuralTrainer.load_params | python | def load_params(self, path, exclude_free_params=False):
self.network.load_params(path, exclude_free_params=exclude_free_params)
self.best_params = self.copy_params()
if self.network.train_logger.progress() > 0 or self.network.train_logger.epoch() > 0:
self.skip(self.network.train_logger.progress(), self.network.train_logger.epoch() - 1) | Load parameters for the training.
This method can load free parameters and resume the training progress. | https://github.com/zomux/deepy/blob/090fbad22a08a809b12951cd0d4984f5bd432698/deepy/trainers/base.py#L144-L153 | import sys
import time
import numpy as np
import theano
from ..conf import TrainerConfig
from ..core import env, runtime
from ..utils import Timer
from ..dataset import Dataset
from controllers import TrainingController
from abc import ABCMeta, abstractmethod
from logging import getLogger
logging = getLogger("trainer")
class NeuralTrainer(object):
__metaclass__ = ABCMeta
def __init__(self, network, config=None, validator=None, annealer=None):
super(NeuralTrainer, self).__init__()
self.config = None
if isinstance(config, TrainerConfig):
self.config = config
elif isinstance(config, dict):
self.config = TrainerConfig(config)
else:
self.config = TrainerConfig()
if type(self.config.learning_rate) == float:
self.config.learning_rate = np.array(self.config.learning_rate, dtype=env.FLOATX)
self.model = self.network = network
self.network.prepare_training()
self._setup_costs()
self.evaluation_func = None
self.validation_frequency = self.config.validation_frequency
self.min_improvement = self.config.min_improvement
self.patience = self.config.patience
self._iter_controllers = []
self._epoch_controllers = []
if annealer:
annealer.bind(self)
self._epoch_controllers.append(annealer)
if validator:
validator.bind(self)
self._iter_controllers.append(validator)
self.best_cost = 1e100
self.best_epoch = 0
self.best_params = self.copy_params()
self._skip_batches = 0
self._skip_epochs = 0
self._progress = 0
self.last_cost = 0
self.last_run_costs = None
self._report_time = True
self._epoch = 0
self._current_train_set = None
self._current_valid_set = None
self._current_test_set = None
self._ended = False
def _compile_evaluation_func(self):
if not self.evaluation_func:
logging.info("compile evaluation function")
self.evaluation_func = theano.function(
self.network.input_variables + self.network.target_variables,
self.evaluation_variables,
updates=self.network.updates,
allow_input_downcast=True, mode=self.config.get("theano_mode", None))
def skip(self, n_batches, n_epochs=0):
logging.info("skip %d epochs and %d batches" % (n_epochs, n_batches))
self._skip_batches = n_batches
self._skip_epochs = n_epochs
def epoch(self):
return self._epoch
def _setup_costs(self):
self.cost = self._add_regularization(self.network.cost)
self.test_cost = self._add_regularization(self.network.test_cost)
self.training_variables = [self.cost]
self.training_names = ['J']
for name, monitor in self.network.training_monitors:
self.training_names.append(name)
self.training_variables.append(monitor)
logging.info("monitor list: %s" % ",".join(self.training_names))
self.evaluation_variables = [self.test_cost]
self.evaluation_names = ['J']
for name, monitor in self.network.testing_monitors:
self.evaluation_names.append(name)
self.evaluation_variables.append(monitor)
def _add_regularization(self, cost):
if self.config.weight_l1 > 0:
logging.info("L1 weight regularization: %f" % self.config.weight_l1)
cost += self.config.weight_l1 * sum(abs(w).sum() for w in self.network.parameters)
if self.config.hidden_l1 > 0:
logging.info("L1 hidden unit regularization: %f" % self.config.hidden_l1)
cost += self.config.hidden_l1 * sum(abs(h).mean(axis=0).sum() for h in self.network._hidden_outputs)
if self.config.hidden_l2 > 0:
logging.info("L2 hidden unit regularization: %f" % self.config.hidden_l2)
cost += self.config.hidden_l2 * sum((h * h).mean(axis=0).sum() for h in self.network._hidden_outputs)
return cost
def set_params(self, targets, free_params=None):
for param, target in zip(self.network.parameters, targets):
param.set_value(target)
if free_params:
for param, param_value in zip(self.network.free_parameters, free_params):
param.set_value(param_value)
def save_params(self, path):
self.set_params(*self.best_params)
self.network.save_params(path) | MIT License |
neuropycon/graphpype | graphpype/labeled_mask.py | compute_ROI_nii_from_ROI_coords_files | python | def compute_ROI_nii_from_ROI_coords_files(
ref_img_file, MNI_coords_file, labels_file, neighbourhood=1):
ref_image = nib.load(ref_img_file)
ref_image_data = ref_image.get_data()
ref_image_data_shape = ref_image_data.shape
ref_image_data_sform = ref_image.get_sform()
ROI_MNI_coords_list = np.array(np.loadtxt(
MNI_coords_file), dtype='int').tolist()
ROI_labels = [lign.strip() for lign in open(labels_file)]
mni_sform_inv = np.linalg.inv(ref_image_data_sform)
ROI_coords = np.array([_coord_transform(x, y, z, mni_sform_inv)
for x, y, z in ROI_MNI_coords_list], dtype="int64")
for i, ROI_coord in enumerate(ROI_coords):
ROI_coords_labelled_mask = np.zeros(
shape=ref_image_data_shape, dtype='int64')
neigh_range = list(range(-neighbourhood, neighbourhood+1))
for relative_coord in iter.product(neigh_range, repeat=3):
neigh_x, neigh_y, neigh_z = ROI_coord + relative_coord
print(neigh_x, neigh_y, neigh_z)
if check_np_dimension(ROI_coords_labelled_mask.shape,
np.array([neigh_x, neigh_y, neigh_z],
dtype='int64')):
ROI_coords_labelled_mask[neigh_x, neigh_y, neigh_z] = 1
print(ROI_coords_labelled_mask)
path, fname, ext = split_f(MNI_coords_file)
ROI_coords_labelled_mask_file = os.path.join(
path, "ROI_{}-neigh_{}_2.nii".format(ROI_labels[i],
str(neighbourhood)))
nib.save(nib.Nifti1Image(
ROI_coords_labelled_mask, ref_image.affine,
ref_image.header), ROI_coords_labelled_mask_file)
return ROI_coords_labelled_mask_file | Export single file VOI binary nii image | https://github.com/neuropycon/graphpype/blob/409a370e7d293c3fcff0d733bf7af50850dfa9e4/graphpype/labeled_mask.py#L256-L309 | import nipype.interfaces.spm as spm
from nipype.utils.filemanip import split_filename as split_f
from graphpype.utils import check_np_dimension
import itertools as iter
import numpy as np
import nibabel as nib
import glob
import os
from scipy import ndimage as ndimg
from scipy.spatial.distance import cdist
def _coord_transform(x, y, z, affine):
coords = np.c_[np.atleast_1d(x).flat,
np.atleast_1d(y).flat,
np.atleast_1d(z).flat,
np.ones_like(np.atleast_1d(z).flat)].T
x, y, z, _ = np.dot(affine, coords)
return x.squeeze(), y.squeeze(), z.squeeze()
def create_indexed_mask(ref_img_file, MNI_coords_list, ROI_dir,
ROI_mask_prefix="def", ROI_shape="cube", ROI_size=10):
np_coord = np.array(MNI_coords_list)
if len(np_coord.shape) > 1:
dist = cdist(np_coord, np_coord, metric='euclidean')
assert np.all(dist[np.triu_indices(dist.shape[0], k=1)]
> ROI_size), "Error, distance < {}".format(ROI_size)
ref_img = nib.load(ref_img_file)
ref_img_shape = ref_img.get_data().shape
if len(ref_img_shape) == 4:
print("using 4D image for computing 3D mask, reducing shape")
ref_img_shape = ref_img_shape[:-1]
print(ref_img_shape)
ref_img_affine = ref_img.affine
inv_affine = np.linalg.inv(ref_img_affine)
ref_img_hd = ref_img.header
pixdims = ref_img_hd['pixdim'][1:4]
indexed_mask_data = np.zeros(shape=ref_img_shape) - 1
if ROI_shape not in ["sphere", "cube"]:
print("Warning, could not determine shape {}, using cube instead"
.format(ROI_shape))
ROI_shape = "cube"
if ROI_shape == "cube":
print("ROI_shape = cube")
vox_dims = list(map(int, float(ROI_size)/pixdims))
print(vox_dims)
neigh_range = []
for vox_dim in vox_dims:
vox_neigh = vox_dim/2
if vox_dim % 2 == 1:
cur_range = np.arange(-vox_neigh, vox_neigh+1)
elif vox_dim % 2 == 0:
cur_range = np.arange(-vox_neigh+1, vox_neigh+1)
neigh_range.append(cur_range)
ROI_coords = []
for index_mask, MNI_coords in enumerate(MNI_coords_list):
ijk_coord = _coord_transform(MNI_coords[0], MNI_coords[1],
MNI_coords[2], inv_affine)
neigh_coords = np.array(
[list(i) for i in iter.product(*neigh_range)], dtype=int)
cur_coords = np.array([list(map(int, ijk_coord + neigh_coord))
for neigh_coord in neigh_coords])
max_i, max_j, max_k = indexed_mask_data.shape
keep = (0 <= cur_coords[:, 0]) & (cur_coords[:, 0] < max_i) & (0 <= cur_coords[:, 1]) & (cur_coords[:, 1] < max_j) & (0 <= cur_coords[:, 2]) & (cur_coords[:, 2] < max_k)
if np.all(keep is False):
continue
indexed_mask_data[cur_coords[keep, 0], cur_coords[keep, 1],
cur_coords[keep, 2]] = index_mask
print(np.sum(indexed_mask_data == index_mask))
ROI_coords.append(ijk_coord)
elif ROI_shape == "sphere":
print("building spheres of {} mm".format(ROI_size))
radius = ROI_size/2.0
print(radius)
vox_dims = list(map(int, float(radius)/pixdims))
print(vox_dims)
r2_dim = []
neigh_range = []
for i, vox_dim in enumerate(vox_dims):
pixdim = pixdims[i]
cur_range = np.arange(-vox_dim, (vox_dim+1))
print(cur_range)
cur_r2 = (cur_range*pixdim)**2
print(cur_r2)
neigh_range.append(cur_range.tolist())
r2_dim.append(cur_r2)
print(neigh_range)
neigh_coords = np.array(
[list(i) for i in iter.product(*neigh_range)], dtype=int)
neigh_dist = np.array([np.sum(i) for i in iter.product(*r2_dim)])
neigh_range = neigh_coords[neigh_dist < radius**2]
ROI_coords = []
for index_mask, MNI_coords in enumerate(MNI_coords_list):
ijk_coord = np.dot(inv_affine, np.array(
MNI_coords + [1], dtype='int'))[:-1]
ROI_coords.append(ijk_coord)
cur_coords = np.array([list(map(int, ijk_coord + neigh_coord))
for neigh_coord in neigh_range.tolist()])
indexed_mask_data[cur_coords[:, 0],
cur_coords[:, 1], cur_coords[:, 2]] = index_mask
print(np.sum(indexed_mask_data == index_mask))
try:
os.makedirs(ROI_dir)
except OSError:
print("directory already created")
indexed_mask_file = os.path.join(
ROI_dir, "indexed_mask-" + ROI_mask_prefix + ".nii")
nib.save(nib.Nifti1Image(indexed_mask_data,
ref_img_affine), indexed_mask_file)
ROI_coords_file = os.path.join(
ROI_dir, "ROI_coords-" + ROI_mask_prefix + ".txt")
np.savetxt(ROI_coords_file, np.array(ROI_coords, dtype=int), fmt="%d")
return indexed_mask_file | BSD 3-Clause New or Revised License |
sanic-org/sanic | sanic/server/socket.py | remove_unix_socket | python | def remove_unix_socket(path: Optional[str]) -> None:
if not path:
return
try:
if stat.S_ISSOCK(os.stat(path, follow_symlinks=False).st_mode):
with socket.socket(socket.AF_UNIX) as testsock:
try:
testsock.connect(path)
except ConnectionRefusedError:
os.unlink(path)
except FileNotFoundError:
pass | Remove dead unix socket during server exit. | https://github.com/sanic-org/sanic/blob/3262878ebd41aa2230ef15d4475bbcf223b2356b/sanic/server/socket.py#L74-L87 | from __future__ import annotations
import os
import secrets
import socket
import stat
from ipaddress import ip_address
from typing import Optional
def bind_socket(host: str, port: int, *, backlog=100) -> socket.socket:
try:
ip = ip_address(host)
host = str(ip)
sock = socket.socket(
socket.AF_INET6 if ip.version == 6 else socket.AF_INET
)
except ValueError:
sock = socket.socket()
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind((host, port))
sock.listen(backlog)
return sock
def bind_unix_socket(path: str, *, mode=0o666, backlog=100) -> socket.socket:
path = os.path.abspath(path)
folder = os.path.dirname(path)
if not os.path.isdir(folder):
raise FileNotFoundError(f"Socket folder does not exist: {folder}")
try:
if not stat.S_ISSOCK(os.stat(path, follow_symlinks=False).st_mode):
raise FileExistsError(f"Existing file is not a socket: {path}")
except FileNotFoundError:
pass
tmp_path = f"{path}.{secrets.token_urlsafe()}"
sock = socket.socket(socket.AF_UNIX)
try:
sock.bind(tmp_path)
try:
os.chmod(tmp_path, mode)
sock.listen(backlog)
os.rename(tmp_path, path)
except:
try:
os.unlink(tmp_path)
finally:
raise
except:
try:
sock.close()
finally:
raise
return sock | MIT License |
alexmohr/sonyapilib | tests/device_test.py | SonyDeviceTest.create_device | python | def create_device():
sonyapilib.device.TIMEOUT = 0.1
device = SonyDevice("test", "test")
device.api_version = 3
device.cookies = jsonpickle.decode(read_file("data/cookies.json"))
return device | Create a new device instance | https://github.com/alexmohr/sonyapilib/blob/50fd5839e5ffe057c472ae41d3c40e98b92b55a0/tests/device_test.py#L898-L904 | import os.path
import sys
import unittest
from inspect import getsourcefile
from unittest import mock
from urllib.parse import (
urljoin
)
import jsonpickle
from requests import HTTPError, URLRequired, RequestException
from tests.testutil import read_file
current_dir = os.path.dirname(os.path.abspath(getsourcefile(lambda: 0)))
sys.path.insert(0, current_dir[:current_dir.rfind(os.path.sep)])
import sonyapilib.device
from sonyapilib.ssdp import SSDPResponse
from sonyapilib.device import SonyDevice, XmlApiObject, AuthenticationResult
sys.path.pop(0)
ACTION_LIST_URL = 'http://192.168.240.4:50002/actionList'
ACTION_LIST_URL_2 = 'http://192.168.240.4:50002/actionList2'
DMR_URL = 'http://test:52323/dmr.xml'
IRCC_URL = 'http://test:50001/Ircc.xml'
IRCC_URL_NO_SCHEMA = 'http://test_no_schema:50001/Ircc.xml'
IRCC_URL_MISSING_INFO = 'http://test_missing_info:50001/Ircc.xml'
SYSTEM_INFORMATION_URL = 'http://192.168.240.4:50002/getSystemInformation'
SYSTEM_INFORMATION_URL_V4 = 'http://test/sony/system'
GET_REMOTE_COMMAND_LIST_URL = 'http://192.168.240.4:50002/getRemoteCommandList'
REGISTRATION_URL_LEGACY = 'http://192.168.240.4:50002/register'
REGISTRATION_URL_V4 = 'http://192.168.170.23/sony/accessControl'
REGISTRATION_URL_V4_FAIL = 'http://192.168.170.22/sony/accessControl'
REGISTRATION_URL_V4_FAIL_401 = 'http://192.168.170.25/sony/accessControl'
REGISTRATION_URL_V3_FAIL_401 = 'http://192.168.240.7:50002/register'
COMMAND_LIST_V4 = 'http://192.168.240.4:50002/getRemoteCommandList'
APP_LIST_URL = 'http://test:50202/appslist'
APP_LIST_URL_V4 = 'http://test/DIAL/sony/applist'
APP_START_URL_LEGACY = 'http://test:50202/apps/'
APP_START_URL = 'http://test/DIAL/apps/'
SOAP_URL = 'http://test/soap'
GET_REMOTE_CONTROLLER_INFO_URL = "http://test/getRemoteControllerInfo"
BASE_URL = 'http://test/sony'
AV_TRANSPORT_URL = 'http://test:52323/upnp/control/AVTransport'
AV_TRANSPORT_URL_NO_MEDIA = 'http://test2:52323/upnp/control/AVTransport'
REQUESTS_ERROR = 'http://ERROR'
ACTION_LIST = [
"getText",
"sendText",
"getContentInformation",
"getSystemInformation",
"getRemoteCommandList",
"getStatus",
"getHistoryList",
"getContentUrl",
"sendContentUrl"
]
def mocked_return_none(*args, **kwargs):
return None
def mock_request_error(*args, **kwargs):
raise HTTPError()
def mock_error(*args, **kwargs):
raise Exception()
def mock_request_exception(*args, **kwargs):
raise RequestException("Test Exception")
def mock_nothing(*args, **kwargs):
pass
def mock_register_success(*args, **kwargs):
return AuthenticationResult.SUCCESS
def mock_discovery(*args, **kwargs):
if args[0] == "urn:schemas-sony-com:service:IRCC:1":
resp = SSDPResponse(None)
resp.location = IRCC_URL
return [resp]
return None
class MockResponseJson:
def __init__(self, data):
self.data = data
def get(self, key):
if key in self.data:
return self.data[key]
return None
class MockResponse:
def __init__(self, json_data, status_code, text=None, cookies=None):
self.json_obj = MockResponseJson(json_data)
self.status_code = status_code
self.text = text
self.cookies = cookies
if text:
self.content = text.encode()
def json(self):
return self.json_obj
def raise_for_status(self):
if self.status_code == 200:
return
error = HTTPError()
error.response = self
raise error
def mocked_requests_empty(*args, **kwargs):
return {}
def mocked_requests_post(*args, **kwargs):
url = args[0]
print("POST for URL: {}".format(url))
if not url:
raise URLRequired()
elif url == REGISTRATION_URL_V4:
return MockResponse({}, 200)
elif url == REGISTRATION_URL_V4_FAIL:
return MockResponse({"error": 402}, 200)
elif url == REGISTRATION_URL_V4_FAIL_401:
MockResponse(None, 401).raise_for_status()
elif url == SOAP_URL:
return MockResponse({}, 200, "data")
elif url == urljoin(BASE_URL, 'system'):
result = MockResponseJson({"status": "on"})
return MockResponse({"result": [result]}, 200)
elif APP_START_URL_LEGACY in url:
return MockResponse(None, 200)
elif APP_START_URL in url:
return MockResponse(None, 200)
elif url == AV_TRANSPORT_URL:
return MockResponse(None,
200,
read_file(
'data/playing_status_legacy_playing.xml'))
elif url == AV_TRANSPORT_URL_NO_MEDIA:
return MockResponse(None,
200,
read_file(
'data/playing_status_legacy_no_media.xml'))
elif url == COMMAND_LIST_V4:
json_data = jsonpickle.decode(read_file('data/commandList.json'))
return MockResponse(json_data, 200, "")
elif url == SYSTEM_INFORMATION_URL_V4:
json_data = jsonpickle.decode(read_file('data/systemInformation.json'))
return MockResponse(json_data, 200, "")
elif url.startswith(REQUESTS_ERROR):
raise RequestException
else:
raise ValueError("Unknown url requested: {}".format(url))
def mocked_requests_get(*args, **kwargs):
url = args[0]
print("GET for URL: {}".format(url))
if url == DMR_URL:
return MockResponse(None, 200, read_file("data/dmr_v3.xml"))
elif url == IRCC_URL:
return MockResponse(None, 200, read_file("data/ircc.xml"))
elif url == IRCC_URL_MISSING_INFO:
return MockResponse(None, 200, read_file("data/ircc_missing_info.xml"))
elif url == IRCC_URL_NO_SCHEMA:
return MockResponse(None, 200, read_file("data/ircc_no_schema.xml"))
elif url == ACTION_LIST_URL:
return MockResponse(None, 200, read_file("data/actionlist.xml"))
elif url == ACTION_LIST_URL_2:
return MockResponse(None, 200, read_file("data/actionlist_no_url.xml"))
elif url == SYSTEM_INFORMATION_URL:
return MockResponse(None, 200, read_file("data/getSysteminformation.xml"))
elif url == GET_REMOTE_COMMAND_LIST_URL:
return MockResponse(None, 200, read_file("data/getRemoteCommandList.xml"))
elif url == APP_LIST_URL or url == APP_LIST_URL_V4:
return MockResponse(None, 200, read_file("data/appsList.xml"))
elif url == REGISTRATION_URL_LEGACY:
return MockResponse({}, 200)
elif url == REGISTRATION_URL_V3_FAIL_401:
MockResponse(None, 401).raise_for_status()
elif url == GET_REMOTE_CONTROLLER_INFO_URL:
return MockResponse(None, 200)
elif url.startswith(REQUESTS_ERROR):
raise RequestException()
else:
raise ValueError("Unknown url requested: {}".format(url))
return MockResponse(None, 404)
class SonyDeviceTest(unittest.TestCase):
@mock.patch('sonyapilib.device.SonyDevice._update_service_urls', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._recreate_authentication', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._update_commands', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._update_applist', side_effect=mock_nothing)
def test_init_device_no_pin(self, mock_update_applist, mock_update_command,
mock_recreate_auth, mock_update_service_url):
device = self.create_device()
device.init_device()
self.assertEqual(mock_update_service_url.call_count, 1)
self.assertEqual(mock_recreate_auth.call_count, 0)
self.assertEqual(mock_update_command.call_count, 1)
self.assertEqual(mock_update_applist.call_count, 0)
@mock.patch('sonyapilib.device.SonyDevice._update_service_urls', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._recreate_authentication', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._update_commands', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._update_applist', side_effect=mock_nothing)
def test_init_device_with_pin(self, mock_update_applist, mock_update_command,
mock_recreate_auth, mock_update_service_url):
device = self.create_device()
device.pin = 1234
device.init_device()
self.assertEqual(mock_update_service_url.call_count, 1)
self.assertEqual(mock_recreate_auth.call_count, 1)
self.assertEqual(mock_update_command.call_count, 1)
self.assertEqual(mock_update_applist.call_count, 1)
@mock.patch('sonyapilib.ssdp.SSDPDiscovery.discover', side_effect=mock_discovery)
def test_discovery(self, mock_discover):
devices = SonyDevice.discover()
self.assertEqual(len(devices), 1)
self.assertEqual(devices[0].host, "test")
def test_save_load_from_json(self):
device = self.create_device()
jdata = device.save_to_json()
restored_device = SonyDevice.load_from_json(jdata)
jdata_restored = restored_device.save_to_json()
self.assertEqual(jdata, jdata_restored)
self.assertEqual(restored_device.client_id, device.client_id)
def test_update_service_urls_error_response(self):
device = self.create_device()
device._update_service_urls()
@mock.patch('requests.get', side_effect=mocked_requests_get)
@mock.patch('sonyapilib.device.SonyDevice._parse_ircc', side_effect=mock_error)
def test_update_service_urls_error_processing(self, mock_error, mocked_requests_get):
device = self.create_device()
device._update_service_urls()
self.assertEqual(mock_error.call_count, 1)
@mock.patch('sonyapilib.device.SonyDevice._send_http', side_effect=mock_request_exception)
def test_update_service_urls_request_exception(self, mock_request_exception):
device = self.create_device()
device._update_service_urls()
self.assertEqual(mock_request_exception.call_count, 1)
@mock.patch('requests.get', side_effect=mocked_requests_get)
@mock.patch('sonyapilib.device.SonyDevice._parse_ircc', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._parse_action_list', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._parse_system_information', side_effect=mock_nothing)
def test_update_service_urls_v3(self, mock_ircc, mock_action_list,
mock_system_information, mocked_requests_get):
device = self.create_device()
device.pin = 1234
device._update_service_urls()
self.assertEqual(mock_ircc.call_count, 1)
self.assertEqual(mock_action_list.call_count, 1)
self.assertEqual(mock_system_information.call_count, 1)
@mock.patch('requests.get', side_effect=mocked_requests_get)
@mock.patch('requests.post', side_effect=mocked_requests_post)
def test_update_service_urls_v4(self, mocked_requests_post, mocked_requests_get):
device = self.create_device()
device.pin = 1234
device.api_version = 4
device._update_service_urls()
self.assertEqual(device.mac, "10:08:B1:31:81:B5")
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_parse_dmr_v3(self, mock_get):
content = read_file("data/dmr_v3.xml")
device = self.create_device()
device._parse_dmr(content)
self.verify_device_dmr(device)
self.assertLess(device.api_version, 4)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_parse_dmr_v4(self, mock_get):
content = read_file("data/dmr_v4.xml")
device = self.create_device()
device._parse_dmr(content)
self.verify_device_dmr(device)
self.assertGreater(device.api_version, 3)
self.assertEqual(
device.actions["register"].url, REGISTRATION_URL_V4)
self.assertEqual(device.actions["register"].mode, 4)
self.assertEqual(
device.actions["getRemoteCommandList"].url, 'http://192.168.170.23/sony/system')
def test_parse_ircc_error(self):
device = self.create_device()
with self.assertRaises(RequestException):
device._parse_ircc()
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_parse_ircc(self, mock_get):
device = self.create_device()
device._parse_ircc()
self.assertEqual(
device.actionlist_url, ACTION_LIST_URL)
self.assertEqual(
device.control_url, 'http://test:50001/upnp/control/IRCC')
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_parse_ircc_no_schema(self, mock_get):
device = self.create_device()
device.ircc_url = IRCC_URL_NO_SCHEMA
device._parse_ircc()
self.assertEqual(
device.actionlist_url, ACTION_LIST_URL)
self.assertEqual(
device.control_url, 'http://test:50001/upnp/control/IRCC')
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_parse_ircc_no_missing_info(self, mock_get):
device = self.create_device()
device.ircc_url = IRCC_URL_MISSING_INFO
device._parse_ircc()
self.assertEqual(
device.actionlist_url, ACTION_LIST_URL)
self.assertEqual(
device.control_url, 'http://test:50001/upnp/control/IRCC')
def test_parse_action_list_error(self):
device = self.create_device()
device.actionlist_url = ACTION_LIST_URL
device._parse_action_list()
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_parse_action_list(self, mock_get):
device = self.create_device()
device.actionlist_url = ACTION_LIST_URL
device._parse_action_list()
self.assertEqual(device.actions["register"].mode, 3)
base_url = "http://192.168.240.4:50002/"
for action in ACTION_LIST:
self.assertEqual(device.actions[action].url, base_url + action)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_parse_action_list_without_url(self, mock_get):
device = self.create_device()
device.actionlist_url = ACTION_LIST_URL_2
device._parse_action_list()
self.assertEqual(device.actions["register"].mode, 3)
for action in ACTION_LIST:
action_url = "{}?action={}".format(ACTION_LIST_URL_2, action)
self.assertEqual(device.actions[action].url, action_url)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_parse_system_information(self, mock_get):
device = self.create_device()
data = XmlApiObject({})
data.url = SYSTEM_INFORMATION_URL
device.actions["getSystemInformation"] = data
device._parse_system_information()
self.assertEqual(device.mac, "30-52-cb-cc-16-ee")
@mock.patch('requests.post', side_effect=mocked_requests_empty)
def test_parse_sys_info_error(self, mock_get):
device = self.create_device()
data = XmlApiObject({})
data.url = SYSTEM_INFORMATION_URL
device.actions["getSystemInformation"] = data
device._parse_system_information()
self.assertEqual(device.mac, None)
def prepare_test_action_list(self):
device = self.create_device()
data = XmlApiObject({})
data.url = GET_REMOTE_COMMAND_LIST_URL
device.actions["getRemoteCommandList"] = data
return device
def test_parse_command_list_error(self):
versions = [1, 2, 3, 4]
for version in versions:
device = self.prepare_test_action_list()
device.api_version = version
if version < 4:
device._parse_command_list()
else:
device._parse_command_list_v4()
@mock.patch('requests.get', side_effect=mocked_requests_get)
@mock.patch('requests.post', side_effect=mocked_requests_post)
def test_parse_command_list(self, mock_get, mock_post):
versions = [1, 2, 3, 4]
for version in versions:
device = self.prepare_test_action_list()
device.version = version
if version < 4:
cmd_length = 48
device._parse_command_list()
else:
cmd_length = 98
device._parse_command_list_v4()
self.assertTrue("Power" in device.commands)
self.assertTrue("Left" in device.commands)
self.assertTrue("Pause" in device.commands)
self.assertTrue("Num3" in device.commands)
self.assertEqual(len(device.commands), cmd_length)
@mock.patch('sonyapilib.device.SonyDevice._parse_command_list', side_effect=mock_nothing)
def test_update_commands_no_pin(self, mock_parse_cmd_list):
device = self.create_device()
device._update_commands()
self.assertEqual(mock_parse_cmd_list.call_count, 1)
@mock.patch('sonyapilib.device.SonyDevice._use_builtin_command_list', side_effect=mock_nothing)
def test_update_commands_v0(self, mock_parse_cmd_list):
device = self.create_device()
device.api_version = 0
device._update_commands()
self.assertEqual(mock_parse_cmd_list.call_count, 1)
@mock.patch('sonyapilib.device.SonyDevice._parse_command_list', side_effect=mock_nothing)
def test_update_commands_v3(self, mock_parse_cmd_list):
device = self.create_device()
device.pin = 1234
device._update_commands()
self.assertEqual(mock_parse_cmd_list.call_count, 1)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_update_commands_v4(self, mock_get):
device = self.create_device()
device.pin = 1234
device.api_version = 4
action = XmlApiObject({})
action.url = GET_REMOTE_CONTROLLER_INFO_URL
device.actions["getRemoteCommandList"] = action
device._update_commands()
def start_app(self, device, app_name, mock_post, mock_send_command):
versions = [1, 2, 3, 4]
apps = {
"Video Explorer": "com.sony.videoexplorer",
"Music Explorer": "com.sony.musicexplorer",
"Video Player": "com.sony.videoplayer",
"Music Player": "com.sony.musicplayer",
"PlayStation Video": "com.sony.videounlimited",
"Amazon Prime Video": "com.sony.iptv.4976",
"Netflix": "com.sony.iptv.type.NRDP",
"Rakuten TV": "com.sony.iptv.3479",
"Tagesschau": "com.sony.iptv.type.EU-TAGESSCHAU_6x3",
"Functions with Gracenote ended": "com.sony.iptv.6317",
"watchmi Themenkanäle": "com.sony.iptv.4766",
"Netzkino": "com.sony.iptv.4742",
"MUBI": "com.sony.iptv.5498",
"WWE Network": "com.sony.iptv.4340",
"DW for Smart TV": "com.sony.iptv.4968",
"YouTube": "com.sony.iptv.type.ytleanback",
"uStudio": "com.sony.iptv.4386",
"Meteonews TV": "com.sony.iptv.3487",
"Digital Concert Hall": "com.sony.iptv.type.WW-BERLINPHIL_NBIV",
"Activate Enhanced Features": "com.sony.iptv.4834"
}
for version in versions:
device.api_version = version
device.start_app(app_name)
self.assertEqual(mock_post.call_count, 1)
self.assertEqual(mock_send_command.call_count, 1)
if version < 4:
url = APP_START_URL_LEGACY + apps[app_name]
else:
url = APP_START_URL + apps[app_name]
self.assertEqual(url, mock_post.call_args[0][0])
mock_send_command.call_count = 0
mock_post.call_count = 0
mock_post.mock_calls.clear()
@mock.patch('sonyapilib.device.SonyDevice._send_command', side_effect=mock_nothing)
@mock.patch('requests.post', side_effect=mocked_requests_post)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_update_applist(self, mock_get, mock_post, mock_send_command):
device = self.create_device()
app_list = [
"Video Explorer", "Music Explorer", "Video Player", "Music Player",
"PlayStation Video", "Amazon Prime Video", "Netflix", "Rakuten TV",
"Tagesschau", "Functions with Gracenote ended", "watchmi Themenkanäle",
"Netzkino", "MUBI", "WWE Network", "DW for Smart TV", "YouTube",
"uStudio", "Meteonews TV", "Digital Concert Hall", "Activate Enhanced Features"
]
versions = [1, 2, 3, 4]
for version in versions:
device.api_version = version
device._update_applist()
for app in device.get_apps():
self.assertTrue(app in app_list)
self.start_app(device, app, mock_post, mock_send_command)
self.assertEqual(len(device.apps), len(app_list))
def test_recreate_authentication_no_auth(self):
versions = [1, 2]
for version in versions:
device = self.create_device()
self.add_register_to_device(device, version)
device._recreate_authentication()
self.assertEqual(len(device.headers), 2)
self.assertTrue(device.headers['X-CERS-DEVICE-ID'] == device.nickname)
self.assertTrue(device.headers['X-CERS-DEVICE-INFO'] == device.nickname)
def test_recreate_authentication_v3(self):
device = self.create_device()
device.pin = 1234
self.add_register_to_device(device, 3)
device._recreate_authentication()
self.assertEqual(device.headers["Authorization"], "Basic OjEyMzQ=")
self.assertEqual(device.headers["X-CERS-DEVICE-ID"], device.client_id)
def test_recreate_authentication_v4(self):
device = self.create_device()
device.pin = 1234
self.add_register_to_device(device, 4)
device._recreate_authentication()
self.assertEqual(device.headers["Authorization"], "Basic OjEyMzQ=")
self.assertEqual(device.headers["Connection"], "keep-alive")
self.verify_cookies(device)
def test_recreate_authentication_v4_psk(self):
device = SonyDevice("test", "test", "foobarPSK")
device.pin = 1234
self.add_register_to_device(device, 4)
device._recreate_authentication()
self.assertTrue(device.psk)
self.assertEqual(device.headers["X-Auth-PSK"], device.psk)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_register_no_auth(self, mocked_get):
versions = [1, 2]
for version in versions:
result = self.register_with_version(version)
self.assertEqual(result[0], AuthenticationResult.SUCCESS)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_register_no_auth_error(self, mocked_get):
device = self.create_device()
register_action = XmlApiObject({})
register_action.url = REQUESTS_ERROR
self.assertEqual(AuthenticationResult.ERROR, device._register_without_auth(register_action))
@mock.patch('sonyapilib.device.SonyDevice.init_device', side_effect=mock_nothing)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_register_not_supported(self, mocked_get, mocked_init_device):
with self.assertRaises(ValueError):
self.register_with_version(5)
self.assertEqual(mocked_init_device.call_count, 0)
def verify_register_fail(self, version, auth_result, mocked_init_device, url=None, pin=-1):
if pin != -1:
result = self.register_with_version(version, url)
else:
result = self.register_with_version(version, url, pin=pin)
self.assertEqual(result[0], auth_result)
self.assertEqual(mocked_init_device.call_count, 0)
@mock.patch('sonyapilib.device.SonyDevice.init_device', side_effect=mock_nothing)
def test_register_fail_http_timeout(self, mocked_init_device, pin=-1):
versions = [1, 2, 3, 4]
for version in versions:
if pin != -1:
self.verify_register_fail(version, AuthenticationResult.ERROR, mocked_init_device)
@mock.patch('requests.get', side_effect=mocked_requests_get)
@mock.patch('requests.post', side_effect=mocked_requests_post)
@mock.patch('sonyapilib.device.SonyDevice.init_device', side_effect=mock_nothing)
def test_register_fail_pin_needed(self,
mocked_init_device,
mock_request_get_401,
mock_request_post_401):
self.verify_register_fail(3,
AuthenticationResult.PIN_NEEDED,
mocked_init_device,
REGISTRATION_URL_V3_FAIL_401)
self.verify_register_fail(4,
AuthenticationResult.PIN_NEEDED,
mocked_init_device,
REGISTRATION_URL_V4_FAIL_401,
pin=None)
self.verify_register_fail(4,
AuthenticationResult.PIN_NEEDED,
mocked_init_device,
REGISTRATION_URL_V4_FAIL_401)
@mock.patch('sonyapilib.device.SonyDevice.init_device', side_effect=mock_nothing)
@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_register_success_v3(self, mocked_requests_get, mocked_init_device):
result = self.register_with_version(3)
self.assertEqual(result[0], AuthenticationResult.SUCCESS)
self.assertEqual(mocked_init_device.call_count, 1)
@mock.patch('sonyapilib.device.SonyDevice.init_device', side_effect=mock_nothing)
@mock.patch('requests.post', side_effect=mocked_requests_post)
def test_register_no_json_v4(self, mocked_requests_post, mocked_init_device):
result = self.register_with_version(4, REGISTRATION_URL_V4_FAIL)
self.assertEqual(result[0], AuthenticationResult.ERROR)
self.assertEqual(mocked_init_device.call_count, 0)
@mock.patch('sonyapilib.device.SonyDevice.init_device', side_effect=mock_nothing)
@mock.patch('requests.post', side_effect=mocked_requests_post)
def test_register_success_v4(self, mocked_requests_post, mocked_init_device):
result = self.register_with_version(4, REGISTRATION_URL_V4)
self.assertEqual(result[0], AuthenticationResult.SUCCESS)
self.assertEqual(mocked_init_device.call_count, 1)
@mock.patch('sonyapilib.device.SonyDevice.register', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._recreate_authentication', side_effect=mock_nothing)
def test_send_authentication_no_auth(self, mock_register, mock_recreate_auth):
versions = [[1, True], [2, False], [3, False], [4, False]]
for version in versions:
device = self.create_device()
self.add_register_to_device(device, version[0])
self.assertEqual(device.send_authentication(0), version[1])
self.assertEqual(mock_register.call_count, 0)
self.assertEqual(mock_recreate_auth.call_count, 0)
@mock.patch('sonyapilib.device.SonyDevice.register', side_effect=mock_register_success)
@mock.patch('sonyapilib.device.SonyDevice._recreate_authentication', side_effect=mock_nothing)
def test_send_authentication_with_auth(self, mock_register, mock_recreate_auth):
versions = [3, 4]
for version in versions:
device = self.create_device()
self.add_register_to_device(device, version)
self.assertTrue(device.send_authentication(1234))
self.assertEqual(mock_register.call_count, 1)
self.assertEqual(mock_recreate_auth.call_count, 1)
mock_register.call_count = 0
mock_recreate_auth.call_count = 0
@mock.patch('sonyapilib.device.SonyDevice._send_command', side_effect=mock_nothing)
def test_commands(self, mock_send_command):
device = self.create_device()
methods = ["up", "confirm", "down", "right", "left", "home",
"options", "returns", "num1", "num2", "num3", "num4",
"num5", "num6", "num7", "num8", "num9", "num0",
"display", "audio", "sub_title", "favorites", "yellow",
"blue", "red", "green", "play", "stop", "pause",
"rewind", "forward", "prev", "next", "replay", "advance",
"angle", "top_menu", "pop_up_menu", "eject", "karaoke",
"netflix", "mode_3d", "zoom_in", "zoom_out",
"browser_back", "browser_forward", "browser_bookmark_list",
"list", "volume_up", "volume_down", "mute"]
for method in methods:
cmd_name = ''.join(x.capitalize() or '_' for x in method.split('_'))
if method == "returns":
cmd_name = "Return"
elif method == "mode_3d":
cmd_name = "Mode3D"
getattr(device, method)()
self.assertEqual(mock_send_command.call_count, 1)
self.assertEqual(mock_send_command.mock_calls[0][1][0], cmd_name)
mock_send_command.call_count = 0
mock_send_command.mock_calls.clear()
@staticmethod
def add_register_to_device(device, mode):
register_action = XmlApiObject({})
register_action.mode = mode
if mode < 4:
register_action.url = REGISTRATION_URL_LEGACY
else:
register_action.url = REGISTRATION_URL_V4
device.actions["register"] = register_action
def register_with_version(self, version, reg_url="", pin=1234):
device = self.create_device()
if version > 2:
device.pin = pin
self.add_register_to_device(device, version)
if reg_url:
device.actions["register"].url = reg_url
result = device.register()
return [result, device]
def test_post_soap_request_invalid(self):
device = self.create_device()
params = "foobar"
self.assertFalse(device._post_soap_request(SOAP_URL, params, params))
@mock.patch('requests.post', side_effect=mocked_requests_post)
def test_post_soap_request(self, mocked_requests_post):
params = "foobar"
data = """<?xml version='1.0' encoding='utf-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
{0}
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>""".format("foobar")
device = self.create_device()
self.assertTrue(device._post_soap_request(SOAP_URL, params, params))
mock_call = mocked_requests_post.mock_calls[0][2]
headers = mock_call["headers"]
self.assertEqual(headers['SOAPACTION'], '"{}"'.format(params))
self.assertEqual(headers['Content-Type'], "text/xml")
self.assertEqual(mock_call["data"], data)
self.assertEqual(mocked_requests_post.call_count, 1)
@mock.patch('sonyapilib.device.SonyDevice.init_device', side_effect=mock_nothing)
def test_get_action(self, mock_init_device):
device = self.create_device()
action = XmlApiObject({})
action.name = "test"
with self.assertRaises(ValueError):
device._get_action(action.name)
self.assertEqual(mock_init_device.call_count, 1)
device.actions[action.name] = action
self.assertEqual(device._get_action(action.name), action)
@mock.patch('sonyapilib.device.SonyDevice._send_req_ircc',
side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice.init_device',
side_effect=mock_nothing)
def test_send_command_error(self, mock_init_device, mock_send_req_ircc):
device = self.create_device()
with self.assertRaises(ValueError):
device._send_command("test")
self.create_command_list(device)
with self.assertRaises(ValueError):
device._send_command("foo")
device._send_command("test")
self.assertEqual(mock_send_req_ircc.call_count, 1)
@mock.patch('sonyapilib.device.SonyDevice._post_soap_request', side_effect=mock_nothing)
def test_send_req_ircc(self, mock_post_soap_request):
device = self.create_device()
params = "foobar"
data = """<u:X_SendIRCC xmlns:u="urn:schemas-sony-com:service:IRCC:1">
<IRCCCode>{0}</IRCCCode>
</u:X_SendIRCC>""".format(params)
device._send_req_ircc(params)
self.assertEqual(mock_post_soap_request.call_count, 1)
self.assertEqual(mock_post_soap_request.call_args_list[0][1]['params'], data)
def test_get_power_status_false(self):
versions = [1, 2, 3, 4]
device = self.create_device()
for version in versions:
device.api_version = version
self.assertFalse(device.get_power_status())
@mock.patch('requests.post', side_effect=mock_request_error)
def test_get_power_status_error(self, mocked_request_error):
device = self.create_device()
device.api_version = 4
self.assertFalse(device.get_power_status())
@mock.patch('requests.post', side_effect=mocked_requests_post)
def test_get_power_status_error2(self, mocked_requests_post):
device = self.create_device()
device.api_version = 4
device.base_url = REQUESTS_ERROR
device.actionlist_url = ACTION_LIST_URL
self.assertFalse(device.get_power_status())
@mock.patch('requests.get', side_effect=mocked_requests_get)
@mock.patch('requests.post', side_effect=mocked_requests_post)
def test_get_power_status_true(self, mocked_post, mocked_get):
versions = [1, 2, 3, 4]
device = self.create_device()
device.actionlist_url = ACTION_LIST_URL
device.base_url = BASE_URL
for version in versions:
device.api_version = version
self.assertTrue(device.get_power_status())
@mock.patch('sonyapilib.device.SonyDevice._send_command', side_effect=mock_nothing)
def test_power_off(self, mock_send_command):
device = self.create_device()
device.power(False)
self.assertEqual(mock_send_command.call_count, 1)
self.assertEqual(mock_send_command.mock_calls[0][1][0], "Power")
@mock.patch('sonyapilib.device.SonyDevice.get_power_status', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice._send_command', side_effect=mock_nothing)
@mock.patch('sonyapilib.device.SonyDevice.wakeonlan', side_effect=mock_nothing)
def test_power_on(self, mock_wake_on_lan, mock_send_command, mock_get_power_status):
device = self.create_device()
device.power(True)
self.assertEqual(mock_send_command.call_count, 1)
self.assertEqual(mock_wake_on_lan.call_count, 1)
self.assertEqual(mock_send_command.mock_calls[0][1][0], "Power")
@mock.patch('wakeonlan.send_magic_packet', side_effect=mock_nothing())
def test_wake_on_lan(self, mocked_wol):
device = self.create_device()
device.wakeonlan()
self.assertEqual(mocked_wol.call_count, 0)
device.mac = "foobar"
device.wakeonlan()
self.assertEqual(mocked_wol.call_count, 1)
@mock.patch('requests.post', side_effect=mocked_requests_post)
def test_playing_status_no_media_legacy(self, mocked_requests_post):
device = self.create_device()
self.assertEqual("OFF", device.get_playing_status())
device.av_transport_url = AV_TRANSPORT_URL_NO_MEDIA
device.get_playing_status()
device.av_transport_url = AV_TRANSPORT_URL
self.assertEqual("PLAYING", device.get_playing_status())
def test_irrc_is_dmr(self):
dev = SonyDevice(host="none", nickname="none", ircc_port=42, dmr_port=42)
self.assertEqual(dev.dmr_url, dev.ircc_url)
def test_parse_use_built_in_command_list_invalid_category(self):
device = self.create_device()
device._ircc_categories = ["MTIzNDU2"]
device._use_builtin_command_list()
self.assertEqual(0, len(device.commands))
def test_parse_use_built_in_command_list(self):
device = self.create_device()
device._ircc_categories = ["AAMAABxa"]
device._use_builtin_command_list()
commands = ["Confirm", "Up", "Down", "Right", "Left", "Home", "Options",
"Return", "Num1", "Num2", "Num3", "Num4", "Num5", "Num6", "Num7",
"Num8", "Num9", "Num0", "Power", "Display", "Audio", "SubTitle",
"Favorites", "Yellow", "Blue", "Red", "Green", "Play", "Stop",
"Pause", "Rewind", "Forward", "Prev", "Next", "Replay", "Advance",
"Angle", "TopMenu", "PopUpMenu", "Eject", "Karaoke", "Netflix",
"Mode3D"]
for cmd in commands:
self.assertTrue(cmd in device.commands)
def test_handle_register_error_not_http(self):
ex = Exception()
device = self.create_device()
res = device._handle_register_error(ex)
self.assertEqual(res, AuthenticationResult.ERROR)
@mock.patch('sonyapilib.device.SonyDevice._send_http', side_effect=mocked_return_none)
def test_parse_system_info_v4_no_response(self, mocked_request):
device = self.create_device()
device._parse_system_information_v4()
@staticmethod
def create_command_list(device):
command = XmlApiObject({})
command.name = "test"
device.commands[command.name] = command
@staticmethod | MIT License |
opencivicdata/pupa | pupa/importers/base.py | BaseImporter.import_data | python | def import_data(self, data_items):
record = {
'insert': 0, 'update': 0, 'noop': 0,
'start': utcnow(),
'records': {
'insert': [],
'update': [],
'noop': [],
}
}
for json_id, data in self._prepare_imports(data_items):
obj_id, what = self.import_item(data)
self.json_to_db_id[json_id] = obj_id
record['records'][what].append(obj_id)
record[what] += 1
self.postimport()
record['end'] = utcnow()
return {self._type: record} | import a bunch of dicts together | https://github.com/opencivicdata/pupa/blob/8087e221fc527a80262192d22c2f50966c20604d/pupa/importers/base.py#L220-L244 | import os
import copy
import glob
import json
import logging
from django.db.models import Q
from django.db.models.signals import post_save
from django.contrib.contenttypes.models import ContentType
from opencivicdata.legislative.models import LegislativeSession
from pupa import settings
from pupa.exceptions import DuplicateItemError
from pupa.utils import get_pseudo_id, utcnow
from pupa.exceptions import UnresolvedIdError, DataImportError
from pupa.models import Identifier
def omnihash(obj):
if isinstance(obj, set):
return hash(frozenset(omnihash(e) for e in obj))
elif isinstance(obj, (tuple, list)):
return hash(tuple(omnihash(e) for e in obj))
elif isinstance(obj, dict):
return hash(frozenset((k, omnihash(v)) for k, v in obj.items()))
else:
return hash(obj)
def items_differ(jsonitems, dbitems, subfield_dict):
if len(jsonitems) == len(dbitems) == 0:
return False
elif len(jsonitems) != len(dbitems):
return True
original_jsonitems = jsonitems
jsonitems = copy.deepcopy(jsonitems)
keys = jsonitems[0].keys()
for dbitem in dbitems:
order = getattr(dbitem, 'order', None)
match = None
for i, jsonitem in enumerate(jsonitems):
for k in keys:
if k not in subfield_dict and getattr(dbitem, k) != jsonitem.get(k, None):
break
else:
for k in subfield_dict:
jsonsubitems = jsonitem[k]
dbsubitems = list(getattr(dbitem, k).all())
if items_differ(jsonsubitems, dbsubitems, subfield_dict[k][2]):
break
else:
if order is not None and int(order) != original_jsonitems.index(jsonitem):
break
match = i
break
if match is not None:
jsonitems.pop(match)
else:
return True
if jsonitems:
return True
return False
class BaseImporter(object):
_type = None
model_class = None
related_models = {}
preserve_order = set()
merge_related = {}
cached_transformers = {}
def __init__(self, jurisdiction_id):
self.jurisdiction_id = jurisdiction_id
self.json_to_db_id = {}
self.duplicates = {}
self.pseudo_id_cache = {}
self.session_cache = {}
self.logger = logging.getLogger("pupa")
self.info = self.logger.info
self.debug = self.logger.debug
self.warning = self.logger.warning
self.error = self.logger.error
self.critical = self.logger.critical
if settings.IMPORT_TRANSFORMERS.get(self._type):
self.cached_transformers = settings.IMPORT_TRANSFORMERS[self._type]
def get_session_id(self, identifier):
if identifier not in self.session_cache:
self.session_cache[identifier] = LegislativeSession.objects.get(
identifier=identifier, jurisdiction_id=self.jurisdiction_id).id
return self.session_cache[identifier]
def prepare_for_db(self, data):
return data
def postimport(self):
pass
def resolve_json_id(self, json_id, allow_no_match=False):
if not json_id:
return None
if json_id.startswith('~'):
if json_id not in self.pseudo_id_cache:
spec = get_pseudo_id(json_id)
spec = self.limit_spec(spec)
if isinstance(spec, Q):
objects = self.model_class.objects.filter(spec)
else:
objects = self.model_class.objects.filter(**spec)
ids = {each.id for each in objects}
if len(ids) == 1:
self.pseudo_id_cache[json_id] = ids.pop()
errmsg = None
elif not ids:
errmsg = 'cannot resolve pseudo id to {}: {}'.format(
self.model_class.__name__, json_id)
else:
errmsg = 'multiple objects returned for {} pseudo id {}: {}'.format(
self.model_class.__name__, json_id, ids)
if errmsg:
if not allow_no_match:
raise UnresolvedIdError(errmsg)
else:
self.error(errmsg)
self.pseudo_id_cache[json_id] = None
return self.pseudo_id_cache[json_id]
json_id = self.duplicates.get(json_id, json_id)
try:
return self.json_to_db_id[json_id]
except KeyError:
raise UnresolvedIdError('cannot resolve id: {}'.format(json_id))
def import_directory(self, datadir):
def json_stream():
for fname in glob.glob(os.path.join(datadir, self._type + '_*.json')):
with open(fname) as f:
yield json.load(f)
return self.import_data(json_stream())
def _prepare_imports(self, dicts):
seen_hashes = {}
for data in dicts:
json_id = data.pop('_id')
objhash = omnihash(data)
if objhash not in seen_hashes:
seen_hashes[objhash] = json_id
yield json_id, data
else:
self.duplicates[json_id] = seen_hashes[objhash] | BSD 3-Clause New or Revised License |
botfront/rasa-for-botfront | rasa/shared/utils/validation.py | YamlValidationException.__init__ | python | def __init__(
self,
message: Text,
validation_errors: Optional[List[SchemaError.SchemaErrorEntry]] = None,
filename: Optional[Text] = None,
content: Any = None,
) -> None:
super(YamlValidationException, self).__init__(filename)
self.message = message
self.validation_errors = validation_errors
self.content = content | Create The Error.
Args:
message: error message
validation_errors: validation errors
filename: name of the file which was validated
content: yaml content loaded from the file (used for line information) | https://github.com/botfront/rasa-for-botfront/blob/6e0e48d0059e197b5f686df1e27935769c3641b7/rasa/shared/utils/validation.py#L34-L53 | import logging
import os
from typing import Text, Dict, List, Optional, Any
from packaging import version
from packaging.version import LegacyVersion
from pykwalify.errors import SchemaError
from ruamel.yaml.constructor import DuplicateKeyError
import rasa.shared
from rasa.shared.exceptions import (
YamlException,
YamlSyntaxException,
SchemaValidationError,
)
import rasa.shared.utils.io
from rasa.shared.constants import (
DOCS_URL_TRAINING_DATA,
PACKAGE_NAME,
LATEST_TRAINING_DATA_FORMAT_VERSION,
SCHEMA_EXTENSIONS_FILE,
RESPONSES_SCHEMA_FILE,
)
logger = logging.getLogger(__name__)
KEY_TRAINING_DATA_FORMAT_VERSION = "version"
class YamlValidationException(YamlException, ValueError): | Apache License 2.0 |
containers/podman-py | podman/domain/pods_manager.py | PodsManager.prune | python | def prune(self, filters: Optional[Dict[str, str]] = None) -> Dict[str, Any]:
response = self.client.post("/pods/prune", params={"filters": api.prepare_filters(filters)})
response.raise_for_status()
deleted: List[str] = list()
for item in response.json():
if item["Err"] is not None:
raise APIError(
item["Err"],
response=response,
explanation=f"""Failed to prune network '{item["Id"]}'""",
)
deleted.append(item["Id"])
return {"PodsDeleted": deleted, "SpaceReclaimed": 0} | Delete unused Pods.
Returns:
Dictionary Keys:
- PodsDeleted (List[str]): List of pod ids deleted.
- SpaceReclaimed (int): Always zero.
Raises:
APIError: when service reports error | https://github.com/containers/podman-py/blob/7cff4162c6cbe3161d9a36bc645e1f11972bf2a9/podman/domain/pods_manager.py#L86-L109 | import json
import logging
from typing import Any, Dict, List, Optional, Union
from podman import api
from podman.domain.manager import Manager
from podman.domain.pods import Pod
from podman.errors import APIError
logger = logging.getLogger("podman.pods")
class PodsManager(Manager):
@property
def resource(self):
return Pod
def create(self, name: str, **kwargs) -> Pod:
data = dict() if kwargs is None else kwargs.copy()
data["name"] = name
response = self.client.post("/pods/create", data=json.dumps(data))
response.raise_for_status()
body = response.json()
return self.get(body["Id"])
def exists(self, key: str) -> bool:
response = self.client.get(f"/pods/{key}/exists")
return response.ok
def get(self, pod_id: str) -> Pod:
response = self.client.get(f"/pods/{pod_id}/json")
response.raise_for_status()
return self.prepare_model(attrs=response.json())
def list(self, **kwargs) -> List[Pod]:
params = {"filters": api.prepare_filters(kwargs.get("filters"))}
response = self.client.get("/pods/json", params=params)
response.raise_for_status()
return [self.prepare_model(attrs=i) for i in response.json()] | Apache License 2.0 |
muges/audiotsm | audiotsm/base/tsm.py | TSM.write_to | python | def write_to(self, writer):
raise NotImplementedError | Writes as many result samples as possible to ``writer``.
:param writer: a :class:`audiotsm.io.base.Writer`.
:returns: a tuple (``n``, ``finished``), with:
- ``n`` the number of samples that were written to ``writer``
- ``finished`` a boolean that is ``True`` when there are no samples
remaining to write. In this case, the
:func:`~audiotsm.base.tsm.TSM.read_from` method should be called
to add new input samples, or, if there are no remaining input
samples, the :func:`~audiotsm.base.tsm.TSM.flush_to` method
should be called to get the last output samples.
:rtype: (int, bool) | https://github.com/muges/audiotsm/blob/cf3875842bda44d81930c44b008937e72109ae9f/audiotsm/base/tsm.py#L95-L110 | class TSM(object):
def clear(self):
raise NotImplementedError
def flush_to(self, writer):
raise NotImplementedError
def get_max_output_length(self, input_length):
raise NotImplementedError
def read_from(self, reader):
raise NotImplementedError
def run(self, reader, writer, flush=True):
finished = False
while not (finished and reader.empty):
self.read_from(reader)
_, finished = self.write_to(writer)
if flush:
finished = False
while not finished:
_, finished = self.flush_to(writer)
self.clear()
def set_speed(self, speed):
raise NotImplementedError | MIT License |
opennetworkingfoundation/tapi | RI/flask_server/tapi_server/models/tapi_connectivity_connectivity_constraint.py | TapiConnectivityConnectivityConstraint.service_layer | python | def service_layer(self):
return self._service_layer | Gets the service_layer of this TapiConnectivityConnectivityConstraint.
:return: The service_layer of this TapiConnectivityConnectivityConstraint.
:rtype: TapiCommonLayerProtocolName | https://github.com/opennetworkingfoundation/tapi/blob/1f3fd9483d5674552c5a31206c97399c8c151897/RI/flask_server/tapi_server/models/tapi_connectivity_connectivity_constraint.py#L87-L94 | from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from tapi_server.models.base_model_ import Model
from tapi_server.models.tapi_common_capacity import TapiCommonCapacity
from tapi_server.models.tapi_common_forwarding_direction import TapiCommonForwardingDirection
from tapi_server.models.tapi_common_layer_protocol_name import TapiCommonLayerProtocolName
from tapi_server.models.tapi_common_time_range import TapiCommonTimeRange
from tapi_server.models.tapi_connectivity_connectivity_service_ref import TapiConnectivityConnectivityServiceRef
from tapi_server.models.tapi_connectivity_service_type import TapiConnectivityServiceType
from tapi_server import util
class TapiConnectivityConnectivityConstraint(Model):
def __init__(self, service_layer=None, schedule=None, connectivity_direction=None, requested_capacity=None, diversity_exclusion=None, service_level=None, service_type=None, coroute_inclusion=None):
self.openapi_types = {
'service_layer': TapiCommonLayerProtocolName,
'schedule': TapiCommonTimeRange,
'connectivity_direction': TapiCommonForwardingDirection,
'requested_capacity': TapiCommonCapacity,
'diversity_exclusion': List[TapiConnectivityConnectivityServiceRef],
'service_level': str,
'service_type': TapiConnectivityServiceType,
'coroute_inclusion': TapiConnectivityConnectivityServiceRef
}
self.attribute_map = {
'service_layer': 'service-layer',
'schedule': 'schedule',
'connectivity_direction': 'connectivity-direction',
'requested_capacity': 'requested-capacity',
'diversity_exclusion': 'diversity-exclusion',
'service_level': 'service-level',
'service_type': 'service-type',
'coroute_inclusion': 'coroute-inclusion'
}
self._service_layer = service_layer
self._schedule = schedule
self._connectivity_direction = connectivity_direction
self._requested_capacity = requested_capacity
self._diversity_exclusion = diversity_exclusion
self._service_level = service_level
self._service_type = service_type
self._coroute_inclusion = coroute_inclusion
@classmethod
def from_dict(cls, dikt) -> 'TapiConnectivityConnectivityConstraint':
return util.deserialize_model(dikt, cls)
@property | Apache License 2.0 |
mikeshardmind/sinbadcogs | channelredirect/redirect.py | ChannelRedirect.rset_add_chan | python | async def rset_add_chan(self, ctx, *channels: discord.TextChannel):
if not channels:
return await ctx.send_help()
gsets = await self.config.guild(ctx.guild).all()
mode = gsets["mode"]
if not mode:
return await ctx.send(
"You need to set a mode using `{ctx.prefix}redirectset mode` first".format(
ctx=ctx
)
)
for channel in channels:
if channel.id not in gsets[mode]:
gsets[mode].append(channel.id)
await self.config.guild(ctx.guild).set_raw(mode, value=gsets[mode])
await ctx.tick() | Adds one or more channels to the current mode's settings. | https://github.com/mikeshardmind/sinbadcogs/blob/e9353fb63f18f5c2025e177f89b028aa7ac7a63d/channelredirect/redirect.py#L185-L207 | from __future__ import annotations
import asyncio
import contextlib
from typing import Set
import discord
from redbot.core import checks, commands
from redbot.core.config import Config
from .converters import CogOrCOmmand, CommandConverter, TrinaryBool
class ChannelRedirect(commands.Cog):
__version__ = "2021.03"
async def red_delete_data_for_user(self, **kwargs):
return
def format_help_for_context(self, ctx):
pre_processed = super().format_help_for_context(ctx)
return f"{pre_processed}\nCog Version: {self.__version__}"
def __init__(self, bot, *args, **kwargs):
super().__init__(*args, **kwargs)
self.bot = bot
self.config = Config.get_conf(
self, identifier=78631113035100160 + 1, force_registration=True
)
self.config.register_guild(
mode=None,
blocklist=[],
allowlist=[],
command={},
cog={},
immunities={},
com_allowlist={"cog": {}, "command": {}},
)
def cog_unload(self):
self.bot.remove_before_invoke_hook(self.before_invoke_hook)
@staticmethod
def should_early_exit(conf: dict, com: commands.Command):
if conf["mode"] is None:
return True
with contextlib.suppress(KeyError):
if conf["com_allowlist"]["command"][com.qualified_name]:
return True
with contextlib.suppress(KeyError):
if conf["com_allowlist"]["cog"][com.cog_name]:
return True
async def get_allowed_channels(
self,
ctx: commands.Context,
*,
ignore_overides: bool = False,
com: commands.Command = None,
) -> Set[discord.TextChannel]:
guild = ctx.guild
assert guild is not None
com = com or ctx.command
gset = await self.config.guild(guild).all()
channels = guild.text_channels
allowed_ids: Set[int] = set()
if com and self.should_early_exit(gset, com):
return set(channels)
if gset["mode"] == "allowlist":
allowed_ids = {int(idx) for idx in gset["allowlist"]}
elif gset["mode"] == "blocklist":
disallowed_ids = {int(idx) for idx in gset["blocklist"]}
allowed_ids = {c.id for c in channels} - disallowed_ids
if not ignore_overides:
com_extras = gset["command"].get(com.qualified_name, {})
cog_extras = gset["cog"].get(com.cog_name, {})
for rule_set in (cog_extras, com_extras):
for channel_id, allowed in rule_set.items():
if allowed:
allowed_ids.add(int(channel_id))
elif allowed is False:
allowed_ids.discard(int(channel_id))
return {channel for channel in channels if channel.id in allowed_ids}
async def is_redirect_immune(self, ctx):
if (
ctx.guild is None
or ctx.guild.owner == ctx.author
or await ctx.bot.is_owner(ctx.author)
or await ctx.bot.is_admin(ctx.author)
):
return True
imset = await self.config.guild(ctx.guild).immunities.all()
vals = [v for k, v in imset.items() if k in (str(ctx.channel.id), "global")]
immune_ids = set()
for val in vals:
immune_ids.update({int(v) for v in val})
if immune_ids & {r.id for r in ctx.author.roles}:
return True
async def before_invoke_hook(self, ctx: commands.Context):
if await self.is_redirect_immune(ctx):
return True
allowed_chans = await self.get_allowed_channels(ctx)
if ctx.channel not in allowed_chans and not isinstance(
ctx.command, commands.commands._AlwaysAvailableCommand
):
chan_mentions = ", ".join(c.mention for c in allowed_chans)
await ctx.send(
f"{ctx.author.mention} This command is only available in {chan_mentions}",
delete_after=30,
)
raise commands.CheckFailure()
else:
return True
@commands.guild_only()
@checks.admin_or_permissions(manage_guild=True)
@commands.group(name="redirectset")
async def rset(self, ctx):
pass
@rset.command(name="showsettings")
async def rest_show_settings(self, ctx, command: CommandConverter = None):
com_obj = command.com if command is not None else None
channels = await self.get_allowed_channels(
ctx, com=com_obj, ignore_overides=(command is None)
)
msg = "Usable channels:\n" + ", ".join(c.mention for c in channels)
await ctx.send(msg)
@rset.command(name="mode")
async def rset_set_mode(self, ctx, *, mode: str = ""):
mode = mode.casefold()
if mode not in ("allowlist", "blocklist"):
return await ctx.send_help()
await self.config.guild(ctx.guild).mode.set(to_store)
await ctx.tick()
@rset.command(name="addchan") | Apache License 2.0 |
giampaolo/pyftpdlib | pyftpdlib/authorizers.py | DummyAuthorizer.add_user | python | def add_user(self, username, password, homedir, perm='elr',
msg_login="Login successful.", msg_quit="Goodbye."):
if self.has_user(username):
raise ValueError('user %r already exists' % username)
if not isinstance(homedir, unicode):
homedir = homedir.decode('utf8')
if not os.path.isdir(homedir):
raise ValueError('no such directory: %r' % homedir)
homedir = os.path.realpath(homedir)
self._check_permissions(username, perm)
dic = {'pwd': str(password),
'home': homedir,
'perm': perm,
'operms': {},
'msg_login': str(msg_login),
'msg_quit': str(msg_quit)
}
self.user_table[username] = dic | Add a user to the virtual users table.
AuthorizerError exceptions raised on error conditions such as
invalid permissions, missing home directory or duplicate usernames.
Optional perm argument is a string referencing the user's
permissions explained below:
Read permissions:
- "e" = change directory (CWD command)
- "l" = list files (LIST, NLST, STAT, MLSD, MLST, SIZE, MDTM commands)
- "r" = retrieve file from the server (RETR command)
Write permissions:
- "a" = append data to an existing file (APPE command)
- "d" = delete file or directory (DELE, RMD commands)
- "f" = rename file or directory (RNFR, RNTO commands)
- "m" = create directory (MKD command)
- "w" = store a file to the server (STOR, STOU commands)
- "M" = change file mode (SITE CHMOD command)
- "T" = update file last modified time (MFMT command)
Optional msg_login and msg_quit arguments can be specified to
provide customized response strings when user log-in and quit. | https://github.com/giampaolo/pyftpdlib/blob/5793ee5f61029d232f940a69a92bf67996be7f00/pyftpdlib/authorizers.py#L75-L117 | import errno
import os
import sys
import warnings
from ._compat import PY3
from ._compat import unicode
from ._compat import getcwdu
__all__ = ['DummyAuthorizer',
]
class AuthorizerError(Exception):
class AuthenticationFailed(Exception):
class DummyAuthorizer(object):
read_perms = "elr"
write_perms = "adfmwMT"
def __init__(self):
self.user_table = {} | MIT License |
pypa/pipenv | pipenv/patched/notpip/_vendor/urllib3/connectionpool.py | HTTPSConnectionPool._new_conn | python | def _new_conn(self):
self.num_connections += 1
log.debug(
"Starting new HTTPS connection (%d): %s:%s",
self.num_connections,
self.host,
self.port or "443",
)
if not self.ConnectionCls or self.ConnectionCls is DummyConnection:
raise SSLError(
"Can't connect to HTTPS URL because the SSL module is not available."
)
actual_host = self.host
actual_port = self.port
if self.proxy is not None:
actual_host = self.proxy.host
actual_port = self.proxy.port
conn = self.ConnectionCls(
host=actual_host,
port=actual_port,
timeout=self.timeout.connect_timeout,
strict=self.strict,
cert_file=self.cert_file,
key_file=self.key_file,
key_password=self.key_password,
**self.conn_kw
)
return self._prepare_conn(conn) | Return a fresh :class:`httplib.HTTPSConnection`. | https://github.com/pypa/pipenv/blob/9378cb515189d11841a4de49a5ac3c01fca509ec/pipenv/patched/notpip/_vendor/urllib3/connectionpool.py#L950-L984 | from __future__ import absolute_import
import errno
import logging
import sys
import warnings
from socket import error as SocketError, timeout as SocketTimeout
import socket
from .exceptions import (
ClosedPoolError,
ProtocolError,
EmptyPoolError,
HeaderParsingError,
HostChangedError,
LocationValueError,
MaxRetryError,
ProxyError,
ReadTimeoutError,
SSLError,
TimeoutError,
InsecureRequestWarning,
NewConnectionError,
)
from .packages.ssl_match_hostname import CertificateError
from .packages import six
from .packages.six.moves import queue
from .connection import (
port_by_scheme,
DummyConnection,
HTTPConnection,
HTTPSConnection,
VerifiedHTTPSConnection,
HTTPException,
BaseSSLError,
)
from .request import RequestMethods
from .response import HTTPResponse
from .util.connection import is_connection_dropped
from .util.request import set_file_position
from .util.response import assert_header_parsing
from .util.retry import Retry
from .util.timeout import Timeout
from .util.url import (
get_host,
parse_url,
Url,
_normalize_host as normalize_host,
_encode_target,
)
from .util.queue import LifoQueue
xrange = six.moves.xrange
log = logging.getLogger(__name__)
_Default = object()
class ConnectionPool(object):
scheme = None
QueueCls = LifoQueue
def __init__(self, host, port=None):
if not host:
raise LocationValueError("No host specified.")
self.host = _normalize_host(host, scheme=self.scheme)
self._proxy_host = host.lower()
self.port = port
def __str__(self):
return "%s(host=%r, port=%r)" % (type(self).__name__, self.host, self.port)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
return False
def close(self):
pass
_blocking_errnos = {errno.EAGAIN, errno.EWOULDBLOCK}
class HTTPConnectionPool(ConnectionPool, RequestMethods):
scheme = "http"
ConnectionCls = HTTPConnection
ResponseCls = HTTPResponse
def __init__(
self,
host,
port=None,
strict=False,
timeout=Timeout.DEFAULT_TIMEOUT,
maxsize=1,
block=False,
headers=None,
retries=None,
_proxy=None,
_proxy_headers=None,
**conn_kw
):
ConnectionPool.__init__(self, host, port)
RequestMethods.__init__(self, headers)
self.strict = strict
if not isinstance(timeout, Timeout):
timeout = Timeout.from_float(timeout)
if retries is None:
retries = Retry.DEFAULT
self.timeout = timeout
self.retries = retries
self.pool = self.QueueCls(maxsize)
self.block = block
self.proxy = _proxy
self.proxy_headers = _proxy_headers or {}
for _ in xrange(maxsize):
self.pool.put(None)
self.num_connections = 0
self.num_requests = 0
self.conn_kw = conn_kw
if self.proxy:
self.conn_kw.setdefault("socket_options", [])
def _new_conn(self):
self.num_connections += 1
log.debug(
"Starting new HTTP connection (%d): %s:%s",
self.num_connections,
self.host,
self.port or "80",
)
conn = self.ConnectionCls(
host=self.host,
port=self.port,
timeout=self.timeout.connect_timeout,
strict=self.strict,
**self.conn_kw
)
return conn
def _get_conn(self, timeout=None):
conn = None
try:
conn = self.pool.get(block=self.block, timeout=timeout)
except AttributeError:
raise ClosedPoolError(self, "Pool is closed.")
except queue.Empty:
if self.block:
raise EmptyPoolError(
self,
"Pool reached maximum size and no more connections are allowed.",
)
pass
if conn and is_connection_dropped(conn):
log.debug("Resetting dropped connection: %s", self.host)
conn.close()
if getattr(conn, "auto_open", 1) == 0:
conn = None
return conn or self._new_conn()
def _put_conn(self, conn):
try:
self.pool.put(conn, block=False)
return
except AttributeError:
pass
except queue.Full:
log.warning("Connection pool is full, discarding connection: %s", self.host)
if conn:
conn.close()
def _validate_conn(self, conn):
pass
def _prepare_proxy(self, conn):
pass
def _get_timeout(self, timeout):
if timeout is _Default:
return self.timeout.clone()
if isinstance(timeout, Timeout):
return timeout.clone()
else:
return Timeout.from_float(timeout)
def _raise_timeout(self, err, url, timeout_value):
if isinstance(err, SocketTimeout):
raise ReadTimeoutError(
self, url, "Read timed out. (read timeout=%s)" % timeout_value
)
if hasattr(err, "errno") and err.errno in _blocking_errnos:
raise ReadTimeoutError(
self, url, "Read timed out. (read timeout=%s)" % timeout_value
)
if "timed out" in str(err) or "did not complete (read)" in str(
err
):
raise ReadTimeoutError(
self, url, "Read timed out. (read timeout=%s)" % timeout_value
)
def _make_request(
self, conn, method, url, timeout=_Default, chunked=False, **httplib_request_kw
):
self.num_requests += 1
timeout_obj = self._get_timeout(timeout)
timeout_obj.start_connect()
conn.timeout = timeout_obj.connect_timeout
try:
self._validate_conn(conn)
except (SocketTimeout, BaseSSLError) as e:
self._raise_timeout(err=e, url=url, timeout_value=conn.timeout)
raise
if chunked:
conn.request_chunked(method, url, **httplib_request_kw)
else:
conn.request(method, url, **httplib_request_kw)
read_timeout = timeout_obj.read_timeout
if getattr(conn, "sock", None):
if read_timeout == 0:
raise ReadTimeoutError(
self, url, "Read timed out. (read timeout=%s)" % read_timeout
)
if read_timeout is Timeout.DEFAULT_TIMEOUT:
conn.sock.settimeout(socket.getdefaulttimeout())
else:
conn.sock.settimeout(read_timeout)
try:
try:
httplib_response = conn.getresponse(buffering=True)
except TypeError:
try:
httplib_response = conn.getresponse()
except BaseException as e:
six.raise_from(e, None)
except (SocketTimeout, BaseSSLError, SocketError) as e:
self._raise_timeout(err=e, url=url, timeout_value=read_timeout)
raise
http_version = getattr(conn, "_http_vsn_str", "HTTP/?")
log.debug(
'%s://%s:%s "%s %s %s" %s %s',
self.scheme,
self.host,
self.port,
method,
url,
http_version,
httplib_response.status,
httplib_response.length,
)
try:
assert_header_parsing(httplib_response.msg)
except (HeaderParsingError, TypeError) as hpe:
log.warning(
"Failed to parse headers (url=%s): %s",
self._absolute_url(url),
hpe,
exc_info=True,
)
return httplib_response
def _absolute_url(self, path):
return Url(scheme=self.scheme, host=self.host, port=self.port, path=path).url
def close(self):
if self.pool is None:
return
old_pool, self.pool = self.pool, None
try:
while True:
conn = old_pool.get(block=False)
if conn:
conn.close()
except queue.Empty:
pass
def is_same_host(self, url):
if url.startswith("/"):
return True
scheme, host, port = get_host(url)
if host is not None:
host = _normalize_host(host, scheme=scheme)
if self.port and not port:
port = port_by_scheme.get(scheme)
elif not self.port and port == port_by_scheme.get(scheme):
port = None
return (scheme, host, port) == (self.scheme, self.host, self.port)
def urlopen(
self,
method,
url,
body=None,
headers=None,
retries=None,
redirect=True,
assert_same_host=True,
timeout=_Default,
pool_timeout=None,
release_conn=None,
chunked=False,
body_pos=None,
**response_kw
):
if headers is None:
headers = self.headers
if not isinstance(retries, Retry):
retries = Retry.from_int(retries, redirect=redirect, default=self.retries)
if release_conn is None:
release_conn = response_kw.get("preload_content", True)
if assert_same_host and not self.is_same_host(url):
raise HostChangedError(self, url, retries)
if url.startswith("/"):
url = six.ensure_str(_encode_target(url))
else:
url = six.ensure_str(parse_url(url).url)
conn = None
release_this_conn = release_conn
if self.scheme == "http":
headers = headers.copy()
headers.update(self.proxy_headers)
err = None
clean_exit = False
body_pos = set_file_position(body, body_pos)
try:
timeout_obj = self._get_timeout(timeout)
conn = self._get_conn(timeout=pool_timeout)
conn.timeout = timeout_obj.connect_timeout
is_new_proxy_conn = self.proxy is not None and not getattr(
conn, "sock", None
)
if is_new_proxy_conn:
self._prepare_proxy(conn)
httplib_response = self._make_request(
conn,
method,
url,
timeout=timeout_obj,
body=body,
headers=headers,
chunked=chunked,
)
response_conn = conn if not release_conn else None
response_kw["request_method"] = method
response = self.ResponseCls.from_httplib(
httplib_response,
pool=self,
connection=response_conn,
retries=retries,
**response_kw
)
clean_exit = True
except queue.Empty:
raise EmptyPoolError(self, "No pool connections are available.")
except (
TimeoutError,
HTTPException,
SocketError,
ProtocolError,
BaseSSLError,
SSLError,
CertificateError,
) as e:
clean_exit = False
if isinstance(e, (BaseSSLError, CertificateError)):
e = SSLError(e)
elif isinstance(e, (SocketError, NewConnectionError)) and self.proxy:
e = ProxyError("Cannot connect to proxy.", e)
elif isinstance(e, (SocketError, HTTPException)):
e = ProtocolError("Connection aborted.", e)
retries = retries.increment(
method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2]
)
retries.sleep()
err = e
finally:
if not clean_exit:
conn = conn and conn.close()
release_this_conn = True
if release_this_conn:
self._put_conn(conn)
if not conn:
log.warning(
"Retrying (%r) after connection broken by '%r': %s", retries, err, url
)
return self.urlopen(
method,
url,
body,
headers,
retries,
redirect,
assert_same_host,
timeout=timeout,
pool_timeout=pool_timeout,
release_conn=release_conn,
chunked=chunked,
body_pos=body_pos,
**response_kw
)
def drain_and_release_conn(response):
try:
response.read()
except (
TimeoutError,
HTTPException,
SocketError,
ProtocolError,
BaseSSLError,
SSLError,
):
pass
redirect_location = redirect and response.get_redirect_location()
if redirect_location:
if response.status == 303:
method = "GET"
try:
retries = retries.increment(method, url, response=response, _pool=self)
except MaxRetryError:
if retries.raise_on_redirect:
drain_and_release_conn(response)
raise
return response
drain_and_release_conn(response)
retries.sleep_for_retry(response)
log.debug("Redirecting %s -> %s", url, redirect_location)
return self.urlopen(
method,
redirect_location,
body,
headers,
retries=retries,
redirect=redirect,
assert_same_host=assert_same_host,
timeout=timeout,
pool_timeout=pool_timeout,
release_conn=release_conn,
chunked=chunked,
body_pos=body_pos,
**response_kw
)
has_retry_after = bool(response.getheader("Retry-After"))
if retries.is_retry(method, response.status, has_retry_after):
try:
retries = retries.increment(method, url, response=response, _pool=self)
except MaxRetryError:
if retries.raise_on_status:
drain_and_release_conn(response)
raise
return response
drain_and_release_conn(response)
retries.sleep(response)
log.debug("Retry: %s", url)
return self.urlopen(
method,
url,
body,
headers,
retries=retries,
redirect=redirect,
assert_same_host=assert_same_host,
timeout=timeout,
pool_timeout=pool_timeout,
release_conn=release_conn,
chunked=chunked,
body_pos=body_pos,
**response_kw
)
return response
class HTTPSConnectionPool(HTTPConnectionPool):
scheme = "https"
ConnectionCls = HTTPSConnection
def __init__(
self,
host,
port=None,
strict=False,
timeout=Timeout.DEFAULT_TIMEOUT,
maxsize=1,
block=False,
headers=None,
retries=None,
_proxy=None,
_proxy_headers=None,
key_file=None,
cert_file=None,
cert_reqs=None,
key_password=None,
ca_certs=None,
ssl_version=None,
assert_hostname=None,
assert_fingerprint=None,
ca_cert_dir=None,
**conn_kw
):
HTTPConnectionPool.__init__(
self,
host,
port,
strict,
timeout,
maxsize,
block,
headers,
retries,
_proxy,
_proxy_headers,
**conn_kw
)
self.key_file = key_file
self.cert_file = cert_file
self.cert_reqs = cert_reqs
self.key_password = key_password
self.ca_certs = ca_certs
self.ca_cert_dir = ca_cert_dir
self.ssl_version = ssl_version
self.assert_hostname = assert_hostname
self.assert_fingerprint = assert_fingerprint
def _prepare_conn(self, conn):
if isinstance(conn, VerifiedHTTPSConnection):
conn.set_cert(
key_file=self.key_file,
key_password=self.key_password,
cert_file=self.cert_file,
cert_reqs=self.cert_reqs,
ca_certs=self.ca_certs,
ca_cert_dir=self.ca_cert_dir,
assert_hostname=self.assert_hostname,
assert_fingerprint=self.assert_fingerprint,
)
conn.ssl_version = self.ssl_version
return conn
def _prepare_proxy(self, conn):
conn.set_tunnel(self._proxy_host, self.port, self.proxy_headers)
conn.connect() | MIT License |
100/solid | Solid/HarmonySearch.py | HarmonySearch._score | python | def _score(self, harmony):
pass | Returns score of a harmony
:param harmony: a harmony
:return: score of harmony | https://github.com/100/solid/blob/f38ca4906b7a253bfbb74f271229625d0f1df175/Solid/HarmonySearch.py#L97-L104 | from abc import ABCMeta, abstractmethod
from random import choice, random, uniform
from numpy import argmax, argmin
class HarmonySearch:
__metaclass__ = ABCMeta
cur_steps = None
hms = None
hmcr = None
par = None
fw = None
memory = None
scores = None
best = None
max_steps = None
max_score = None
def __init__(self, hms, hmcr, par, fw, max_steps, max_score=None):
if isinstance(hms, int) and hms > 0:
self.hms = hms
else:
raise TypeError('Harmony memory size must be a positive integer')
if isinstance(hmcr, float) and 0 <= hmcr <= 1:
self.hmcr = hmcr
else:
raise TypeError('Harmony memory considering rate must be a float between 0 and 1')
if isinstance(par, float) and 0 <= par <= 1:
self.par = par
else:
raise TypeError('Pitch adjustment rate must be a float between 0 and 1')
if isinstance(fw, (int, float)):
self.fw = float(fw)
else:
raise TypeError('Fret width must be a numeric type')
if isinstance(max_steps, int) and max_steps > 0:
self.max_steps = max_steps
else:
raise TypeError('Max steps must be a positive integer')
if max_score is not None:
if isinstance(max_score, (int, float)):
self.max_score = max_score
else:
raise TypeError('Max score must be a numeric type')
def __str__(self):
return ('HARMONY SEARCH: \n' +
'CURRENT STEPS: %d \n' +
'BEST SCORE: %f \n' +
'BEST MEMBER: %s \n\n') % (self.cur_steps, self._score(self.best), str(self.best))
def __repr__(self):
return self.__str__()
def _clear(self):
self.cur_steps = 0
self.memory = list([self._random_harmony() for _ in range(self.hms)])
self.scores = None
@abstractmethod
def _random_harmony(self):
pass
@abstractmethod | MIT License |
google/aiyprojects-raspbian | src/aiy/leds.py | Leds.rgb | python | def rgb(state, rgb):
return {i + 1 : Leds.Channel(state, rgb[i]) for i in range(3)} | Creates a configuration for the RGB channels: 1 (red), 2 (green), 3 (blue).
Generally, you should instead use convenience constructors such as
:func:`rgb_on` and :func:`rgb_pattern`.
Args:
state: Either :attr:`Channel.ON`, :attr:`Channel.OFF`, or
:attr:`Channel.PATTERN`.
rgb: Either one of the :class:`Color` constants or your own tuple
of RGB values.
Returns:
A dictionary of 3 :class:`Channel` objects, representing red, green,
and blue values. | https://github.com/google/aiyprojects-raspbian/blob/964f07f5b4bd2ec785cfda6f318e50e1b67d4758/src/aiy/leds.py#L197-L212 | import math
import os
_DEVICE_PATH = '/sys/class/leds/ktd202x:led1/device/'
def _tflash_reg(duration_ms):
if duration_ms <= 128:
return 0
if duration_ms <= 384:
return 1
return min((int(round(duration_ms / 128))) - 2, 126)
def _pwm1_reg(percent):
return int(round(256.0 * percent))
def _trise_tfall_reg(duration_ms):
if duration_ms <= 1.5:
return 0
return min(int(round(duration_ms / 96)), 15)
def _write(path, data):
with open(path, 'w') as f:
f.write(str(data))
def _device_file(prop):
return os.path.join(_DEVICE_PATH, prop)
class Color:
@staticmethod
def blend(color_a, color_b, alpha):
return tuple([math.ceil(alpha * color_a[i] + (1.0 - alpha) * color_b[i]) for i in range(3)])
BLACK = (0x00, 0x00, 0x00)
RED = (0xFF, 0x00, 0x00)
GREEN = (0x00, 0xFF, 0x00)
YELLOW = (0xFF, 0xFF, 0x00)
BLUE = (0x00, 0x00, 0xFF)
PURPLE = (0xFF, 0x00, 0xFF)
CYAN = (0x00, 0xFF, 0xFF)
WHITE = (0xFF, 0xFF, 0xFF)
class Pattern:
def __init__(self, period_ms, on_percent=0.5, rise_ms=0, fall_ms=0):
if on_percent < 0 or on_percent > 0.996:
raise ValueError('on_percent must be in the range [0..0.996]')
if period_ms < 0 or rise_ms < 0 or fall_ms < 0:
raise ValueError('durations must be non-negative')
self.period_ms = period_ms
self.on_percent = on_percent
self.rise_ms = rise_ms
self.fall_ms = fall_ms
@staticmethod
def blink(period_ms):
return Pattern(period_ms, 0.5)
@staticmethod
def breathe(period_ms):
return Pattern(period_ms, 0.3, period_ms * 0.3, period_ms * 0.3)
class Leds:
class Channel:
OFF = 0
ON = 1
PATTERN = 2
def __init__(self, state, brightness):
if state not in (self.ON, self.OFF, self.PATTERN):
raise ValueError('state must be OFF, ON, or PATTERN')
if brightness < 0 or brightness > 255:
raise ValueError('brightness must be in the range [0..255]')
self.state = state
self.brightness = brightness
@staticmethod | Apache License 2.0 |
googleapis/synthtool | autosynth/multi.py | _list_issues_cached | python | def _list_issues_cached(gh, *args, **kwargs):
return list(gh.list_issues(*args, **kwargs)) | A caching wrapper for listing issues, so we don't expend our quota. | https://github.com/googleapis/synthtool/blob/d4ff3cd9a9b2567cc00ab67290eeb89992b20318/autosynth/multi.py#L134-L136 | import argparse
import functools
import importlib
import os
import pathlib
import subprocess
import sys
import typing
from typing import Any, List
import requests
import yaml
from synthtool.report import make_report
from autosynth import executor, github, synth
from autosynth.log import logger
Runner = typing.Callable[
[typing.List[str], typing.Any, pathlib.Path], typing.Tuple[int, bytes]
]
def _execute(
command: typing.List[str], env: typing.Any, log_file_path: pathlib.Path
) -> typing.Tuple[int, bytes]:
log_file_path.parent.mkdir(parents=True, exist_ok=True)
with open(log_file_path, "wb+") as log_file:
result = executor.run(
command=command,
stdout=log_file,
stderr=subprocess.STDOUT,
check=False,
encoding="utf-8",
env=env,
)
with open(log_file_path, "rb") as fp:
return (result.returncode, fp.read())
def synthesize_library(
library: typing.Dict,
github_token: str,
extra_args: typing.List[str],
base_log_path: pathlib.Path,
runner: Runner = _execute,
) -> typing.Dict:
logger.info(f"Synthesizing {library['name']}.")
command = [sys.executable, "-m", "autosynth.synth"]
env = os.environ
env["GITHUB_TOKEN"] = github_token
library_args = [
"--repository",
library["repository"],
"--synth-path",
library.get("synth-path", ""),
"--branch-suffix",
library.get("branch-suffix", ""),
"--pr-title",
library.get("pr-title", ""),
"--base-log-dir",
str(base_log_path),
]
if library.get("metadata-path"):
library_args.extend(["--metadata-path", library.get("metadata-path")])
if library.get("deprecated-execution", False):
library_args.append("--deprecated-execution")
log_file_dir = (
pathlib.Path(base_log_path)
/ pathlib.Path(library.get("synth-path", "") or library["repository"]).name
)
log_file_path = log_file_dir / "sponge_log.log"
(returncode, output) = runner(
command + library_args + library.get("args", []) + extra_args,
env,
log_file_path,
)
error = returncode not in (0, synth.EXIT_CODE_SKIPPED)
skipped = returncode == synth.EXIT_CODE_SKIPPED
results = [
{
"name": library["name"],
"error": error,
"output": "See the test log.",
"skipped": skipped,
}
]
make_report(library["name"], results, log_file_dir)
if error:
logger.error(f"Synthesis failed for {library['name']}")
return {
"name": library["name"],
"output": output.decode("utf-8", errors="ignore"),
"error": error,
"skipped": skipped,
}
@functools.lru_cache() | Apache License 2.0 |
tmcknight/movie-and-tv-show-search-alfred-workflow | mako/runtime.py | Context.lookup | python | def lookup(self):
return self._with_template.lookup | Return the :class:`.TemplateLookup` associated
with this :class:`.Context`. | https://github.com/tmcknight/movie-and-tv-show-search-alfred-workflow/blob/243959cd26f2abc194bbc7f9231faf4f1ab28e31/mako/runtime.py#L50-L55 | from mako import exceptions, util, compat
from mako.compat import compat_builtins
import sys
class Context(object):
def __init__(self, buffer, **data):
self._buffer_stack = [buffer]
self._data = data
self._kwargs = data.copy()
self._with_template = None
self._outputting_as_unicode = None
self.namespaces = {}
self._data['capture'] = compat.partial(capture, self)
self.caller_stack = self._data['caller'] = CallerStack()
def _set_with_template(self, t):
self._with_template = t
illegal_names = t.reserved_names.intersection(self._data)
if illegal_names:
raise exceptions.NameConflictError(
"Reserved words passed to render(): %s" %
", ".join(illegal_names))
@property | MIT License |
yoseflab/cassiopeia | cassiopeia/preprocess/utilities.py | convert_alleletable_to_lineage_profile | python | def convert_alleletable_to_lineage_profile(
allele_table,
cut_sites: Optional[List[str]] = None,
collapse_duplicates: bool = True,
) -> pd.DataFrame:
if cut_sites is None:
cut_sites = get_default_cut_site_columns(allele_table)
agg_recipe = dict(
zip([cutsite for cutsite in cut_sites], [list] * len(cut_sites))
)
g = allele_table.groupby(["cellBC", "intBC"]).agg(agg_recipe)
intbcs = allele_table["intBC"].unique()
i1 = []
for i in intbcs:
i1 += [i] * len(cut_sites)
i2 = list(cut_sites) * len(intbcs)
indices = [i1, i2]
allele_piv = pd.DataFrame(index=g.index.levels[0], columns=indices)
for j in tqdm(g.index, desc="filling in multiindex table"):
for val, cutsite in zip(g.loc[j], cut_sites):
if collapse_duplicates:
val = sorted(set(val))
val = tuple(val)
if len(val) == 1:
val = val[0]
allele_piv.loc[j[0]][j[1], cutsite] = val
allele_piv2 = pd.pivot_table(
allele_table,
index=["cellBC"],
columns=["intBC"],
values="UMI",
aggfunc=pylab.size,
)
col_order = (
allele_piv2.dropna(axis=1, how="all")
.sum()
.sort_values(ascending=False, inplace=False)
.index
)
lineage_profile = allele_piv[col_order]
lineage_profile.columns = [
"_".join(tup).rstrip("_") for tup in lineage_profile.columns.values
]
return lineage_profile | Converts an AlleleTable to a lineage profile.
Takes in an allele table that summarizes the indels observed at individual
cellBC-intBC pairs and produces a lineage profile, which essentially is a
pivot table over the cellBC / intBCs. Conceptually, these lineage profiles
are identical to character matrices, only the values in the matrix are the
actual indel identities.
Args:
allele_table: AlleleTable.
cut_sites: Columns in the AlleleTable to treat as cut sites. If None,
we assume that the cut-sites are denoted by columns of the form
"r{int}" (e.g. "r1")
collapse_duplicates: Whether or not to collapse duplicate character
states present for a single cellBC-intBC pair. This option has no
effect if there are no allele conflicts. Defaults to True.
Returns:
An NxM lineage profile. | https://github.com/yoseflab/cassiopeia/blob/6a4479e260a5fbefc663e0cecb7dfd51a4a01376/cassiopeia/preprocess/utilities.py#L480-L555 | import functools
import itertools
import os
import time
from typing import Callable, Dict, List, Optional, Tuple
import warnings
from collections import defaultdict, OrderedDict
import matplotlib
import matplotlib.pyplot as plt
import ngs_tools as ngs
import numpy as np
import pandas as pd
import pylab
import pysam
import re
from tqdm.auto import tqdm
from cassiopeia.mixins import is_ambiguous_state, logger, PreprocessWarning
def log_molecule_table(wrapped: Callable):
@functools.wraps(wrapped)
def wrapper(*args, **kwargs):
df = wrapped(*args, **kwargs)
umi_count = df["UMI"].dtype != object
logger.debug(
f"Resulting {'alleletable' if umi_count else 'molecule_table'} statistics:"
)
logger.debug(f"# Reads: {df['readCount'].sum()}")
logger.debug(f"# UMIs: {df['UMI'].sum() if umi_count else df.shape[0]}")
logger.debug(f"# Cell BCs: {df['cellBC'].nunique()}")
return df
return wrapper
def log_runtime(wrapped: Callable):
@functools.wraps(wrapped)
def wrapper(*args, **kwargs):
t0 = time.time()
logger.info("Starting...")
try:
return wrapped(*args, **kwargs)
finally:
logger.info(f"Finished in {time.time() - t0} s.")
return wrapper
def log_kwargs(wrapped: Callable):
@functools.wraps(wrapped)
def wrapper(*args, **kwargs):
logger.debug(f"Keyword arguments: {kwargs}")
return wrapped(*args, **kwargs)
return wrapper
@log_molecule_table
def filter_cells(
molecule_table: pd.DataFrame,
min_umi_per_cell: int = 10,
min_avg_reads_per_umi: float = 2.0,
) -> pd.DataFrame:
umi_count = molecule_table["UMI"].dtype != object
cell_groups = molecule_table.groupby("cellBC")
umis_per_cell = (
cell_groups["UMI"].sum() if umi_count else cell_groups.size()
)
umis_per_cell_mask = umis_per_cell >= min_umi_per_cell
avg_reads_per_umi = cell_groups["readCount"].sum() / umis_per_cell
avg_read_per_umi_mask = avg_reads_per_umi >= min_avg_reads_per_umi
umis_per_cell_passing = set(umis_per_cell_mask.index[umis_per_cell_mask])
avg_read_per_umi_passing = set(
avg_read_per_umi_mask.index[avg_read_per_umi_mask]
)
passing_cells = umis_per_cell_passing & avg_read_per_umi_passing
passing_mask = molecule_table["cellBC"].isin(passing_cells)
n_cells = molecule_table["cellBC"].nunique()
logger.info(
f"Filtered out {n_cells - len(passing_cells)} cells with too few UMIs "
"or too few average number of reads per UMI."
)
molecule_table_filt = molecule_table[~passing_mask]
n_umi_filt = (
molecule_table_filt["UMI"].sum()
if umi_count
else molecule_table_filt.shape[0]
)
logger.info(f"Filtered out {n_umi_filt} UMIs as a result.")
return molecule_table[passing_mask].copy()
@log_molecule_table
def filter_umis(
molecule_table: pd.DataFrame, min_reads_per_umi: int = 100
) -> pd.DataFrame:
return molecule_table[molecule_table["readCount"] >= min_reads_per_umi]
@log_molecule_table
def error_correct_intbc(
molecule_table: pd.DataFrame,
prop: float = 0.5,
umi_count_thresh: int = 10,
dist_thresh: int = 1,
) -> pd.DataFrame:
if prop > 0.5:
warnings.warn(
"No intBC correction was done because `prop` is greater than 0.5.",
PreprocessWarning,
)
return molecule_table
cellBC_intBC_allele_groups = molecule_table.groupby(
["cellBC", "intBC", "allele"], sort=False
)
cellBC_intBC_allele_indices = cellBC_intBC_allele_groups.groups
molecule_table_agg = (
cellBC_intBC_allele_groups.agg({"UMI": "count", "readCount": "sum"})
.sort_values("UMI", ascending=False)
.reset_index()
)
for (cellBC, allele), intBC_table in tqdm(
molecule_table_agg.groupby(["cellBC", "allele"], sort=False),
desc="Error Correcting intBCs",
):
for i1 in range(intBC_table.shape[0]):
row1 = intBC_table.iloc[i1]
intBC1 = row1["intBC"]
UMI1 = row1["UMI"]
for i2 in range(i1 + 1, intBC_table.shape[0]):
row2 = intBC_table.iloc[i2]
intBC2 = row2["intBC"]
UMI2 = row2["UMI"]
total_count = UMI1 + UMI2
proportion = UMI2 / total_count
distance = ngs.sequence.levenshtein_distance(intBC1, intBC2)
if (
distance <= dist_thresh
and proportion < prop
and UMI2 <= umi_count_thresh
):
key_to_correct = (cellBC, intBC2, allele)
molecule_table.loc[
cellBC_intBC_allele_indices[key_to_correct], "intBC"
] = intBC1
logger.info(
f"In cellBC {cellBC}, intBC {intBC2} corrected to "
f"{intBC1}, correcting {UMI2} UMIs to {UMI1} UMIs."
)
return molecule_table
def record_stats(
molecule_table: pd.DataFrame,
) -> Tuple[np.array, np.array, np.array]:
umis_per_intBC = (
molecule_table.groupby(["cellBC", "intBC"], sort=False).size().values
)
umis_per_cellBC = molecule_table.groupby("cellBC", sort=False).size().values
return (
molecule_table["readCount"].values,
umis_per_intBC,
umis_per_cellBC,
)
def convert_bam_to_df(data_fp: str) -> pd.DataFrame:
als = []
with pysam.AlignmentFile(
data_fp, ignore_truncation=True, check_sq=False
) as bam_fh:
for al in bam_fh:
cellBC, UMI, readCount, grpFlag = al.query_name.split("_")
seq = al.query_sequence
qual = al.query_qualities
encode_qual = pysam.array_to_qualitystring(qual)
als.append(
[
cellBC,
UMI,
int(readCount),
grpFlag,
seq,
encode_qual,
al.query_name,
]
)
return pd.DataFrame(
als,
columns=[
"cellBC",
"UMI",
"readCount",
"grpFlag",
"seq",
"qual",
"readName",
],
)
def convert_alleletable_to_character_matrix(
alleletable: pd.DataFrame,
ignore_intbcs: List[str] = [],
allele_rep_thresh: float = 1.0,
missing_data_allele: Optional[str] = None,
missing_data_state: int = -1,
mutation_priors: Optional[pd.DataFrame] = None,
cut_sites: Optional[List[str]] = None,
collapse_duplicates: bool = True,
) -> Tuple[
pd.DataFrame, Dict[int, Dict[int, float]], Dict[int, Dict[int, str]]
]:
if cut_sites is None:
cut_sites = get_default_cut_site_columns(alleletable)
filtered_samples = defaultdict(OrderedDict)
for sample in alleletable.index:
cell = alleletable.loc[sample, "cellBC"]
intBC = alleletable.loc[sample, "intBC"]
if intBC in ignore_intbcs:
continue
for i, c in enumerate(cut_sites):
if intBC not in ignore_intbcs:
filtered_samples[cell].setdefault(f"{intBC}{c}", []).append(
alleletable.loc[sample, c]
)
character_strings = defaultdict(list)
allele_counter = defaultdict(OrderedDict)
_intbc_uniq = set()
allele_dist = defaultdict(list)
for s in filtered_samples:
for key in filtered_samples[s]:
_intbc_uniq.add(key)
allele_dist[key].extend(list(set(filtered_samples[s][key])))
intbc_uniq = []
dropped = []
for key in allele_dist.keys():
props = np.unique(allele_dist[key], return_counts=True)[1]
props = props / len(allele_dist[key])
if np.any(props > allele_rep_thresh):
dropped.append(key)
else:
intbc_uniq.append(key)
print(
"Dropping the following intBCs due to lack of diversity with threshold "
+ str(allele_rep_thresh)
+ ": "
+ str(dropped)
)
prior_probs = defaultdict(dict)
indel_to_charstate = defaultdict(dict)
for i in tqdm(range(len(list(intbc_uniq))), desc="Processing characters"):
c = list(intbc_uniq)[i]
indel_to_charstate[i] = {}
for sample in filtered_samples.keys():
if c in filtered_samples[sample]:
states = filtered_samples[sample][c]
transformed_states = []
for state in states:
if type(state) != str and np.isnan(state):
transformed_states.append(missing_data_state)
continue
if state == "NONE" or "None" in state:
transformed_states.append(0)
elif (
missing_data_allele is not None
and state == missing_data_allele
):
transformed_states.append(missing_data_state)
else:
if state in allele_counter[c]:
transformed_states.append(allele_counter[c][state])
else:
allele_counter[c][state] = (
len(allele_counter[c]) + 1
)
transformed_states.append(allele_counter[c][state])
indel_to_charstate[i][
len(allele_counter[c])
] = state
if mutation_priors is not None:
prob = np.mean(
mutation_priors.loc[state, "freq"]
)
prior_probs[i][len(allele_counter[c])] = float(
prob
)
if collapse_duplicates:
transformed_states = sorted(set(transformed_states))
transformed_states = tuple(transformed_states)
if len(transformed_states) == 1:
transformed_states = transformed_states[0]
character_strings[sample].append(transformed_states)
else:
character_strings[sample].append(missing_data_state)
character_matrix = pd.DataFrame.from_dict(
character_strings,
orient="index",
columns=[f"r{i}" for i in range(1, len(intbc_uniq) + 1)],
)
return character_matrix, prior_probs, indel_to_charstate | MIT License |
a3data/hermione | hermione/module_templates/__IMPLEMENTED_BASE__/src/ml/model/wrapper.py | Wrapper.get_metrics | python | def get_metrics(self):
return self.artifacts["metrics"] | Return metrics
Parameters
----------
self : object Wrapper
Returns
-------
dict | https://github.com/a3data/hermione/blob/4a833e96664fc91c65bdd28b2637c291f4f5a4d6/hermione/module_templates/__IMPLEMENTED_BASE__/src/ml/model/wrapper.py#L150-L162 | from joblib import dump, load
from datetime import date
import mlflow.pyfunc
from mlflow import pyfunc
from interpret.ext.blackbox import TabularExplainer, MimicExplainer
from interpret.ext.glassbox import *
import pandas as pd
from util import load_yaml, load_json
class Wrapper(mlflow.pyfunc.PythonModel):
def __init__(self, model=None, preprocessing=None, metrics=None, columns=None):
self.artifacts = dict()
self.artifacts["model"] = model
self.artifacts["preprocessing"] = preprocessing
self.artifacts["metrics"] = metrics
self.artifacts["columns"] = columns
self.artifacts["creation_date"] = date.today()
def predict(self, model_input):
df_processed = model_input.copy()
model = self.artifacts["model"]
columns = self.artifacts["columns"]
return model.predict(df_processed[columns])
def predict_proba(self, model_input, binary=False):
df_processed = model_input.copy()
model = self.artifacts["model"]
columns = self.artifacts["columns"]
if binary:
return model.predict_proba(df_processed[columns])[:, 1]
else:
return model.predict_proba(df_processed[columns])
def load(self, path):
return load(path)
def save_model(self, path):
dump(self, path)
@staticmethod
def load_model(path):
model = pyfunc.load_model(path)
return model
def save(self, path):
path_artifacts = path + "_artifacts.pkl"
dump(self.artifacts, path_artifacts)
content = load_json("config/arquivos.json")
conda_env = load_yaml(content["path_yaml"])
mlflow.pyfunc.save_model(
path=path,
python_model=self,
artifacts={"model": path_artifacts},
conda_env=conda_env,
) | Apache License 2.0 |
ansible-community/ansible-lint | src/ansiblelint/prerun.py | _write_module_stub | python | def _write_module_stub(
filename: str,
name: str,
namespace: Optional[str] = None,
collection: Optional[str] = None,
) -> None:
body = ANSIBLE_MOCKED_MODULE.format(
name=name, collection=collection, namespace=namespace
)
with open(filename, "w") as f:
f.write(body) | Write module stub to disk. | https://github.com/ansible-community/ansible-lint/blob/306573167ad21c37a5aa72017bda57e1bad28c80/src/ansiblelint/prerun.py#L354-L365 | import json
import logging
import os
import pathlib
import re
import subprocess
import sys
from functools import lru_cache
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import packaging
import tenacity
from packaging import version
from ansiblelint.config import (
ansible_collections_path,
collection_list,
options,
parse_ansible_version,
)
from ansiblelint.constants import (
ANSIBLE_DEFAULT_ROLES_PATH,
ANSIBLE_MIN_VERSION,
ANSIBLE_MISSING_RC,
ANSIBLE_MOCKED_MODULE,
INVALID_CONFIG_RC,
INVALID_PREREQUISITES_RC,
)
from ansiblelint.loaders import yaml_from_file
_logger = logging.getLogger(__name__)
def check_ansible_presence(exit_on_error: bool = False) -> Tuple[str, str]:
@lru_cache()
def _get_ver_err() -> Tuple[str, str]:
err = ""
failed = False
ver = ""
result = subprocess.run(
args=["ansible", "--version"],
stdout=subprocess.PIPE,
universal_newlines=True,
check=False,
)
if result.returncode != 0:
return (
ver,
"FATAL: Unable to retrieve ansible cli version: %s" % result.stdout,
)
ver, error = parse_ansible_version(result.stdout)
if error is not None:
return "", error
try:
from ansible.release import __version__ as ansible_module_version
if version.parse(ansible_module_version) < version.parse(
ANSIBLE_MIN_VERSION
):
failed = True
except (ImportError, ModuleNotFoundError) as e:
failed = True
ansible_module_version = "none"
err += f"{e}\n"
if failed:
err += (
"FATAL: ansible-lint requires a version of Ansible package"
" >= %s, but %s was found. "
"Please install a compatible version using the same python interpreter. See "
"https://docs.ansible.com/ansible/latest/installation_guide"
"/intro_installation.html#installing-ansible-with-pip"
% (ANSIBLE_MIN_VERSION, ansible_module_version)
)
elif ver != ansible_module_version:
err = (
f"FATAL: Ansible CLI ({ver}) and python module"
f" ({ansible_module_version}) versions do not match. This "
"indicates a broken execution environment."
)
return ver, err
ver, err = _get_ver_err()
if exit_on_error and err:
_logger.error(err)
sys.exit(ANSIBLE_MISSING_RC)
return ver, err
def install_collection(collection: str, destination: Optional[str] = None) -> None:
cmd = [
"ansible-galaxy",
"collection",
"install",
"--force",
"-v",
]
if destination:
cmd.extend(["-p", destination])
cmd.append(f"{collection}")
_logger.info("Running %s", " ".join(cmd))
run = subprocess.run(
cmd,
universal_newlines=True,
check=False,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
if run.returncode != 0:
_logger.error("Command returned %s code:\n%s", run.returncode, run.stdout)
sys.exit(INVALID_PREREQUISITES_RC)
@tenacity.retry(
reraise=True,
wait=tenacity.wait_fixed(30),
stop=tenacity.stop_after_attempt(3),
before_sleep=tenacity.after_log(_logger, logging.WARNING),
)
def install_requirements(requirement: str) -> None:
if not os.path.exists(requirement):
return
cmd = [
"ansible-galaxy",
"role",
"install",
"--force",
"--roles-path",
f"{options.cache_dir}/roles",
"-vr",
f"{requirement}",
]
_logger.info("Running %s", " ".join(cmd))
run = subprocess.run(
cmd,
universal_newlines=True,
check=False,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
if run.returncode != 0:
_logger.error(run.stdout)
raise RuntimeError(run.returncode)
if "collections" in yaml_from_file(requirement):
cmd = [
"ansible-galaxy",
"collection",
"install",
"--force",
"-p",
f"{options.cache_dir}/collections",
"-vr",
f"{requirement}",
]
_logger.info("Running %s", " ".join(cmd))
run = subprocess.run(
cmd,
universal_newlines=True,
check=False,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
if run.returncode != 0:
_logger.error(run.stdout)
raise RuntimeError(run.returncode)
def prepare_environment(required_collections: Optional[Dict[str, str]] = None) -> None:
if not options.configured:
from ansiblelint.__main__ import initialize_options
initialize_options()
if not options.offline:
install_requirements("requirements.yml")
for req in pathlib.Path(".").glob("molecule/*/requirements.yml"):
install_requirements(str(req))
if required_collections:
for name, min_version in required_collections.items():
install_collection(
f"{name}:>={min_version}",
destination=f"{options.cache_dir}/collections"
if options.cache_dir
else None,
)
_install_galaxy_role()
_perform_mockings()
_prepare_ansible_paths()
def _get_galaxy_role_ns(galaxy_infos: Dict[str, Any]) -> str:
role_namespace = galaxy_infos.get('namespace', "")
if len(role_namespace) == 0:
role_namespace = galaxy_infos.get('author', "")
if re.match(r"^\w+ \w+", role_namespace):
role_namespace = ""
else:
role_namespace = f"{role_namespace}."
if not isinstance(role_namespace, str):
raise RuntimeError("Role namespace must be string, not %s" % role_namespace)
return role_namespace
def _get_galaxy_role_name(galaxy_infos: Dict[str, Any]) -> str:
return galaxy_infos.get('role_name', "")
def _get_role_fqrn(galaxy_infos: Dict[str, Any]) -> str:
role_namespace = _get_galaxy_role_ns(galaxy_infos)
role_name = _get_galaxy_role_name(galaxy_infos)
if len(role_name) == 0:
role_name = pathlib.Path(".").absolute().name
role_name = re.sub(r'(ansible-|ansible-role-)', '', role_name)
return f"{role_namespace}{role_name}"
def _install_galaxy_role() -> None:
if not os.path.exists("meta/main.yml"):
return
yaml = yaml_from_file("meta/main.yml")
if 'galaxy_info' not in yaml:
return
fqrn = _get_role_fqrn(yaml['galaxy_info'])
if 'role-name' not in options.skip_list:
if not re.match(r"[a-z0-9][a-z0-9_]+\.[a-z][a-z0-9_]+$", fqrn):
msg = (
"""\
Computed fully qualified role name of %s does not follow current galaxy requirements.
Please edit meta/main.yml and assure we can correctly determine full role name:
galaxy_info:
role_name: my_name # if absent directory name hosting role is used instead
namespace: my_galaxy_namespace # if absent, author is used instead
Namespace: https://galaxy.ansible.com/docs/contributing/namespaces.html#galaxy-namespace-limitations
Role: https://galaxy.ansible.com/docs/contributing/creating_role.html#role-names
As an alternative, you can add 'role-name' to either skip_list or warn_list.
"""
% fqrn
)
if 'role-name' in options.warn_list:
_logger.warning(msg)
else:
_logger.error(msg)
sys.exit(INVALID_PREREQUISITES_RC)
else:
if 'role_name' in yaml['galaxy_info']:
role_namespace = _get_galaxy_role_ns(yaml['galaxy_info'])
role_name = _get_galaxy_role_name(yaml['galaxy_info'])
fqrn = f"{role_namespace}{role_name}"
else:
fqrn = pathlib.Path(".").absolute().name
p = pathlib.Path(f"{options.cache_dir}/roles")
p.mkdir(parents=True, exist_ok=True)
link_path = p / fqrn
target = pathlib.Path(options.project_dir).absolute()
if not link_path.exists() or os.readlink(link_path) != str(target):
if link_path.exists():
link_path.unlink()
link_path.symlink_to(target, target_is_directory=True)
_logger.info(
"Using %s symlink to current repository in order to enable Ansible to find the role using its expected full name.",
link_path,
)
def _prepare_ansible_paths() -> None:
library_paths: List[str] = []
roles_path: List[str] = []
for path_list, path in (
(library_paths, "plugins/modules"),
(library_paths, f"{options.cache_dir}/modules"),
(collection_list, f"{options.cache_dir}/collections"),
(roles_path, "roles"),
(roles_path, f"{options.cache_dir}/roles"),
):
if path not in path_list and os.path.exists(path):
path_list.append(path)
_update_env('ANSIBLE_LIBRARY', library_paths)
_update_env(ansible_collections_path(), collection_list)
_update_env('ANSIBLE_ROLES_PATH', roles_path, default=ANSIBLE_DEFAULT_ROLES_PATH)
def _make_module_stub(module_name: str) -> None:
if re.match(r"^(\w+|\w+\.\w+\.[\.\w]+)$", module_name):
parts = module_name.split(".")
if len(parts) < 3:
path = f"{options.cache_dir}/modules"
module_file = f"{options.cache_dir}/modules/{module_name}.py"
namespace = None
collection = None
else:
namespace = parts[0]
collection = parts[1]
path = f"{ options.cache_dir }/collections/ansible_collections/{ namespace }/{ collection }/plugins/modules/{ '/'.join(parts[2:-1]) }"
module_file = f"{path}/{parts[-1]}.py"
os.makedirs(path, exist_ok=True)
_write_module_stub(
filename=module_file,
name=module_file,
namespace=namespace,
collection=collection,
)
else:
_logger.error("Config error: %s is not a valid module name.", module_name)
sys.exit(INVALID_CONFIG_RC) | MIT License |
dmontagu/fastapi-utils | fastapi_utils/api_settings.py | get_api_settings | python | def get_api_settings() -> APISettings:
return APISettings() | This function returns a cached instance of the APISettings object.
Caching is used to prevent re-reading the environment every time the API settings are used in an endpoint.
If you want to change an environment variable and reset the cache (e.g., during testing), this can be done
using the `lru_cache` instance method `get_api_settings.cache_clear()`. | https://github.com/dmontagu/fastapi-utils/blob/af95ff4a8195caaa9edaa3dbd5b6eeb09691d9c7/fastapi_utils/api_settings.py#L60-L69 | from functools import lru_cache
from typing import Any, Dict
from pydantic import BaseSettings
class APISettings(BaseSettings):
debug: bool = False
docs_url: str = "/docs"
openapi_prefix: str = ""
openapi_url: str = "/openapi.json"
redoc_url: str = "/redoc"
title: str = "FastAPI"
version: str = "0.1.0"
disable_docs: bool = False
@property
def fastapi_kwargs(self) -> Dict[str, Any]:
fastapi_kwargs: Dict[str, Any] = {
"debug": self.debug,
"docs_url": self.docs_url,
"openapi_prefix": self.openapi_prefix,
"openapi_url": self.openapi_url,
"redoc_url": self.redoc_url,
"title": self.title,
"version": self.version,
}
if self.disable_docs:
fastapi_kwargs.update({"docs_url": None, "openapi_url": None, "redoc_url": None})
return fastapi_kwargs
class Config:
env_prefix = "api_"
validate_assignment = True
@lru_cache() | MIT License |
therve/twotp | twotp/packer.py | Packer.pack_float | python | def pack_float(self, term):
term = "%.20e" % (term,)
packetData = self.packChar(self.MAGIC_FLOAT)
packetData += term
nullPadStr = "\0" * (31 - len(term))
return packetData + nullPadStr | Pack a float. | https://github.com/therve/twotp/blob/67d0c9475c5c211e8f9d6280f8c3e04fff944a73/twotp/packer.py#L110-L118 | import struct
import zlib
from twotp.term import ConstantHolder, Atom
class UnhandledClass(KeyError):
class Packer(ConstantHolder):
MAX_INT = pow(2, 32)
MAX_SHORT = pow(2, 16)
MAX_CHAR = pow(2, 8)
def packChar(self, char):
return chr(char)
def packShort(self, short):
if short >= self.MAX_SHORT:
raise ValueError("Number too big to fit in short: %s" % (short,))
return struct.pack("!H", short)
def packInt(self, integer):
if integer >= self.MAX_INT:
raise ValueError("Number too big to fit in int: %s" % (integer,))
return struct.pack("!i", integer)
def _pack_id(self, term, maxSignificantBits=18):
return self.packInt(term & ((1 << maxSignificantBits) - 1))
def _pack_creation(self, term):
return self.packChar(term & ((1 << 2) - 1))
def pack_int(self, term):
if 0 <= term < self.MAX_CHAR:
return (self.packChar(self.MAGIC_SMALL_INTEGER) +
self.packChar(term))
elif -2 ** 31 <= term < 2 ** 31:
return self.packChar(self.MAGIC_INTEGER) + self.packInt(term)
else:
sign = int(term < 0)
term = abs(term)
a = 1
n = 0
while a < term:
n += 1
a = 256 ** n
if n < 256:
data = self.packChar(self.MAGIC_SMALL_BIG) + self.packChar(n)
else:
data = self.packChar(self.MAGIC_LARGE_BIG) + self.packInt(n)
data += self.packChar(sign)
content = []
for i in xrange(n - 1, -1, -1):
c = term // 256 ** i
content.append(self.packChar(c))
term = term - (256 ** i) * c
content.reverse()
return data + "".join(content)
pack_long = pack_int | MIT License |
bigpon/qpnet | src/nets/qpnet.py | DilatedConv1d.forward | python | def forward(self, xC, xP):
xC = self.convC(xC)
xP = self.convP(xP)
return xC + xP | Forward calculation
Arg:
xC (tensor): float tensor variable with the shape (B x C x T)
xP (tensor): float tensor variable with the shape (B x C x T)
Return:
(tensor): float tensor variable with the shape (B x C x T) | https://github.com/bigpon/qpnet/blob/657fcb01b23e9e3371b5a4b2ebeec5757ad33e2d/src/nets/qpnet.py#L98-L108 | from __future__ import division
import logging
import sys
import time
import yaml
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from numpy.matlib import repmat
def encode_mu_law(x, mu=256):
mu = mu - 1
fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu)
return np.floor((fx + 1) / 2 * mu + 0.5).astype(np.int64)
def decode_mu_law(y, mu=256):
mu = mu - 1
fx = (y - 0.5) / mu * 2 - 1
x = np.sign(fx) / mu * ((1 + mu) ** np.abs(fx) - 1)
return x
def initialize(m):
if isinstance(m, nn.Conv1d):
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0.0)
if isinstance(m, nn.ConvTranspose2d):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0.0)
class OneHot(nn.Module):
def __init__(self, depth):
super(OneHot, self).__init__()
self.depth = depth
def forward(self, x):
x = x % self.depth
x = torch.unsqueeze(x, 2)
x_onehot = x.new_zeros(x.size(0), x.size(1), self.depth).float()
return x_onehot.scatter_(2, x, 1)
def FDilatedConv1d(xC, xP, nnModule):
convC = nnModule.convC
convP = nnModule.convP
output = F.conv1d(xC, convC.weight, convC.bias) + F.conv1d(xP, convP.weight, convP.bias)
return output
class DilatedConv1d(nn.Module):
def __init__(self, in_channels, out_channels, bias=True):
super(DilatedConv1d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.convC = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
self.convP = nn.Conv1d(in_channels, out_channels, 1, bias=bias) | Apache License 2.0 |
paddlepaddle/paddle | python/paddle/fluid/layers/sequence_lod.py | sequence_slice | python | def sequence_slice(input, offset, length, name=None):
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_slice", **locals())
check_variable_and_dtype(input, 'input',
['float32', 'float64', 'int32', 'int64'],
'sequence_slice')
check_variable_and_dtype(offset, 'offset', ['int32', 'int64'],
'sequence_slice')
check_variable_and_dtype(length, 'length', ['int32', 'int64'],
'sequence_slice')
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
offset.stop_gradient = True
length.stop_gradient = True
helper.append_op(
type="sequence_slice",
inputs={"X": input,
"Offset": offset,
"Length": length},
outputs={"Out": out})
return out | :api_attr: Static Graph
**Sequence Slice Layer**
The layer crops a subsequence from given sequence with given start
offset and subsequence length.
It only supports sequence data (LoDTensor with lod_level equal to 1).
.. code-block:: text
- Case:
Given the input Variable **input**:
input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
input.lod = [[3, 2]],
input.dims = (5, 2),
with offset.data = [[0], [1]] and length.data = [[2], [1]],
the output Variable will be
out.data = [[a1, a2], [b1, b2], [e1, e2]],
out.lod = [[2, 1]],
out.dims = (3, 2).
Note:
The first dimension size of **input**, **offset** and **length**
should be equal. The **offset** should start from 0.
Args:
input(Variable): LoDTensor, The input Variable which consists of the complete
sequences.The data type can be float32, float64, int32 or int64
offset(Variable): LoDTensor, The offset to slice each sequence. The data
type is int32 or int64.
length(Variable): LoDTensor, The length of each subsequence. The data
type is int32 or int64.
name(str|None): The default value is None. Normally there is no need
for user to set this property. For more information,
please refer to :ref:`api_guide_Name`
Returns:
Variable: The output subsequences.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
import numpy as np
seqs = paddle.static.data(name='x', shape=[10, 5],
dtype='float32', lod_level=1)
offset = paddle.assign(np.array([[0, 1]]).astype("int32"))
length = paddle.assign(np.array([[2, 1]]).astype("int32"))
subseqs = paddle.static.nn.sequence_slice(input=seqs, offset=offset,
length=length) | https://github.com/paddlepaddle/paddle/blob/056b87414880e0520bb4560fc40d5b62db9c5175/python/paddle/fluid/layers/sequence_lod.py#L560-L647 | from __future__ import print_function
from .layer_function_generator import templatedoc
from ..framework import Variable, in_dygraph_mode
from ..layer_helper import LayerHelper
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
from ..core import VarDesc
__all__ = [
'sequence_conv',
'sequence_softmax',
'sequence_pool',
'sequence_concat',
'sequence_first_step',
'sequence_last_step',
'sequence_slice',
'sequence_expand',
'sequence_expand_as',
'sequence_pad',
'sequence_unpad',
'sequence_reshape',
'sequence_scatter',
'sequence_enumerate',
'sequence_mask',
'sequence_reverse',
]
@templatedoc()
def sequence_conv(input,
num_filters,
filter_size=3,
filter_stride=1,
padding=True,
padding_start=None,
bias_attr=None,
param_attr=None,
act=None,
name=None):
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
check_variable_and_dtype(input, 'input', ['float32', 'float64'],
'sequence_conv')
helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype()
filter_shape = [filter_size * input.shape[1], num_filters]
filter_param = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
pre_bias = helper.create_variable_for_type_inference(dtype)
if padding_start is None:
padding_start = -int(filter_size // 2)
helper.append_op(
type='sequence_conv',
inputs={
'X': [input],
'Filter': [filter_param],
},
outputs={"Out": pre_bias},
attrs={
'contextStride': filter_stride,
'contextStart': padding_start,
'contextLength': filter_size,
})
pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)
def sequence_softmax(input, use_cudnn=False, name=None):
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_softmax', **locals())
check_variable_and_dtype(input, 'input', ['float32', 'float64'],
'sequence_softmax')
dtype = helper.input_dtype()
softmax_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_softmax",
inputs={"X": input},
outputs={"Out": softmax_out},
attrs={"use_cudnn": use_cudnn})
return softmax_out
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
check_variable_and_dtype(input, 'input', ['float32', 'float64'],
'sequence_pool')
helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
max_index = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_pool",
inputs={"X": input},
outputs={"Out": pool_out,
"MaxIndex": max_index},
attrs={
"pooltype": pool_type.upper(),
"is_test": is_test,
"pad_value": pad_value
})
if pool_type == 'max':
max_index.stop_gradient = True
return pool_out
@templatedoc()
def sequence_concat(input, name=None):
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_concat', **locals())
check_type(input, 'input', list, 'fluid.layers.sequence_concat')
for i, input_x in enumerate(input):
check_variable_and_dtype(input_x, 'input[' + str(i) + ']',
['int64', 'float32', 'float64'],
'fluid.layers.sequence_concat')
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
return out
def sequence_first_step(input):
check_variable_and_dtype(input, 'input', ['float32', 'float64'],
'sequence_first_step')
return sequence_pool(input=input, pool_type="first")
def sequence_last_step(input):
check_variable_and_dtype(input, 'input', ['float32', 'float64'],
'sequence_last_step')
return sequence_pool(input=input, pool_type="last") | Apache License 2.0 |
azure/azure-devops-cli-extension | azure-devops/azext_devops/devops_sdk/v5_1/work_item_tracking/work_item_tracking_client.py | WorkItemTrackingClient.delete_comment_reaction | python | def delete_comment_reaction(self, project, work_item_id, comment_id, reaction_type):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
if comment_id is not None:
route_values['commentId'] = self._serialize.url('comment_id', comment_id, 'int')
if reaction_type is not None:
route_values['reactionType'] = self._serialize.url('reaction_type', reaction_type, 'CommentReactionType')
response = self._send(http_method='DELETE',
location_id='f6cb3f27-1028-4851-af96-887e570dc21f',
version='5.1-preview.1',
route_values=route_values)
return self._deserialize('CommentReaction', response) | DeleteCommentReaction.
[Preview API] Deletes an existing reaction on a comment.
:param str project: Project ID or project name
:param int work_item_id: WorkItem ID
:param int comment_id: Comment ID
:param CommentReactionType reaction_type: Type of the reaction
:rtype: :class:`<CommentReaction> <azure.devops.v5_1.work_item_tracking.models.CommentReaction>` | https://github.com/azure/azure-devops-cli-extension/blob/5f33f7d81a9c2d2990044fbd9ffa6b535cbda528/azure-devops/azext_devops/devops_sdk/v5_1/work_item_tracking/work_item_tracking_client.py#L521-L543 |
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class WorkItemTrackingClient(Client):
def __init__(self, base_url=None, creds=None):
super(WorkItemTrackingClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = '5264459e-e5e0-4bd8-b118-0985e68a4ec5'
def get_recent_activity_data(self):
response = self._send(http_method='GET',
location_id='1bc988f4-c15f-4072-ad35-497c87e3a909',
version='5.1-preview.2')
return self._deserialize('[AccountRecentActivityWorkItemModel2]', self._unwrap_collection(response))
def get_work_artifact_link_types(self):
response = self._send(http_method='GET',
location_id='1a31de40-e318-41cd-a6c6-881077df52e3',
version='5.1-preview.1')
return self._deserialize('[WorkArtifactLink]', self._unwrap_collection(response))
def query_work_items_for_artifact_uris(self, artifact_uri_query, project=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
content = self._serialize.body(artifact_uri_query, 'ArtifactUriQuery')
response = self._send(http_method='POST',
location_id='a9a9aa7a-8c09-44d3-ad1b-46e855c1e3d3',
version='5.1-preview.1',
route_values=route_values,
content=content)
return self._deserialize('ArtifactUriQueryResult', response)
def create_attachment(self, upload_stream, project=None, file_name=None, upload_type=None, area_path=None, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if file_name is not None:
query_parameters['fileName'] = self._serialize.query('file_name', file_name, 'str')
if upload_type is not None:
query_parameters['uploadType'] = self._serialize.query('upload_type', upload_type, 'str')
if area_path is not None:
query_parameters['areaPath'] = self._serialize.query('area_path', area_path, 'str')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='POST',
location_id='e07b5fa4-1499-494d-a496-64b860fd64ff',
version='5.1',
route_values=route_values,
query_parameters=query_parameters,
content=content,
media_type='application/octet-stream')
return self._deserialize('AttachmentReference', response)
def get_attachment_content(self, id, project=None, file_name=None, download=None, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if id is not None:
route_values['id'] = self._serialize.url('id', id, 'str')
query_parameters = {}
if file_name is not None:
query_parameters['fileName'] = self._serialize.query('file_name', file_name, 'str')
if download is not None:
query_parameters['download'] = self._serialize.query('download', download, 'bool')
response = self._send(http_method='GET',
location_id='e07b5fa4-1499-494d-a496-64b860fd64ff',
version='5.1',
route_values=route_values,
query_parameters=query_parameters,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_attachment_zip(self, id, project=None, file_name=None, download=None, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if id is not None:
route_values['id'] = self._serialize.url('id', id, 'str')
query_parameters = {}
if file_name is not None:
query_parameters['fileName'] = self._serialize.query('file_name', file_name, 'str')
if download is not None:
query_parameters['download'] = self._serialize.query('download', download, 'bool')
response = self._send(http_method='GET',
location_id='e07b5fa4-1499-494d-a496-64b860fd64ff',
version='5.1',
route_values=route_values,
query_parameters=query_parameters,
accept_media_type='application/zip')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_classification_nodes(self, project, ids, depth=None, error_policy=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if ids is not None:
ids = ",".join(map(str, ids))
query_parameters['ids'] = self._serialize.query('ids', ids, 'str')
if depth is not None:
query_parameters['$depth'] = self._serialize.query('depth', depth, 'int')
if error_policy is not None:
query_parameters['errorPolicy'] = self._serialize.query('error_policy', error_policy, 'str')
response = self._send(http_method='GET',
location_id='a70579d1-f53a-48ee-a5be-7be8659023b9',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[WorkItemClassificationNode]', self._unwrap_collection(response))
def get_root_nodes(self, project, depth=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if depth is not None:
query_parameters['$depth'] = self._serialize.query('depth', depth, 'int')
response = self._send(http_method='GET',
location_id='a70579d1-f53a-48ee-a5be-7be8659023b9',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[WorkItemClassificationNode]', self._unwrap_collection(response))
def create_or_update_classification_node(self, posted_node, project, structure_group, path=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if structure_group is not None:
route_values['structureGroup'] = self._serialize.url('structure_group', structure_group, 'TreeStructureGroup')
if path is not None:
route_values['path'] = self._serialize.url('path', path, 'str')
content = self._serialize.body(posted_node, 'WorkItemClassificationNode')
response = self._send(http_method='POST',
location_id='5a172953-1b41-49d3-840a-33f79c3ce89f',
version='5.1',
route_values=route_values,
content=content)
return self._deserialize('WorkItemClassificationNode', response)
def delete_classification_node(self, project, structure_group, path=None, reclassify_id=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if structure_group is not None:
route_values['structureGroup'] = self._serialize.url('structure_group', structure_group, 'TreeStructureGroup')
if path is not None:
route_values['path'] = self._serialize.url('path', path, 'str')
query_parameters = {}
if reclassify_id is not None:
query_parameters['$reclassifyId'] = self._serialize.query('reclassify_id', reclassify_id, 'int')
self._send(http_method='DELETE',
location_id='5a172953-1b41-49d3-840a-33f79c3ce89f',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
def get_classification_node(self, project, structure_group, path=None, depth=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if structure_group is not None:
route_values['structureGroup'] = self._serialize.url('structure_group', structure_group, 'TreeStructureGroup')
if path is not None:
route_values['path'] = self._serialize.url('path', path, 'str')
query_parameters = {}
if depth is not None:
query_parameters['$depth'] = self._serialize.query('depth', depth, 'int')
response = self._send(http_method='GET',
location_id='5a172953-1b41-49d3-840a-33f79c3ce89f',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('WorkItemClassificationNode', response)
def update_classification_node(self, posted_node, project, structure_group, path=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if structure_group is not None:
route_values['structureGroup'] = self._serialize.url('structure_group', structure_group, 'TreeStructureGroup')
if path is not None:
route_values['path'] = self._serialize.url('path', path, 'str')
content = self._serialize.body(posted_node, 'WorkItemClassificationNode')
response = self._send(http_method='PATCH',
location_id='5a172953-1b41-49d3-840a-33f79c3ce89f',
version='5.1',
route_values=route_values,
content=content)
return self._deserialize('WorkItemClassificationNode', response)
def get_engaged_users(self, project, work_item_id, comment_id, reaction_type, top=None, skip=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
if comment_id is not None:
route_values['commentId'] = self._serialize.url('comment_id', comment_id, 'int')
if reaction_type is not None:
route_values['reactionType'] = self._serialize.url('reaction_type', reaction_type, 'CommentReactionType')
query_parameters = {}
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
response = self._send(http_method='GET',
location_id='e33ca5e0-2349-4285-af3d-d72d86781c35',
version='5.1-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[IdentityRef]', self._unwrap_collection(response))
def add_comment(self, request, project, work_item_id):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
content = self._serialize.body(request, 'CommentCreate')
response = self._send(http_method='POST',
location_id='608aac0a-32e1-4493-a863-b9cf4566d257',
version='5.1-preview.3',
route_values=route_values,
content=content)
return self._deserialize('Comment', response)
def delete_comment(self, project, work_item_id, comment_id):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
if comment_id is not None:
route_values['commentId'] = self._serialize.url('comment_id', comment_id, 'int')
self._send(http_method='DELETE',
location_id='608aac0a-32e1-4493-a863-b9cf4566d257',
version='5.1-preview.3',
route_values=route_values)
def get_comment(self, project, work_item_id, comment_id, include_deleted=None, expand=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
if comment_id is not None:
route_values['commentId'] = self._serialize.url('comment_id', comment_id, 'int')
query_parameters = {}
if include_deleted is not None:
query_parameters['includeDeleted'] = self._serialize.query('include_deleted', include_deleted, 'bool')
if expand is not None:
query_parameters['$expand'] = self._serialize.query('expand', expand, 'str')
response = self._send(http_method='GET',
location_id='608aac0a-32e1-4493-a863-b9cf4566d257',
version='5.1-preview.3',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('Comment', response)
def get_comments(self, project, work_item_id, top=None, continuation_token=None, include_deleted=None, expand=None, order=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
query_parameters = {}
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if continuation_token is not None:
query_parameters['continuationToken'] = self._serialize.query('continuation_token', continuation_token, 'str')
if include_deleted is not None:
query_parameters['includeDeleted'] = self._serialize.query('include_deleted', include_deleted, 'bool')
if expand is not None:
query_parameters['$expand'] = self._serialize.query('expand', expand, 'str')
if order is not None:
query_parameters['order'] = self._serialize.query('order', order, 'str')
response = self._send(http_method='GET',
location_id='608aac0a-32e1-4493-a863-b9cf4566d257',
version='5.1-preview.3',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('CommentList', response)
def get_comments_batch(self, project, work_item_id, ids, include_deleted=None, expand=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
query_parameters = {}
if ids is not None:
ids = ",".join(map(str, ids))
query_parameters['ids'] = self._serialize.query('ids', ids, 'str')
if include_deleted is not None:
query_parameters['includeDeleted'] = self._serialize.query('include_deleted', include_deleted, 'bool')
if expand is not None:
query_parameters['$expand'] = self._serialize.query('expand', expand, 'str')
response = self._send(http_method='GET',
location_id='608aac0a-32e1-4493-a863-b9cf4566d257',
version='5.1-preview.3',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('CommentList', response)
def update_comment(self, request, project, work_item_id, comment_id):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
if comment_id is not None:
route_values['commentId'] = self._serialize.url('comment_id', comment_id, 'int')
content = self._serialize.body(request, 'CommentUpdate')
response = self._send(http_method='PATCH',
location_id='608aac0a-32e1-4493-a863-b9cf4566d257',
version='5.1-preview.3',
route_values=route_values,
content=content)
return self._deserialize('Comment', response)
def create_comment_reaction(self, project, work_item_id, comment_id, reaction_type):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if work_item_id is not None:
route_values['workItemId'] = self._serialize.url('work_item_id', work_item_id, 'int')
if comment_id is not None:
route_values['commentId'] = self._serialize.url('comment_id', comment_id, 'int')
if reaction_type is not None:
route_values['reactionType'] = self._serialize.url('reaction_type', reaction_type, 'CommentReactionType')
response = self._send(http_method='PUT',
location_id='f6cb3f27-1028-4851-af96-887e570dc21f',
version='5.1-preview.1',
route_values=route_values)
return self._deserialize('CommentReaction', response) | MIT License |
google/clusterfuzz | src/clusterfuzz/_internal/base/retry.py | get_delay | python | def get_delay(num_try, delay, backoff):
return delay * (backoff**(num_try - 1)) | Compute backoff delay. | https://github.com/google/clusterfuzz/blob/e9e105d66f009356c4f3fe9ae7873ffff126b234/src/clusterfuzz/_internal/base/retry.py#L32-L34 | import functools
import inspect
import sys
import time
from clusterfuzz._internal.metrics import logs
def sleep(seconds):
time.sleep(seconds) | Apache License 2.0 |
dynatrace/dynatrace-cli | dtcli.py | parsePipelineInfo | python | def parsePipelineInfo(pipelineinfofile):
pipelineinfo = None
with open(pipelineinfofile) as json_data:
pipelineinfo = json.load(json_data)
return pipelineinfo | will parse the pipelineinfo file | https://github.com/dynatrace/dynatrace-cli/blob/4954a85fddce4db3723d1d5c9a0e5e5ba937003d/dtcli.py#L517-L524 | import sys
import io
import re
import os
import json
import time
import datetime
import operator
import urllib
import requests
import urllib3
import uuid
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
API_ENDPOINT_APPLICATIONS = "/api/v1/entity/applications"
API_ENDPOINT_SERVICES = "/api/v1/entity/services"
API_ENDPOINT_PROCESS_GROUPS = "/api/v1/entity/infrastructure/process-groups"
API_ENDPOINT_HOSTS = "/api/v1/entity/infrastructure/hosts"
API_ENDPOINT_PROCESSES = "/api/v1/entity/infrastructure/processes"
API_ENDPOINT_CUSTOM = "/api/v1/entity/infrastructure/custom"
API_ENDPOINT_TIMESERIES = "/api/v1/timeseries"
API_ENDPOINT_THRESHOLDS = "/api/v1/thresholds"
API_ENDPOINT_EVENTS = "/api/v1/events"
API_ENDPOINT_PROBLEMS = "/api/v1/problem"
HTTP_GET = "GET"
HTTP_POST = "POST"
HTTP_PUT = "PUT"
HTTP_DELETE = "DELETE"
MONSPEC_PERFSIGNATURE = "perfsignature"
MONSPEC_PERFSIGNATURE_TIMESERIES = "timeseries"
MONSPEC_PERFSIGNATURE_AGGREGATE = "aggregate"
MONSPEC_PERFSIGNATURE_SMARTSCAPE = "smartscape"
MONSPEC_PERFSIGNATURE_METRICID = "metricId"
MONSPEC_PERFSIGNATURE_METRICDEF = "metricDef"
MONSPEC_PERFSIGNATURE_SOURCE = "source"
MONSPEC_PERFSIGNATURE_COMPARE = "compare"
MONSPEC_PERFSIGNATURE_THRESHOLD = "threshold"
MONSPEC_PERFSIGNATURE_RESULT = "result"
MONSPEC_PERFSIGNATURE_RESULT_COMPARE = "result_compare"
MONSPEC_PERFSIGNATURE_UPPERLIMIT = "upperlimit"
MONSPEC_PERFSIGNATURE_LOWERLIMIT = "lowerlimit"
MONSPEC_DISPLAYNAME = "displayName"
MONSPEC_METRICTYPE_SERVICE = "Monspec Service Metric"
MONSPEC_METRICTYPE_SMARTSCAPE = "Monspec Smartscape Metric"
MONSPEC_DATAHANDLING_NORMAL = 0
MONSPEC_DATAHANDLING_IGNORE_ERROR = 1
MONSPEC_DATAHANDLING_DEMODATA = -1
dtconfigfilename = os.path.join(os.path.dirname(os.path.abspath(__file__)), "dtconfig.json")
config = {
"tenanthost" : "smpljson",
"apitoken" : "smpltoken",
"cacheupdate" : -1,
"cachedir" : "",
"debug" : 0
}
global_doPrint = False
global_timestampcheck = datetime.datetime(2000, 1, 1, ).timestamp()
def getAuthenticationHeader():
return {"Authorization" : "Api-Token " + config["apitoken"]}
def getRequestUrl(apiEndpoint, queryString):
requestUrl = config["tenanthost"] + apiEndpoint
if(not requestUrl.startswith("https://")) :
requestUrl = "https://" + requestUrl;
if(queryString is not None and len(queryString) > 0):
requestUrl += "?" + queryString
return requestUrl
def getCacheFilename(apiEndpoint, queryString):
cachedir = getAttributeOrNone(config, "cachdir")
if cachedir is None or cachedir == "":
cachedir = os.path.dirname(os.path.abspath(__file__))
fullCacheFilename = os.path.join(os.path.dirname(os.path.abspath(__file__)), cachedir, config["tenanthost"].replace(".", "_").replace(":","_"), apiEndpoint.replace("/","_"))
if(queryString is not None and len(queryString) > 0):
os.path.join(fullCacheFilename, urllib.parse.unquote(queryString).replace(".", "_").replace(":", "_").replace("?", "_").replace("&", "_"))
fullCacheFilename += ".json"
return fullCacheFilename
def encodeString(strValue):
encodedStrValue = strValue.replace(" ", "%20")
return encodedStrValue
class NameValue:
def __init__(self, defaultName, defaultValue):
self.name = defaultName
if(defaultValue.startswith("[") and defaultValue.endswith("]")):
json.load(defaultValue)
else:
self.value = defaultValue
class TimeframeDef:
def __init__(self, timeframe):
self.timeframestr = timeframe
if timeframe is None:
self.timeframestr = [None]
return
self.type = []
self.timestamp = []
self.allowedConsts = ["hour", "2hours", "6hours", "day", "week", "month"]
self.timeframestr = timeframe.split(":")
for timeframe in self.timeframestr:
if operator.contains(self.allowedConsts, timeframe):
self.type.append("relative")
elif timeframe.isdigit():
tsint = int(timeframe)
if tsint < global_timestampcheck:
self.timestamp.append(1000 * int(datetime.datetime.now().timestamp() - tsint*60))
else:
self.timestamp.append(int(timeframe))
self.type.append("absolute")
else:
self.timestamp.append(None)
self.type.append(None)
def isTimerange(self):
return self.isValid() and len(self.timeframestr) > 1
def getNowAsStringForWebUI(self):
return str(1000*datetime.datetime.now().timestamp())
def timeframeAsStrForWebUI(self, frame=0):
if self.isRelative(frame):
webUIConsts = ["l_1_HOURS", "l_2_HOURS", "l_6_HOURS", "l_24_HOURS", "l_7_DAYS", "l_30_DAYS"]
ix = operator.indexOf(self.allowedConsts, self.timeframestr[frame])
return webUIConsts[ix]
else:
return str(self.timestamp[frame])
def timeframeAsStr(self, frame=0):
if self.isRelative():
return self.timeframestr[frame]
return str(self.timestamp[frame])
def isValid(self, frame=0):
return self.timeframestr[frame] is not None
def isRelative(self, frame=0):
return self.type[frame] == "relative"
def isAbsolute(self, frame=0):
return self.type[frame] == "absolute"
def isNumeric(value):
try:
numValue = int(value)
except:
return False
return True
def parseNameValue(nameValue, defaultName, defaultValue):
if(nameValue is None):
return NameValue(defaultName, defaultValue)
equalSign = nameValue.find("=")
if(equalSign < 0):
return NameValue(defaultName, nameValue)
partitions = nameValue.partition("=")
return NameValue(partitions[0], partitions[2])
def queryDynatraceAPI(isGet, apiEndpoint, queryString, postBody):
if isGet : httpMethod = HTTP_GET
else: httpMethod = HTTP_POST
return queryDynatraceAPIEx(httpMethod, apiEndpoint, queryString, postBody)
def queryDynatraceAPIEx(httpMethod, apiEndpoint, queryString, postBody):
if (getAttributeOrDefault(config, "debug", 0) == 1) :
print("DEBUG - queryDynatraceAPIEx: " + apiEndpoint + "?" + queryString + " - BODY: " + str(postBody))
fullCacheFilename = getCacheFilename(apiEndpoint, queryString)
if (getAttributeOrDefault(config, "debug", 0) == 1) :
print("DEBUG - getCacheFilename: " + fullCacheFilename)
readFromCache = False
if(os.path.isfile(fullCacheFilename)):
cacheupdate = getAttributeOrNone(config, "cacheupdate")
if(cacheupdate is None):
cacheupdate = -1
else:
cacheupdate = int(config["cacheupdate"])
if(cacheupdate == -1):
readFromCache = True
if(cacheupdate > 0):
now = datetime.datetime.now()
lastModified = datetime.datetime.fromtimestamp(os.path.getmtime(fullCacheFilename))
if((now - lastModified).seconds < cacheupdate):
readFromCache = True
jsonContent = None
if (httpMethod == HTTP_GET) and readFromCache:
if (getAttributeOrDefault(config, "debug", 0) == 1) :
print("Read from Cache!")
with open(fullCacheFilename) as json_data:
jsonContent = json.load(json_data)
else:
myResponse = None
if httpMethod == HTTP_GET:
myResponse = requests.get(getRequestUrl(apiEndpoint, queryString), headers=getAuthenticationHeader(), verify=False)
elif httpMethod == HTTP_POST:
myResponse = requests.post(getRequestUrl(apiEndpoint, queryString), headers=getAuthenticationHeader(), verify=False, json=postBody)
elif httpMethod == HTTP_PUT:
myResponse = requests.put(getRequestUrl(apiEndpoint, queryString), headers=getAuthenticationHeader(), verify=False, json=postBody)
elif httpMethod == HTTP_DELETE:
myResponse = requests.delete(getRequestUrl(apiEndpoint, queryString), headers=getAuthenticationHeader(), verify=False, json=postBody)
if(myResponse.ok):
if(len(myResponse.text) > 0):
jsonContent = json.loads(myResponse.text)
if (httpMethod == HTTP_GET) and jsonContent is not None:
directory = os.path.dirname(fullCacheFilename)
if not os.path.exists(directory):
os.makedirs(directory)
with open(fullCacheFilename, "w+") as output_file:
json.dump(jsonContent, output_file)
else:
jsonContent = json.loads(myResponse.text)
errorMessage = ""
if(jsonContent["error"]):
errorMessage = jsonContent["error"]["message"]
if global_doPrint:
print("Dynatrace API returned an error: " + errorMessage)
jsonContent = None
raise Exception("Error", "Dynatrace API returned an error: " + errorMessage)
return jsonContent
class KeySearch:
def __init__(self, key):
self.keylistname = None
self.contextvalue = None
self.contextkeyname = None
self.keyvalue = None
self.keykeyname = None
self.value = None
self.valuekeyname = "value"
parts = key.partition("/")
if(parts[1] == "/"):
self.keylistname = parts[0]
key = parts[2]
parts = key.partition("?")
if(parts[1] == "?"):
self.valuekeyname = parts[2]
key = parts[0]
if(len(key) > 0):
parts = key.partition(":")
if(parts[1] == ":"):
self.contextvalue = parts[0]
self.contextkeyname = "context"
self.keyvalue = parts[2]
self.keykeyname = "key"
else:
if(self.keylistname is not None):
self.keyvalue = parts[0]
else:
self.valuekeyname = parts[0]
if(self.contextvalue is not None):
parts = self.contextvalue.partition("#")
if(parts[1] == "#"):
self.contextkeyname = parts[0]
self.contextvalue = parts[2]
if(self.keyvalue is not None):
parts = self.keyvalue.partition("#")
if(parts[1] == "#"):
self.keykeyname = parts[0]
self.keyvalue = parts[2]
def isTagSearch():
return self.keylistname is not None
def getAttributeFromFirstMatch(attributeName, objectlist):
attributeNames = attributeName.split(",")
if attributeName == "*":
i = len(objectlist)-1
while i>=0:
if(objectlist[i] is not None):
return objectlist[i]
i = i-1;
return None
for obj in objectlist:
try:
attributeValues = []
if(obj is not None):
for attribute in attributeNames:
attributeValue = obj[attribute]
if(attributeValue is not None):
attributeValues.append(attributeValue)
if len(attributeValues) == len(attributeNames):
if(len(attributeValues) == 1):
return attributeValues[0]
return attributeValues
except KeyError:
x=1
return "OBJECT DOESNT HAVE KEY " + attributeName
def jsonFindValuesByKey(jsonContent, key, matchValue, returnKey):
return jsonFindValuesByKeyEx(jsonContent, key, matchValue, returnKey, None, None)
def jsonFindValuesByKeyEx(jsonContent, key, matchValue, returnKey, parentJsonNodename, parentJsonContent):
if((key is not None) and (type(key) == str)):
key = KeySearch(key)
if((matchValue is not None) and (type(matchValue) == str)):
try:
matchValue = re.compile(matchValue)
except:
if global_doPrint:
print(matchValue + " is NOT VALID regular expression")
raise Exception("Regex Error", matchValue + " is NOT VALID regular expression")
result = []
if type(jsonContent) == str:
jsonContent = json.loads(jsonContent)
if type(jsonContent) is dict:
foundValueMatch = None
foundContextMatch = key.contextvalue is None
foundKeyMatch = key.keyvalue is None
for jsonkey in jsonContent:
if ((type(jsonContent[jsonkey]) is list) and (jsonkey == key.keyvalue)):
if(matchValue is None):
foundKeyValueMatch = True
else:
for listItem in jsonContent[jsonkey]:
if(matchValue.match(listItem)):
foundKeyValueMatch = True
if foundKeyValueMatch is not None:
foundKeyValueMatch = getAttributeFromFirstMatch(returnKey, [jsonContent, parentJsonContent])
if ((type(jsonContent[jsonkey]) is list) and (jsonkey == key.valuekeyname)):
for listitem in jsonContent[jsonkey]:
if(matchValue.match(listitem)):
result.append(getAttributeFromFirstMatch(returnKey, [jsonContent, parentJsonContent]))
elif type(jsonContent[jsonkey]) in (list, dict):
subResult = jsonFindValuesByKeyEx(jsonContent[jsonkey], key, matchValue, returnKey, jsonkey, jsonContent)
if(len(subResult) > 0):
result.extend(subResult)
elif jsonkey == key.valuekeyname:
if((jsonContent[jsonkey] is not None) and (matchValue is None or matchValue.match(jsonContent[jsonkey]))):
foundValueMatch = getAttributeFromFirstMatch(returnKey, [jsonContent, parentJsonContent])
elif (key.contextvalue is not None) and (jsonkey == key.contextkeyname):
foundContextMatch = key.contextvalue == jsonContent[jsonkey]
elif (key.keyvalue is not None) and (jsonkey == key.keykeyname):
foundKeyMatch = key.keyvalue == jsonContent[jsonkey]
if (key.keylistname is None) or (key.keylistname == parentJsonNodename):
if((foundValueMatch is not None) and foundContextMatch and foundKeyMatch):
result.append(foundValueMatch)
elif type(jsonContent) is list:
for item in jsonContent:
if type(item) in (list, dict):
subResult = jsonFindValuesByKeyEx(item, key, matchValue, returnKey, parentJsonNodename, parentJsonContent)
if(len(subResult) > 0):
result.extend(subResult)
return result
def matchEntityName(entityName, listOfEntities):
if(listOfEntities is None):
return True
if(type(listOfEntities) is str):
return listOfEntities == entityName
if(type(listOfEntities) is list):
if(entityName in listOfEntities):
return True
return False
def filterDataPointsForEntities(jsonDataPoints, entities):
result = {}
for entityDataPoint in jsonDataPoints:
if matchEntityName(entityDataPoint, entities):
result[entityDataPoint] = {}
result[entityDataPoint]["dataPoints"] = jsonDataPoints[entityDataPoint]
return result
def handleException(e):
errorObject = {}
if e.args:
if len(e.args) == 2:
errorObject[e.args[0]] = e.args[1]
if len(e.args) == 1:
errorObject["error"] = e.args[0]
else:
errorObject["exception"] = e
print(errorObject)
sys.exit(1)
def getAttributeOrDefault(baseobject, attributename, default):
attributeValue = getAttributeOrNone(baseobject, attributename)
if attributeValue is None:
attributeValue = default
return attributeValue
def getAttributeOrNone(baseobject, attributename):
attributeValue = None
try :
attributeValue = baseobject[attributename]
except:
attributeValue = None
return attributeValue | Apache License 2.0 |
wildltr/ptranking | ptranking/data/data_utils.py | clip_query_data | python | def clip_query_data(qid, list_docids=None, feature_mat=None, std_label_vec=None, binary_rele=False,
unknown_as_zero=False, clip_query=None, min_docs=None, min_rele=1, presort=None):
if binary_rele: std_label_vec = np.clip(std_label_vec, a_min=-10, a_max=1)
if unknown_as_zero: std_label_vec = np.clip(std_label_vec, a_min=0, a_max=10)
if clip_query:
if feature_mat.shape[0] < min_docs:
return None
if (std_label_vec > 0).sum() < min_rele:
return None
assert presort is not None
if presort:
des_inds = np_arg_shuffle_ties(std_label_vec, descending=True)
feature_mat, std_label_vec = feature_mat[des_inds], std_label_vec[des_inds]
return (qid, feature_mat, std_label_vec) | Clip the data associated with the same query if required | https://github.com/wildltr/ptranking/blob/8f54be4dbfa0b0aba4c9c80b647ddbe7e571cf26/ptranking/data/data_utils.py#L406-L435 | import os
import random
import numpy as np
from pathlib import Path
from enum import Enum, unique, auto
from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler
import torch
import torch.utils.data as data
from ptranking.ltr_adhoc.util.bin_utils import batch_count
from ptranking.utils.numpy.np_extensions import np_arg_shuffle_ties
from ptranking.ltr_adhoc.util.one_hot_utils import get_one_hot_reprs
from ptranking.utils.bigdata.BigPickle import pickle_save, pickle_load
MSLETOR_SEMI = ['MQ2007_Semi', 'MQ2008_Semi']
MSLETOR_LIST = ['MQ2007_List', 'MQ2008_List']
MSLETOR_SUPER = ['MQ2007_Super', 'MQ2008_Super']
MSLETOR = ['MQ2007_Super', 'MQ2008_Super', 'MQ2007_Semi', 'MQ2008_Semi', 'MQ2007_List', 'MQ2008_List']
IRGAN_MQ2008_SEMI = ['IRGAN_MQ2008_Semi']
MSLRWEB = ['MSLRWEB10K', 'MSLRWEB30K']
YAHOO_LTR = ['Set1', 'Set2']
YAHOO_LTR_5Fold = ['5FoldSet1', '5FoldSet2']
ISTELLA_LTR = ['Istella_S', 'Istella', 'Istella_X']
ISTELLA_MAX = 1000000
GLTR_LIBSVM = ['LTR_LibSVM', 'LTR_LibSVM_K']
GLTR_LETOR = ['LETOR', 'LETOR_K']
SCALER_LEVEL = ['QUERY', 'DATASET']
SCALER_ID = ['MinMaxScaler', 'RobustScaler', 'StandardScaler', "SLog1P"]
@unique
class MASK_TYPE(Enum):
rand_mask_all = auto()
rand_mask_rele = auto()
@unique
class LABEL_TYPE(Enum):
MultiLabel = auto()
Permutation = auto()
@unique
class SPLIT_TYPE(Enum):
Train = auto()
Test = auto()
Validation = auto()
class SymmetricLog1pScaler(object):
@staticmethod
def fit_transform(X):
return np.sign(X) * np.log(1.0 + np.abs(X))
def get_data_meta(data_id=None):
if data_id in MSLRWEB:
max_rele_level = 4
label_type = LABEL_TYPE.MultiLabel
num_features = 136
has_comment = False
fold_num = 5
elif data_id in MSLETOR_SUPER:
max_rele_level = 2
label_type = LABEL_TYPE.MultiLabel
num_features = 46
has_comment = True
fold_num = 5
elif data_id in MSLETOR_SEMI:
max_rele_level = 2
label_type = LABEL_TYPE.MultiLabel
num_features = 46
has_comment = True
fold_num = 5
elif data_id in MSLETOR_LIST:
max_rele_level = None
label_type = LABEL_TYPE.Permutation
num_features = 46
has_comment = True
fold_num = 5
elif data_id in YAHOO_LTR:
max_rele_level = 4
label_type = LABEL_TYPE.MultiLabel
num_features = 700
has_comment = False
fold_num = 1
elif data_id in YAHOO_LTR_5Fold:
max_rele_level = 4
label_type = LABEL_TYPE.MultiLabel
num_features = 700
has_comment = False
fold_num = 5
elif data_id in ISTELLA_LTR:
max_rele_level = 4
label_type = LABEL_TYPE.MultiLabel
num_features = 220
fold_num = 1
if data_id in ['Istella_S', 'Istella']:
has_comment = False
else:
has_comment = True
else:
raise NotImplementedError
data_meta = dict(num_features=num_features, has_comment=has_comment, label_type=label_type,
max_rele_level=max_rele_level, fold_num=fold_num)
return data_meta
def get_scaler(scaler_id):
assert scaler_id in SCALER_ID
if scaler_id == 'MinMaxScaler':
scaler = MinMaxScaler()
elif scaler_id == 'RobustScaler':
scaler = RobustScaler()
elif scaler_id == 'StandardScaler':
scaler = StandardScaler()
elif scaler_id == 'SLog1P':
scaler = SymmetricLog1pScaler()
return scaler
def get_scaler_setting(data_id, grid_search=False, scaler_id=None):
if grid_search:
if scaler_id is None:
if data_id in MSLRWEB or data_id in ISTELLA_LTR:
choice_scale_data = [True]
choice_scaler_id = ['StandardScaler']
choice_scaler_level = ['QUERY']
else:
choice_scale_data = [False]
choice_scaler_id = [None]
choice_scaler_level = [None]
else:
choice_scale_data = [True]
choice_scaler_id = [scaler_id]
choice_scaler_level = ['QUERY']
return choice_scale_data, choice_scaler_id, choice_scaler_level
else:
if scaler_id is None:
if data_id in MSLRWEB or data_id in ISTELLA_LTR:
scale_data = True
scaler_id = 'StandardScaler'
scaler_level = 'QUERY'
else:
scale_data = False
scaler_id = None
scaler_level = None
else:
scale_data = True
scaler_level = 'QUERY'
return scale_data, scaler_id, scaler_level
def get_buffer_file_name(data_id, file, data_dict, presort=None):
min_rele = data_dict['min_rele']
if min_rele is not None and min_rele > 0:
fi_suffix = '_'.join(['MiR', str(min_rele)])
else:
fi_suffix = ''
min_docs = data_dict['min_docs']
if min_docs is not None and min_docs > 0:
if len(fi_suffix)>0:
fi_suffix = '_'.join([fi_suffix, 'MiD', str(min_docs)])
else:
fi_suffix = '_'.join(['MiD', str(min_docs)])
res_suffix = ''
if data_dict['binary_rele']:
res_suffix += '_B'
if data_dict['unknown_as_zero']:
res_suffix += '_UO'
pq_suffix = '_'.join([fi_suffix, 'PerQ']) if len(fi_suffix) > 0 else 'PerQ'
assert presort is not None
if presort: pq_suffix = '_'.join([pq_suffix, 'PreSort'])
scale_data = data_dict['scale_data']
scaler_id = data_dict['scaler_id'] if 'scaler_id' in data_dict else None
scaler_level = data_dict['scaler_level'] if 'scaler_level' in data_dict else None
if scale_data:
assert scaler_id is not None and scaler_id in SCALER_ID and scaler_level in SCALER_LEVEL
if 'DATASET' == scaler_level:
pq_suffix = '_'.join([pq_suffix, 'DS', scaler_id])
else:
pq_suffix = '_'.join([pq_suffix, 'QS', scaler_id])
if data_id in YAHOO_LTR:
perquery_file = file[:file.find('.txt')].replace(data_id.lower() + '.', 'Buffered' + data_id + '/') + '_' + pq_suffix + res_suffix + '.np'
elif data_id in ISTELLA_LTR:
perquery_file = file[:file.find('.txt')].replace(data_id, 'Buffered_' + data_id) + '_' + pq_suffix + res_suffix + '.np'
else:
perquery_file = file[:file.find('.txt')].replace('Fold', 'BufferedFold') + '_' + pq_suffix + res_suffix +'.np'
return perquery_file
def _parse_docid(comment):
parts = comment.strip().split()
return parts[2]
def _parse_qid_tok(tok):
assert tok.startswith('qid:')
return tok[4:]
def iter_lines(lines, has_targets=True, one_indexed=True, missing=0.0, has_comment=False):
for line in lines:
if has_comment:
data, _, comment = line.rstrip().partition('#')
toks = data.split()
else:
toks = line.rstrip().split()
num_features = 0
feature_vec = np.repeat(missing, 8)
std_score = -1.0
if has_targets:
std_score = float(toks[0])
toks = toks[1:]
qid = _parse_qid_tok(toks[0])
for tok in toks[1:]:
fid, _, val = tok.partition(':')
fid = int(fid)
val = float(val)
if one_indexed:
fid -= 1
assert fid >= 0
while len(feature_vec) <= fid:
orig = len(feature_vec)
feature_vec.resize(len(feature_vec) * 2)
feature_vec[orig:orig * 2] = missing
feature_vec[fid] = val
num_features = max(fid + 1, num_features)
assert num_features > 0
feature_vec.resize(num_features)
if has_comment:
yield (feature_vec, std_score, qid, comment)
else:
yield (feature_vec, std_score, qid)
def parse_letor(source, has_targets=True, one_indexed=True, missing=0.0, has_comment=False):
max_width = 0
feature_vecs, std_scores, qids = [], [], []
if has_comment:
comments = []
it = iter_lines(source, has_targets=has_targets, one_indexed=one_indexed, missing=missing, has_comment=has_comment)
if has_comment:
for f_vec, s, qid, comment in it:
feature_vecs.append(f_vec)
std_scores.append(s)
qids.append(qid)
comments.append(comment)
max_width = max(max_width, len(f_vec))
else:
for f_vec, s, qid in it:
feature_vecs.append(f_vec)
std_scores.append(s)
qids.append(qid)
max_width = max(max_width, len(f_vec))
assert max_width > 0
all_features_mat = np.ndarray((len(feature_vecs), max_width), dtype=np.float64)
all_features_mat.fill(missing)
for i, x in enumerate(feature_vecs):
all_features_mat[i, :len(x)] = x
all_labels_vec = np.array(std_scores)
if has_comment:
docids = [_parse_docid(comment) for comment in comments]
return all_features_mat, all_labels_vec, qids, docids
else:
return all_features_mat, all_labels_vec, qids | MIT License |
netromdk/slacker | slacker/commands/command.py | Command.name | python | def name(self):
pass | Returns the name of the command. This is the actual command, like 'download'. | https://github.com/netromdk/slacker/blob/56ab630ba11451c254c5ec377f76033b692c61ce/slacker/commands/command.py#L32-L34 | import re
from cachetools import TTLCache
from abc import ABC, abstractmethod
from slacker.logger import Logger
from slacker.slack_api import SlackAPI
from prompt_toolkit.completion import WordCompleter
COMMAND_NAME_REGEX = re.compile("([\w\d][\w\d\.]*)?[\w\d]+")
class Command(ABC):
def __init__(self):
self.__validate()
self.logger = Logger(self.__class__.__name__).get()
self.cache = None
if not self.is_destructive() and self.use_cache():
ttl = self.cache_ttl()
max_items = self.max_items_in_cache()
self.logger.debug("Created {} command cache (maxitems={}, ttl={})"
.format(self.name(), max_items, ttl))
self.cache = TTLCache(max_items, ttl)
@abstractmethod | MIT License |
neuropower/neurodesign | source/src/neurodesign.py | experiment.countstim | python | def countstim(self):
self.trial_duration = self.stim_duration + self.t_pre + self.t_post
if self.ITImodel == "uniform":
self.ITImean = (self.ITImax + self.ITImin) / 2
if self.duration:
if not self.restnum == 0:
blockdurNR = self.restnum * (self.ITImean + self.trial_duration)
blockdurWR = blockdurNR + self.restdur
blocknum = np.floor(self.duration / blockdurWR)
n_trials = blocknum * self.restnum
remain = self.duration - (blocknum * blockdurWR)
if remain >= blockdurNR:
n_trials = n_trials + self.restnum
else:
extratrials = np.floor(
remain / (self.ITImean + self.trial_duration))
n_trials = n_trials + extratrials
self.n_trials = int(n_trials)
else:
self.n_trials = int(
self.duration / (self.ITImean + self.trial_duration))
else:
ITIdur = self.n_trials * self.ITImean
TRIALdur = self.n_trials * self.trial_duration
duration = ITIdur + TRIALdur
if self.restnum > 0:
duration = duration + (np.floor(self.n_trials / self.restnum) * self.restdur)
self.duration = duration | Function to compute some arguments depending on other arguments. | https://github.com/neuropower/neurodesign/blob/605b97a616b53f4e9ea767460471fc7c8d9bdd77/source/src/neurodesign.py#L434-L470 | from __future__ import division
from . import msequence, generate, report
from numpy import transpose as t
from scipy.special import gamma
from collections import Counter
from numpy.linalg import inv
from scipy import linalg
import sklearn.cluster
import scipy.linalg
import pandas as pd
import progressbar
import numpy as np
import itertools
import StringIO
import warnings
import zipfile
import shutil
import scipy
import copy
import time
import math
import sys
import os
class design(object):
def __init__(self, order, ITI, experiment, onsets=None):
self.order = order
self.ITI = ITI
self.onsets = onsets
self.Fe = 0
self.Fd = 0
self.experiment = experiment
if not len(self.ITI) == experiment.n_trials:
raise ValueError(
"length of design (ITI's) does not comply with experiment")
if not len(self.order) == experiment.n_trials:
raise ValueError(
"length of design (orders) does not comply with experiment")
def check_maxrep(self, maxrep):
for stim in range(self.experiment.n_stimuli):
repcheck = not ''.join(
str(e) for e in [stim] * maxrep) in ''.join(str(e) for e in self.order)
if repcheck == False:
break
return repcheck
def check_hardprob(self):
obscnt = Counter(self.order).values()
obsprob = np.round(obscnt / np.sum(obscnt), decimals=2)
if not len(self.experiment.P) == len(obsprob):
return False
close = np.isclose(np.array(self.experiment.P),
np.array(obsprob), atol=0.001)
if not np.sum(close) == len(obsprob):
return False
return True
def crossover(self, other, seed=1234):
assert len(self.order) == len(other.order)
np.random.seed(seed)
changepoint = np.random.choice(len(self.order), 1)[0]
offspringorder1 = list(self.order)[
:changepoint] + list(other.order)[changepoint:]
offspringorder2 = list(other.order)[
:changepoint] + list(self.order)[changepoint:]
offspring1 = design(order=offspringorder1,
ITI=self.ITI, experiment=self.experiment)
offspring2 = design(order=offspringorder2,
ITI=other.ITI, experiment=self.experiment)
return [offspring1, offspring2]
def mutation(self, q, seed=1234):
np.random.seed(seed)
mut_ind = np.random.choice(len(self.order), int(
len(self.order) * q), replace=False)
mutated = copy.copy(self.order)
for mut in mut_ind:
np.random.seed(seed)
mut_stim = np.random.choice(
self.experiment.n_stimuli, 1, replace=True)[0]
mutated[mut] = mut_stim
offspring = design(order=mutated, ITI=self.ITI,
experiment=self.experiment)
return offspring
def designmatrix(self):
if self.experiment.restnum > 0:
orderli = list(self.order)
ITIli = list(self.ITI)
for x in np.arange(0, self.experiment.n_trials, self.experiment.restnum)[1:][::-1]:
orderli.insert(x, "R")
ITIli.insert(x, self.experiment.restdur)
ITIli = [y+self.experiment.trial_duration if not x == "R" else y for x, y in zip(orderli, ITIli)]
onsets = np.cumsum(ITIli)-self.experiment.trial_duration
self.onsets = [y for x, y in zip(orderli, onsets) if not x == "R"]
else:
ITIli = np.array(self.ITI) + self.experiment.trial_duration
self.onsets = np.cumsum(ITIli) - self.experiment.trial_duration
stimonsets = [x + self.experiment.t_pre for x in self.onsets]
self.ITI, x = _round_to_resolution(self.ITI,self.experiment.resolution)
onsetX, XindStim = _round_to_resolution(stimonsets,self.experiment.resolution)
stim_duration_tp = int(
self.experiment.stim_duration / self.experiment.resolution)
assert(np.max(XindStim) <= self.experiment.n_tp)
assert(np.max(XindStim)+stim_duration_tp <= self.experiment.n_tp)
X_X = np.zeros([self.experiment.n_tp, self.experiment.n_stimuli])
for stimulus in xrange(self.experiment.n_stimuli):
for dur in xrange(stim_duration_tp):
X_X[np.array(XindStim) + dur, int(stimulus)
] = [1 if z == stimulus else 0 for z in self.order]
deconvM = np.zeros([self.experiment.n_tp, int(
self.experiment.laghrf * self.experiment.n_stimuli)])
for stim in xrange(self.experiment.n_stimuli):
for j in xrange(int(self.experiment.laghrf)):
deconvM[j:, self.experiment.laghrf * stim +
j] = X_X[:(self.experiment.n_tp - j), stim]
idxX = [int(x) for x in np.arange(0, self.experiment.n_tp,
self.experiment.TR / self.experiment.resolution)]
if len(idxX)-self.experiment.white.shape[0]==1:
idxX = idxX[:self.experiment.white.shape[0]]
deconvMdown = deconvM[idxX, :]
Xwhite = np.dot(
np.dot(t(deconvMdown), self.experiment.white), deconvMdown)
X_Z = np.zeros([self.experiment.n_tp, self.experiment.n_stimuli])
for stim in range(self.experiment.n_stimuli):
X_Z[:, stim] = deconvM[:, (stim * self.experiment.laghrf):(
(stim + 1) * self.experiment.laghrf)].dot(self.experiment.basishrf)
X_Z = X_Z[idxX, :]
X_X = X_X[idxX, :]
Zwhite = t(X_Z) * self.experiment.white * X_Z
self.X = Xwhite
self.Z = Zwhite
self.Xconv = X_Z
self.Xnonconv = X_X
self.CX = self.experiment.CX
self.C = self.experiment.C
return self
def FeCalc(self, Aoptimality=True):
try:
invM = scipy.linalg.inv(self.X)
except scipy.linalg.LinAlgError:
try:
invM = scipy.linalg.pinv(self.X)
except np.linalg.linalg.LinAlgError:
invM = np.nan
sys.exc_clear()
invM = np.array(invM)
st1 = np.dot(self.CX, invM)
CMC = np.dot(st1, t(self.CX))
if Aoptimality == True:
self.Fe = float(self.CX.shape[0] / np.matrix.trace(CMC))
else:
self.Fe = float(np.linalg.det(CMC)**(-1 / len(self.C)))
self.Fe = self.Fe / self.experiment.FeMax
return self
def FdCalc(self, Aoptimality=True):
try:
invM = scipy.linalg.inv(self.Z)
except scipy.linalg.LinAlgError:
try:
invM = scipy.linalg.pinv(self.Z)
except np.linalg.linalg.LinAlgError:
invM = np.nan
sys.exc_clear()
invM = np.array(invM)
CMC = np.matrix(self.C) * invM * np.matrix(t(self.C))
if Aoptimality == True:
self.Fd = float(len(self.C) / np.matrix.trace(CMC))
else:
self.Fd = float(np.linalg.det(CMC)**(-1 / len(self.C)))
self.Fd = self.Fd / self.experiment.FdMax
return self
def FcCalc(self, confoundorder=3):
Q = np.zeros([self.experiment.n_stimuli,
self.experiment.n_stimuli, confoundorder])
for n in xrange(len(self.order)):
for r in np.arange(1, confoundorder + 1):
if n > (r - 1):
Q[self.order[n], self.order[n - r], r - 1] += 1
Qexp = np.zeros([self.experiment.n_stimuli,
self.experiment.n_stimuli, confoundorder])
for si in xrange(self.experiment.n_stimuli):
for sj in xrange(self.experiment.n_stimuli):
for r in np.arange(1, confoundorder + 1):
Qexp[si, sj, r - 1] = self.experiment.P[si] * self.experiment.P[sj] * (self.experiment.n_trials + 1)
Qmatch = np.sum(abs(Q - Qexp))
self.Fc = Qmatch
self.Fc = 1 - self.Fc / self.experiment.FcMax
return self
def FfCalc(self):
trialcount = Counter(self.order)
Pobs = [trialcount[x] for x in xrange(self.experiment.n_stimuli)]
self.Ff = np.sum(abs(np.array(
Pobs) - np.array(self.experiment.n_trials * np.array(self.experiment.P))))
self.Ff = 1 - self.Ff / self.experiment.FfMax
return self
def FCalc(self, weights,Aoptimality=True,confoundorder=3):
if weights[0]>0:
self.FeCalc(Aoptimality)
if weights[1]>0:
self.FdCalc(Aoptimality)
self.FfCalc()
self.FcCalc(confoundorder)
matr = np.array([self.Fe, self.Fd, self.Ff, self.Fc])
self.F = np.sum(weights * matr)
return self
class experiment(object):
def __init__(self, TR, P, C, rho, stim_duration, n_stimuli, ITImodel=None, ITImin=None, ITImax=None, ITImean=None, restnum=0, restdur=0, t_pre=0, t_post=0, n_trials=None, duration=None, resolution=0.1, FeMax=1, FdMax=1, FcMax=1, FfMax=1, maxrep=None, hardprob=False, confoundorder=3):
self.TR = TR
self.P = P
self.C = np.array(C)
self.rho = rho
self.n_stimuli = n_stimuli
self.t_pre = t_pre
self.t_post = t_post
self.n_trials = n_trials
self.duration = duration
self.resolution = resolution
self.stim_duration = stim_duration
self.maxrep = maxrep
self.hardprob = hardprob
self.confoundorder = confoundorder
self.ITImodel = ITImodel
self.ITImin = ITImin
self.ITImean = ITImean
self.ITImax = ITImax
self.ITIlam = None
self.restnum = restnum
self.restdur = restdur
self.FeMax = FeMax
self.FdMax = FdMax
self.FcMax = FcMax
self.FfMax = FfMax
if not np.isclose(self.TR % self.resolution, 0):
self.resolution = _find_new_resolution(self.TR,self.resolution)
warnings.warn("Warning: the resolution is adjusted to be a multiple of the TR. New resolution: %f"%self.resolution)
self.countstim()
self.CreateTsComp()
self.CreateLmComp()
self.max_eff()
def max_eff(self):
NulDesign = design(
order=[np.argmin(self.P)] * self.n_trials,
ITI=[0]+[self.ITImean] * (self.n_trials-1),
experiment=self
)
NulDesign.designmatrix()
NulDesign.FcCalc(self.confoundorder)
self.FcMax = 1 - NulDesign.Fc
NulDesign.FfCalc()
self.FfMax = 1 - NulDesign.Ff
return self | MIT License |
avatartwo/avatar2 | avatar2/protocols/unicorn_protocol.py | UnicornProtocol._worker_emu_start | python | def _worker_emu_start(self, single_step=False):
self._worker_queue.put(UnicornWorkerEmuStartMessage(single_step)) | Start the emulation inside the worker. | https://github.com/avatartwo/avatar2/blob/86a824072ef991a3a240688600f109eec8ad1ff7/avatar2/protocols/unicorn_protocol.py#L305-L307 | import sys
if sys.version_info < (3, 0):
import Queue as queue
else:
import queue
import struct
import unicorn
import logging
from threading import Thread
from collections import namedtuple
from avatar2.message import UpdateStateMessage, RemoteMemoryReadMessage, RemoteMemoryWriteMessage, BreakpointHitMessage
from avatar2.targets import TargetStates
from avatar2.archs.arm import ARM
class UnicornBreakpoint(object):
__slots__ = ('hooks', 'temporary', 'ignore_count')
def __init__(self, hooks, temporary=False, ignore_count=0):
self.hooks = hooks
self.temporary = temporary
self.ignore_count = ignore_count
UnicornWorkerEmuStartMessage = namedtuple('UnicornWorkerEmuStartMessage', ('single_step',))
UnicornWorkerUpdateStateMessage = namedtuple('UnicornWorkerUpdateStateMessage', ('state',))
UnicornWorkerBreakpointMessage = namedtuple('UnicornWorkerBreakpointMessage', ('bkptno', 'address'))
class UnicornProtocol(object):
def __init__(self, avatar, arch=ARM, origin=None):
self.uc = unicorn.Uc(arch.unicorn_arch, arch.unicorn_mode)
self.log = logging.getLogger((origin.log.name + '.' if origin is not None else '') +
self.__class__.__name__)
self.arch = arch
self.pending_bp = set()
self._avatar_queue = avatar.queue
self._avatar_fast_queue = avatar.fast_queue
self._origin = origin
self._breakpoints = []
self._rmp_queue = queue.Queue()
self._alive = True
for start, end, mr in avatar.memory_ranges:
perms = unicorn.UC_PROT_NONE
if 'r' in mr.permissions:
perms |= unicorn.UC_PROT_READ
if 'w' in mr.permissions:
perms |= unicorn.UC_PROT_WRITE
if 'x' in mr.permissions:
perms |= unicorn.UC_PROT_EXEC
self.uc.mem_map(start, end - start, perms=perms)
if hasattr(mr, 'file') and mr.file is not None:
with open(mr.file, 'rb') as data:
self.uc.mem_write(start, data.read())
if mr.forwarded:
self.uc.hook_add(unicorn.UC_HOOK_MEM_VALID, self._forward_hook,
begin=start, end=end)
self._avatar_fast_queue.put(UpdateStateMessage(self._origin, TargetStates.INITIALIZED))
self._worker_queue = queue.Queue()
self._worker_queue.put(UnicornWorkerUpdateStateMessage(TargetStates.STOPPED))
self._worker = UnicornWorker(self._origin, self, self.uc, self._worker_queue,
self._avatar_fast_queue)
self._worker.start()
def __del__(self):
self.shutdown()
def shutdown(self):
if self._alive:
self._worker_queue.put(None)
self.stop()
self._worker.join()
self._alive = False
def cont(self):
self._worker_emu_start()
def stop(self):
self._worker_emu_stop()
def step(self):
self._worker_emu_start(single_step=True)
def set_breakpoint(self, line, hardware=True, temporary=False, regex=False, condition=None,
ignore_count=0, thread=0):
if not hardware:
self.log.warning('Software breakpoints are not supported, falling back to hardware')
if regex:
self.log.warning('Regex breakpoints are not supported, ignoring regex')
if condition is not None:
self.log.warning('Conditional breakpoints are not supported, ignoring condition')
if thread:
self.log.warning('Thread-specific breakpoints are not supported, ignoring thread')
bkptno = len(self._breakpoints)
hook = self.uc.hook_add(unicorn.UC_HOOK_CODE, self._breakpoint_hook, begin=line,
end=line, user_data=bkptno)
self._breakpoints.append(UnicornBreakpoint(hooks=[hook], temporary=temporary,
ignore_count=ignore_count))
return bkptno
def set_watchpoint(self, variable, write=True, read=False):
bkptno = len(self._breakpoints)
hooks = []
if write is True:
hooks.append(self.uc.hook_add(unicorn.UC_HOOK_MEM_WRITE, self._watchpoint_hook,
begin=variable, end=variable, user_data=bkptno))
if read is True:
hooks.append(self.uc.hook_add(unicorn.UC_HOOK_MEM_READ, self._watchpoint_hook,
begin=variable, end=variable, user_data=bkptno))
self._breakpoints.append(UnicornBreakpoint(hooks=hooks))
return bkptno
def remove_breakpoint(self, bkptno):
for hook in self._breakpoints[bkptno].hooks:
self.uc.hook_del(hook)
self._breakpoints[bkptno] = None
def read_memory(self, address, wordsize, num_words=1, raw=False):
raw_mem = self.uc.mem_read(address, wordsize * num_words)
if raw:
return raw_mem
num2fmt = {1: 'B', 2: 'H', 4: 'I', 8: 'Q'}
fmt = '<{}{}'.format(num_words, num2fmt[wordsize])
mem = struct.unpack(fmt, raw_mem)
return mem[0] if num_words == 1 else mem
def write_memory(self, address, wordsize, val, num_words=1, raw=False):
if raw:
raw_mem = val
else:
num2fmt = {1: 'B', 2: 'H', 4: 'I', 8: 'Q'}
fmt = '<{}{}'.format(num_words, num2fmt[wordsize])
if num_words == 1:
raw_mem = struct.pack(fmt, val)
else:
raw_mem = struct.pack(fmt, *val)
try:
self.uc.mem_write(address, raw_mem)
return True
except unicorn.UcError:
self.log.debug('Failed memory write @ 0x{:x}'.format(address))
return False
def write_register(self, reg, value):
self.uc.reg_write(self.arch.unicorn_registers[reg], value)
def read_register(self, reg):
return self.uc.reg_read(self.arch.unicorn_registers[reg])
def send_response(self, id, value, success):
self._rmp_queue.put((value, success))
return True
def _forward_hook(self, uc, access, address, size, value, user_data):
pc = self.read_register(self.arch.pc_name)
if access == unicorn.UC_MEM_READ or access == unicorn.UC_MEM_FETCH:
msg = RemoteMemoryReadMessage(self._origin, 0, pc, address, size)
write_back = True
elif access == unicorn.UC_MEM_WRITE:
msg = RemoteMemoryWriteMessage(self._origin, 0, pc, address, value, size)
write_back = False
else:
raise ValueError('Forward hook with unknown access {}'.format(access))
self._avatar_queue.put(msg)
value, success = self._rmp_queue.get()
if not success:
self.log.debug('Remote memory request returned 0x{:x}'.format(value))
elif write_back and not self.write_memory(address, size, value):
self.log.debug('Failed to write back remote memory')
def _breakpoint_hook(self, uc, address, size, bkptno):
if bkptno in self.pending_bp:
return
bp = self._breakpoints[bkptno]
if bp.ignore_count > 0:
bp.ignore_count -= 1
return
self.pending_bp.add(bkptno)
self._worker_queue.put(UnicornWorkerBreakpointMessage(bkptno, address))
self.uc.emu_stop()
if bp.temporary:
self.remove_breakpoint(bkptno)
def _watchpoint_hook(self, uc, access, address, size, value, bkptno):
if bkptno in self.pending_bp:
return
self.pending_bp.add(bkptno)
self.stop() | Apache License 2.0 |
gilch/drython | drython/core.py | identity | python | def identity(x):
return x | The identity function. Returns its argument.
not to be confused with the id() builtin
>>> identity('foo')
'foo' | https://github.com/gilch/drython/blob/eb1773c14060e31e2544f5fb69dd31621d0bc291/drython/core.py#L265-L272 | from __future__ import absolute_import, division, print_function
from abc import ABCMeta, abstractmethod
from collections import Mapping
import sys
from itertools import islice, chain
from functools import wraps
if sys.version_info[0] == 2:
from itertools import izip_longest as zip_longest
else:
from itertools import zip_longest
Print = print
_exclude_from__all__ = set(globals().keys())
__test__ = {}
def _private():
class EmptyType(Mapping, tuple):
__slots__ = ()
__len__ = tuple.__len__
__iter__ = tuple.__iter__
def __new__(cls, *args, **kwargs):
return tuple.__new__(cls)
def __init__(self):
tuple.__init__(self)
def __getitem__(self, key):
raise KeyError(key)
def __repr__(self):
return 'Empty'
def __eq__(self, other):
if other == set() or other == {}:
return True
else:
return tuple.__eq__(self, other)
def __ne__(self, other):
return not self == other
def __hash__(self):
return 0
__test__[EmptyType.__name__] = EmptyType.__doc__
res = EmptyType()
def __init__(self):
raise TypeError("cannot create 'EmptyType' instances")
EmptyType.__init__ = __init__
return res
Empty = _private()
del _private
def star(func):
return lambda arg: func(*arg)
def unstar(func):
return lambda *args: func(args)
def stars(func):
return lambda kwargs: func(**kwargs)
def unstars(func):
return lambda **kwargs: func(kwargs)
def allstars(func):
return lambda args, kwargs: func(*args,**kwargs)
_sentinel = object()
def partition(iterable, n=2, step=None, fillvalue=_sentinel):
step = step or n
slices = (islice(iterable, start, None, step) for start in range(n))
if fillvalue is _sentinel:
return zip(*slices)
else:
return zip_longest(*slices, fillvalue=fillvalue)
def interleave(*iterables):
return chain.from_iterable(zip(*iterables)) | Apache License 2.0 |
christophreich1996/toeffipy | autograd/nn/functional.py | cross_entropy_loss | python | def cross_entropy_loss(prediction: Tensor, label: Tensor, reduction: str = 'mean') -> Tensor:
assert label.shape == prediction.shape, 'Shape of label must match with prediction'
loss = - (label * autograd.log(prediction))
return _apply_reduction(tensor=loss, reduction=reduction) | Function implements the multi class cross entropy loss in autograd
:param prediction: (Tensor) Prediction tensor
:param label: (Tensor) One hot encoded label tensor
:param reduction: (str) Type of reduction to perform after apply the loss (mean, sum or none)
:return: (Tensor) Loss value | https://github.com/christophreich1996/toeffipy/blob/34ca9cd97a488cdc58d2b909ba963edb80ae2b76/autograd/nn/functional.py#L735-L748 | from typing import List, Union, Tuple, Optional
import autograd
from autograd import Tensor
from autograd.tensor import Dependency
import numpy as np
def _conv_2d_core(input: np.ndarray, kernel: np.ndarray) -> np.ndarray:
input = input.transpose((0, 2, 3, 1))
kernel = kernel.transpose((2, 3, 1, 0))
input = np.lib.stride_tricks.as_strided(input, (input.shape[0],
input.shape[1] - kernel.shape[0] + 1,
input.shape[2] - kernel.shape[1] + 1,
kernel.shape[0],
kernel.shape[1],
input.shape[3]),
input.strides[:3] + input.strides[1:])
return np.tensordot(input, kernel, axes=3).transpose((0, 3, 1, 2))
def conv_2d(input: Tensor, kernel: Tensor, bias: Optional[Tensor] = None) -> Tensor:
assert input.data.ndim == 4, 'Input tensor must have four dimensions.'
assert kernel.data.ndim == 4, 'Kernel tensor must have four dimensions.'
assert input.shape[1] == kernel.shape[1], 'Kernel features and input features must match.'
output = _conv_2d_core(input.data, kernel.data)
requires_grad = input.requires_grad or kernel.requires_grad
dependencies: List[Dependency] = []
if input.requires_grad:
def grad_conv2d_input(grad: np.ndarray) -> np.ndarray:
grad_padded = np.pad(grad.data, ((0, 0), (0, 0),
(kernel.shape[2] - 1, kernel.shape[2] - 1),
(kernel.shape[3] - 1, kernel.shape[3] - 1)), 'constant',
constant_values=(1))
grad = _conv_2d_core(grad_padded, kernel.data.transpose((1, 0, 2, 3)))
return grad
dependencies.append(Dependency(activation=input, grad_fn=grad_conv2d_input))
if kernel.requires_grad:
def grad_conv2d_kernel(grad: np.ndarray) -> np.ndarray:
grad = _conv_2d_core(input.data.transpose((1, 0, 2, 3)), grad.transpose((1, 0, 2, 3))).transpose(
(1, 0, 2, 3))
return grad
dependencies.append(Dependency(activation=kernel, grad_fn=grad_conv2d_kernel))
output_conv = Tensor(data=output, dependencies=dependencies, requires_grad=requires_grad)
if bias is None:
return output_conv
assert bias.data.ndim == 1, 'Bias tensor must have three dimensions.'
bias_batched = np.expand_dims(np.expand_dims(np.expand_dims(bias.data, axis=0), axis=-1), axis=-1)
output_bias_add = output_conv.data + bias_batched
requires_grad = output_conv.requires_grad or bias.requires_grad
dependencies: List[Dependency] = []
if output_conv.requires_grad:
def grad_conv_output(grad: np.ndarray) -> np.ndarray:
return grad
dependencies.append(Dependency(activation=output_conv, grad_fn=grad_conv_output))
if bias.requires_grad:
def grad_conv_bias(grad: np.ndarray) -> np.ndarray:
return grad
dependencies.append(Dependency(activation=output_conv, grad_fn=grad_conv_bias))
return Tensor(data=output_bias_add, dependencies=dependencies, requires_grad=requires_grad)
def max_pool_2d(tensor: Tensor, kernel_size: Tuple[int, int]) -> Tensor:
assert tensor.data.ndim == 4, 'Input tensor must have four dimensions (batch size, channels, features).'
assert kernel_size[0] % 2 == 0 and kernel_size[1] % 2 == 0, 'Kernel size must be odd!'
assert tensor.shape[2] % 2 == 0 and tensor.shape[3] % 2 == 0, 'Tensor height and width must be odd!'
batch_size, channels, height, width = tensor.shape
height_factor = height // kernel_size[0]
width_factor = width // kernel_size[1]
input_reshaped = tensor.data[:, :, :height_factor * kernel_size[0], :width_factor * kernel_size[1]] .reshape(batch_size, channels, height_factor, kernel_size[0], width_factor, kernel_size[1])
output = input_reshaped.max(axis=(3, 5))
indexes = (tensor.data == np.repeat(np.repeat(output, kernel_size[0], axis=2), kernel_size[1], axis=3)).astype(float)
requires_grad = tensor.requires_grad
if requires_grad:
def grad_max_pool_2d(grad: np.ndarray) -> np.ndarray:
unpooled_grad = np.repeat(np.repeat(grad.data, kernel_size[0], axis=2), kernel_size[1], axis=3)
grad = unpooled_grad * indexes
return grad
dependencies = [Dependency(activation=tensor, grad_fn=grad_max_pool_2d)]
else:
dependencies = None
return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
def avg_pool_2d(tensor: Tensor, kernel_size: Tuple[int, int]) -> Tensor:
assert tensor.data.ndim == 4, 'Input tensor must have four dimensions (batch size, channels, features).'
assert kernel_size[0] % 2 == 0 and kernel_size[1] % 2 == 0, 'Kernel size must be odd!'
assert tensor.shape[2] % 2 == 0 and tensor.shape[3] % 2 == 0, 'Tensor height and width must be odd!'
batch_size, channels, height, width = tensor.shape
height_factor = height // kernel_size[0]
width_factor = width // kernel_size[1]
input_reshaped = tensor.data[:, :, :height_factor * kernel_size[0], :width_factor * kernel_size[1]] .reshape(batch_size, channels, height_factor, kernel_size[0], width_factor, kernel_size[1])
output = input_reshaped.mean(axis=(3, 5))
requires_grad = tensor.requires_grad
if requires_grad:
def grad_avg_pool_2d(grad: np.ndarray) -> np.ndarray:
unpooled_grad = np.repeat(np.repeat(grad.data, kernel_size[0], axis=2), kernel_size[1], axis=3)
grad = (1 / (kernel_size[0] * kernel_size[1])) * unpooled_grad
return grad
dependencies = [Dependency(activation=tensor, grad_fn=grad_avg_pool_2d)]
else:
dependencies = None
return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
def batch_norm_1d(tensor: Tensor, gamma: Optional[Tensor] = None, beta: Optional[Tensor] = None,
mean: Optional[Tensor] = None, std: Optional[Tensor] = None,
eps: float = 1e-05, running_mean: Optional[Tensor] = None, running_std: Optional[Tensor] = None,
momentum: float = None) -> Union[Tensor, Tuple[Tensor, Tensor, Tensor]]:
if mean is None:
mean = tensor.mean()
if std is None:
std = tensor.std()
if running_mean is not None and running_std is not None and momentum is not None:
running_mean.data = momentum * running_mean.data + (1. - momentum) * mean.data
running_std.data = momentum * running_std.data + (1. - momentum) * std.data
mean.data = running_mean.data
std.data = running_std.data
output = (tensor - mean) / (std + eps)
if gamma is not None:
if output.data.ndim == 2:
output = output * gamma.unsqueeze(dim=0)
else:
output = output * gamma.unsqueeze(dim=0).unsqueeze(dim=-1)
if beta is not None:
if output.data.ndim == 2:
output = output + beta.unsqueeze(dim=0)
else:
output = output + beta.unsqueeze(dim=0).unsqueeze(dim=-1)
return output, running_mean, running_std
def batch_norm_2d(tensor: Tensor, gamma: Optional[Tensor] = None, beta: Optional[Tensor] = None,
mean: Optional[Tensor] = None, std: Optional[Tensor] = None,
eps: float = 1e-05, running_mean: Optional[Tensor] = None, running_std: Optional[Tensor] = None,
momentum: float = None) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
if mean is None:
mean = tensor.mean()
if std is None:
std = tensor.std()
if running_mean is not None and running_std is not None and momentum is not None:
running_mean.data = momentum * running_mean.data + (1. - momentum) * mean.data
running_std.data = momentum * running_std.data + (1. - momentum) * std.data
mean.data = running_mean.data
std.data = running_std.data
output = (tensor - mean) / (std + eps)
if gamma is not None:
output = output * gamma.unsqueeze(dim=0).unsqueeze(dim=-1).unsqueeze(dim=-1)
if beta is not None:
output = output + beta.unsqueeze(dim=0).unsqueeze(dim=-1).unsqueeze(dim=-1)
return output, running_mean, running_std
def upsampling_nearest_2d(input: Tensor, scale_factor: int = 2) -> Tensor:
assert scale_factor > 0, 'Scale factor must be greater than zero.'
output = np.repeat(np.repeat(input.data, scale_factor, axis=-1), scale_factor, axis=-2)
requires_grad = input.requires_grad
if requires_grad:
def grad_upsampling_nearest_2d(grad: np.ndarray) -> np.ndarray:
height_factor = grad.shape[2] // scale_factor
width_factor = grad.shape[2] // scale_factor
grad_reshaped = grad.data[:, :, :height_factor * scale_factor, :width_factor * scale_factor] .reshape(grad.shape[0], grad.shape[1], height_factor, scale_factor, width_factor, scale_factor)
grad = grad_reshaped.max(axis=(3, 5))
return grad
dependencies = [Dependency(activation=input, grad_fn=grad_upsampling_nearest_2d)]
else:
dependencies = None
return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
def upsampling_nearest_1d(input: Tensor, scale_factor: int = 2) -> Tensor:
assert scale_factor > 0, 'Scale factor must be greater than zero.'
output = np.repeat(input.data, scale_factor, axis=-1)
requires_grad = input.requires_grad
if requires_grad:
def grad_upsampling_nearest_1d(grad: np.ndarray) -> np.ndarray:
features_factor = grad.shape[-1] // scale_factor
grad = grad[:, :, :features_factor * scale_factor] .reshape(grad.shape[0], grad.shape[1], features_factor, scale_factor) .max(axis=3)
return grad
dependencies = [Dependency(activation=input, grad_fn=grad_upsampling_nearest_1d)]
else:
dependencies = None
return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
def _conv_1d_core(input: np.ndarray, kernel: np.ndarray) -> np.ndarray:
sub_shape = (input.shape[2] - kernel.shape[2] + 1,)
view_shape = input.shape[:2] + tuple(np.subtract(input.shape[2:], sub_shape) + 1) + sub_shape
strides = input.strides[:2] + input.strides[2:] + input.strides[2:]
sub_matrices = np.lib.stride_tricks.as_strided(input, view_shape, strides)
return np.einsum('oci, bcik->bok', kernel, sub_matrices)
def conv_1d(input: Tensor, kernel: Tensor, bias: Optional[Tensor] = None) -> Tensor:
assert input.data.ndim == 3, 'Input tensor must have three dimensions.'
assert kernel.data.ndim == 3, 'Kernel tensor must have three dimensions.'
assert input.shape[1] == kernel.shape[1], 'Kernel features and input features must match.'
output = _conv_1d_core(input.data, kernel.data)
requires_grad = input.requires_grad or kernel.requires_grad
dependencies: List[Dependency] = []
if input.requires_grad:
def grad_conv1d_input(grad: np.ndarray) -> np.ndarray:
grad = _conv_1d_core(np.pad(grad, ((0, 0), (0, 0), (kernel.shape[2] - 1, kernel.shape[2] - 1)), 'constant',
constant_values=(1)), kernel.data.transpose((1, 0, 2)))
return grad
dependencies.append(Dependency(activation=input, grad_fn=grad_conv1d_input))
if kernel.requires_grad:
def grad_conv1d_kernel(grad: np.ndarray) -> np.ndarray:
grad = _conv_1d_core(input.data.transpose((1, 0, 2)), grad.transpose((1, 0, 2))).transpose((1, 0, 2))
return grad
dependencies.append(Dependency(activation=kernel, grad_fn=grad_conv1d_kernel))
output_conv = Tensor(data=output, dependencies=dependencies, requires_grad=requires_grad)
if bias is None:
return output_conv
assert bias.data.ndim == 1, 'Bias tensor must have three dimensions.'
bias_batched = np.expand_dims(np.expand_dims(bias.data, axis=0), axis=-1)
output_bias_add = output_conv.data + bias_batched
requires_grad = output_conv.requires_grad or bias.requires_grad
dependencies: List[Dependency] = []
if output_conv.requires_grad:
def grad_conv_output(grad: np.ndarray) -> np.ndarray:
return grad
dependencies.append(Dependency(activation=output_conv, grad_fn=grad_conv_output))
if bias.requires_grad:
def grad_conv_bias(grad: np.ndarray) -> np.ndarray:
return grad
dependencies.append(Dependency(activation=output_conv, grad_fn=grad_conv_bias))
return Tensor(data=output_bias_add, dependencies=dependencies, requires_grad=requires_grad)
def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor:
assert input.data.ndim in [2, 3], 'Input tensor has the wrong number of dimensions. Only two or three dimensions are supported'
if input.data.ndim == 2:
output = np.expand_dims(input.data, axis=1)
else:
output = input.data
weight_batched = np.expand_dims(weight.data, 0)
output = weight_batched @ output.transpose((0, 2, 1))
output = output.transpose((0, 2, 1))
requires_grad = input.requires_grad or weight.requires_grad
dependencies: List[Dependency] = []
if input.requires_grad:
def grad_linear_input(grad: np.ndarray) -> np.ndarray:
return grad @ weight.data
dependencies.append(Dependency(activation=input, grad_fn=grad_linear_input))
if weight.requires_grad:
def grad_linear_weight(grad: np.ndarray) -> np.ndarray:
if input.data.ndim == 3:
return (grad.transpose((0, 2, 1)) @ input.data).sum(axis=0)
return grad.T @ input.data
dependencies.append(Dependency(activation=weight, grad_fn=grad_linear_weight))
if input.data.ndim == 2:
output = output[:, 0, :]
output_mm = Tensor(data=output, dependencies=dependencies, requires_grad=requires_grad)
if bias is None:
return output_mm
if output_mm.data.ndim == 2:
bias_batched = np.expand_dims(bias.data, axis=0)
else:
bias_batched = np.expand_dims(np.expand_dims(bias.data, axis=0), axis=0)
output_bias_add = output_mm.data + bias_batched
requires_grad = output_mm.requires_grad or bias.requires_grad
dependencies: List[Dependency] = []
if output_mm.requires_grad:
def grad_linear_output_mm(grad: np.ndarray) -> np.ndarray:
return grad
dependencies.append(Dependency(activation=output_mm, grad_fn=grad_linear_output_mm))
if bias.requires_grad:
def grad_linear_bias(grad: np.ndarray) -> np.ndarray:
return grad
dependencies.append(Dependency(activation=output_mm, grad_fn=grad_linear_bias))
return Tensor(data=output_bias_add, dependencies=dependencies, requires_grad=requires_grad)
def max_pool_1d(tensor: Tensor, kernel_size: int) -> Tensor:
assert tensor.data.ndim == 3, 'Input tensor must have three dimensions (batch size, channels, features).'
batch_size, channels, num_features = tensor.shape
features_factor = num_features // kernel_size
input_reshaped = tensor.data[:, :, :features_factor * kernel_size] .reshape(batch_size, channels, features_factor, kernel_size)
output = np.max(input_reshaped, axis=3)
indexes = (tensor.data == np.repeat(output, kernel_size, axis=2)).astype(float)
requires_grad = tensor.requires_grad
if requires_grad:
def grad_max_pool_1d(grad: np.ndarray) -> np.ndarray:
unpooled_grad = np.repeat(grad.data, kernel_size, axis=2)
grad = unpooled_grad * indexes
return grad
dependencies = [Dependency(activation=tensor, grad_fn=grad_max_pool_1d)]
else:
dependencies = None
return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
def avg_pool_1d(tensor: Tensor, kernel_size: int) -> Tensor:
assert tensor.data.ndim == 3, 'Input tensor must have three dimensions (batch size, channels, features).'
batch_size, channels, num_features = tensor.shape
features_factor = num_features // kernel_size
input_reshaped = tensor.data[:, :, :features_factor * kernel_size] .reshape(batch_size, channels, features_factor, kernel_size)
output = np.mean(input_reshaped, axis=3, keepdims=False)
requires_grad = tensor.requires_grad
if requires_grad:
def grad_max_pool_1d(grad: np.ndarray) -> np.ndarray:
unpooled_grad = np.repeat(grad.data, kernel_size, axis=2)
grad = (1 / kernel_size) * unpooled_grad
return grad
dependencies = [Dependency(activation=tensor, grad_fn=grad_max_pool_1d)]
else:
dependencies = None
return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
def dropout(tensor: Tensor, p: float = 0.2) -> Tensor:
assert 0.0 <= p <= 1.0, 'Parameter p must be in the range of [0, 1].'
mask = (np.random.randint(0, 1, size=tensor.shape) > p).astype(float)
output = tensor.data * mask
requires_grad = tensor.requires_grad
dependencies = [Dependency(tensor, lambda grad: grad * mask)] if requires_grad else None
return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
def dropout2d(tensor: Tensor, p: float = 0.2) -> Tensor:
assert 0.0 <= p <= 1.0, 'Parameter p must be in the range of [0, 1].'
mask = (np.random.randint(0, 2, size=tensor.shape[0]) > p).astype(float).reshape(1, -1, 1, 1)
output = tensor.data * mask
requires_grad = tensor.requires_grad
dependencies = [Dependency(tensor, lambda grad: grad * mask)] if requires_grad else None
return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
def softmax(tensor: Tensor, axis: int = 1) -> Tensor:
output_exp = autograd.exp(tensor)
output = output_exp / (autograd.sum(output_exp, axis=axis, keepdims=True))
return output | MIT License |
abhisharma404/vault | src/lib/utilities/mac_changer/mac_changer.py | MACChanger.startProcess | python | def startProcess(self):
self.changeMAC(self.newMAC)
checkMAC = self.interfaceMAC()
if checkMAC == self.newMAC:
colors.success('MAC address succesfully changed to : {}'
.format(self.newMAC))
choice = str(input('>> Do you want to restore to default (R/r)? ')
.strip())
if choice == 'R' or choice == 'r':
self.resetMAC()
else:
colors.error('Failed to change MAC address, trying again...')
self.startProcess() | Change the MAC address of the interface | https://github.com/abhisharma404/vault/blob/0303cf425f028ce38cfaf40640d625861b7c805a/src/lib/utilities/mac_changer/mac_changer.py#L169-L187 | import subprocess
import re
import sys
import time
import random
import colors
import os
class MACChanger(object):
def __init__(self, mac_addr=None, interface=None):
self.is_root()
if mac_addr is None:
self.newMAC = self.generateMAC()
elif self.validateMAC(mac_addr):
self.newMAC = mac_addr
else:
colors.error('Please provide a valid MAC address...')
sys.exit(1)
colors.info('MAC address will be changed to : {}'.format(self.newMAC))
if interface is None:
self.interface = self.getInterface()
else:
self.interface = interface
self.origMAC = self.interfaceMAC()
colors.info('Original MAC address is : {}'.format(self.origMAC))
if self.interface is None or self.newMAC is None or self.origMAC is None:
colors.error('Error! could not change the MAC')
sys.exit(1)
@staticmethod
def validateMAC(mac):
if re.match("[0-9a-f]{2}([-:]?)[0-9a-f]{2}(\\1[0-9a-f]{2}){4}$",
mac.lower()):
return True
@staticmethod
def is_root():
if os.geteuid() != 0:
colors.error('Please run as root')
sys.exit(1)
else:
colors.success('Running as root')
@staticmethod
def generateMAC():
colors.info('No desired MAC found, generating random MAC...')
return "52:54:00:%02x:%02x:%02x" % (
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255),
)
@staticmethod
def getInterface():
colors.info('Collecting all the interfaces')
p = subprocess.Popen(['ifconfig'], shell=False,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output, error = p.communicate()
if error:
print(error.decode('utf-8'))
sys.exit(1)
output = output.decode('utf-8')
interfaces = re.findall('(.*): ', output)
total_index = 0
print('*' * 25)
print('Index'.ljust(8, ' '), '|', ' Interface '.ljust(12, ' '), '|')
print('*' * 25)
for index, interface in enumerate(interfaces):
print(index, ' '.ljust(5), ' | ', interface.ljust(11, ' '), '|')
total_index = total_index + 1
print('-' * 25)
intf = -1
while intf > total_index or intf < 0:
intf = int(input('\n>> Enter the index of the interface : ')
.strip())
colors.info('Selected interface is : {}'.format(interfaces[intf]))
return interfaces[intf]
def interfaceMAC(self):
result = subprocess.Popen(['ifconfig', self.interface],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output, error = result.communicate()
if error:
print(error.decode('utf-8'))
sys.exit(1)
output = output.decode('utf-8')
mac_addr = re.findall(r"\w\w:\w\w:\w\w:\w\w:\w\w:\w\w", output)
return mac_addr[0]
def changeMAC(self, mac):
colors.info('Changing MAC address...')
time.sleep(2)
subprocess.call(['ifconfig', self.interface, 'down'])
subprocess.call(['ifconfig', self.interface,
'hw', 'ether', mac])
subprocess.call(['ifconfig', self.interface, 'up'])
def resetMAC(self):
self.changeMAC(self.origMAC)
checkMAC = self.interfaceMAC()
if checkMAC == self.origMAC:
colors.success('MAC address restored to default : {}'
.format(self.origMAC))
colors.info('Exiting...')
sys.exit(1)
else:
colors.error('Failed to restore MAC address, trying again...')
self.resetMAC() | MIT License |
bbn-q/auspex | src/auspex/instruments/prologix.py | PrologixSocketResource.connect | python | def connect(self, ipaddr=None, gpib=None):
if ipaddr is not None:
self.ipaddr = ipaddr
if gpib is not None:
self.gpib = gpib
try:
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM,
socket.IPPROTO_TCP)
self.sock.settimeout(self._timeout)
self.sock.connect((self.ipaddr, 1234))
except socket.error as err:
logger.error("Cannot open socket to Prologix at {0}: {1}".format(self.ipaddr,
err.msg))
raise PrologixError(self.ipaddr) from err
self.sock.send(b"++ver\r\n")
whoami = self.sock.recv(128).decode()
if "Prologix" not in whoami:
logger.error("The device at {0} does not appear to be a Prologix; got {1}.".format(self.ipaddr, whoami))
raise PrologixError(whoami)
self.sock.send(b"++mode 1\r\n")
self.sock.send(b"++auto 1\r\n")
self._addr()
self.sock.send(b"++clr\r\n")
idn = self.query(self.idn_string)
if idn == '':
logger.error(("Did not receive response to GPIB command {0} " +
"from GPIB device {1} on Prologix at {2}.").format(self.idn_string,
self.gpib, self.ipaddr))
raise PrologixError(idn)
else:
logger.debug(("Succesfully connected to device {0} at GPIB port {1} on" +
" Prologix controller at {2}.").format(idn, self.gpib, self.ipaddr)) | Connect to a GPIB device through a Prologix GPIB-ETHERNET controller.
box.
Args:
ipaddr: The IP address of the Prologix GPIB-ETHERNET.
gpib: The GPIB address of the instrument to be controlled.
Returns:
None. | https://github.com/bbn-q/auspex/blob/e9763e1907546ad49210415a6b8c2f6d9999f31a/src/auspex/instruments/prologix.py#L58-L98 | __all__ = ['PrologixSocketResource']
import os
import numpy as np
import socket
import functools
from auspex.log import logger
from pyvisa.util import _converters, from_ascii_block, to_ascii_block, to_ieee_block, from_binary_block
class PrologixError(Exception):
class PrologixSocketResource(object):
def __init__(self, ipaddr=None, gpib=None):
super(PrologixSocketResource, self).__init__()
if ipaddr is not None:
self.ipaddr = ipaddr
if gpib is not None:
self.gpib = gpib
self.sock = None
self._timeout = 5
self.read_termination = "\r\n"
self.write_termination = "\r\n"
self.idn_string = "*IDN?"
self.bufsize = 4096
@property
def timeout(self):
return self._timeout
@timeout.setter
def timeout(self, value):
self._timeout = timeout
if self.sock is not None:
self.sock.settimeout(self._timeout) | Apache License 2.0 |
pytorch/fairseq | examples/speech_synthesis/utils.py | gross_pitch_error | python | def gross_pitch_error(true_t, true_f, est_t, est_f):
correct_frames = _true_voiced_frames(true_t, true_f, est_t, est_f)
gross_pitch_error_frames = _gross_pitch_error_frames(
true_t, true_f, est_t, est_f
)
return np.sum(gross_pitch_error_frames) / np.sum(correct_frames) | The relative frequency in percent of pitch estimates that are
outside a threshold around the true pitch. Only frames that are
considered pitched by both the ground truth and the estimator (if
applicable) are considered. | https://github.com/pytorch/fairseq/blob/fcca32258c8e8bcc9f9890bf4714fa2f96b6b3e1/examples/speech_synthesis/utils.py#L55-L66 | import numpy as np
import torch
from scipy.interpolate import interp1d
import torchaudio
from fairseq.tasks.text_to_speech import (
batch_compute_distortion, compute_rms_dist
)
def batch_mel_spectral_distortion(
y1, y2, sr, normalize_type="path", mel_fn=None
):
if mel_fn is None or mel_fn.sample_rate != sr:
mel_fn = torchaudio.transforms.MelSpectrogram(
sr, n_fft=int(0.05 * sr), win_length=int(0.05 * sr),
hop_length=int(0.0125 * sr), f_min=20, n_mels=80,
window_fn=torch.hann_window
).to(y1[0].device)
offset = 1e-6
return batch_compute_distortion(
y1, y2, sr, lambda y: torch.log(mel_fn(y) + offset).transpose(-1, -2),
compute_rms_dist, normalize_type
)
def _same_t_in_true_and_est(func):
def new_func(true_t, true_f, est_t, est_f):
assert type(true_t) is np.ndarray
assert type(true_f) is np.ndarray
assert type(est_t) is np.ndarray
assert type(est_f) is np.ndarray
interpolated_f = interp1d(
est_t, est_f, bounds_error=False, kind='nearest', fill_value=0
)(true_t)
return func(true_t, true_f, true_t, interpolated_f)
return new_func
@_same_t_in_true_and_est | MIT License |
cc1-cloud/cc1 | src/cm/views/user/system_image.py | get_by_id | python | def get_by_id(caller_id, system_image_id, groups):
return SystemImage.get(caller_id, system_image_id, groups).dict | @cmview_user
@param_post{groups,list(int)} list of Groups ids, required for @val{group} access
@param_post{system_image_id,int} id of the requested Image
@response{dict} SystemImage.dict property of the requested SystemImage | https://github.com/cc1-cloud/cc1/blob/8113673fa13b6fe195cea99dedab9616aeca3ae8/src/cm/views/user/system_image.py#L121-L129 | import os
import urllib
from cm.models.iso_image import IsoImage
from cm.models.storage_image import StorageImage
from cm.models.system_image import SystemImage
from cm.models.system_image_group import SystemImageGroup
from cm.models.user import User
from cm.utils import log
from cm.utils.decorators import user_log
from cm.utils.exception import CMException
from cm.utils.threads.image import DownloadImage
from common.hardware import disk_filesystems, disk_controllers, video_devices, network_devices
from common.states import image_access, image_states, image_types
import subprocess
@user_log(log=True)
def download(caller_id, description, name, path, disk_controller, network_device, platform, video_device):
user = User.get(caller_id)
if not any([path.startswith('http://'), path.startswith('https://'), path.startswith('ftp://')]):
path = 'http://' + path.strip()
try:
connection = urllib.urlopen(path)
size = int(connection.info()["Content-Length"])
except IOError:
log.exception(caller_id, 'Cannot find image')
raise CMException('image_not_found')
except KeyError:
log.exception(caller_id, 'Cannot calculate size')
raise CMException('image_calculate_size')
user = User.get(caller_id)
user.check_storage(size / (1024 * 1024))
image = SystemImage.create(name=name, description=description, user=user, platform=platform,
disk_controller=disk_controller, network_device=network_device, video_device=video_device)
try:
image.save()
except Exception, e:
log.error(caller_id, "Unable to save image to DB: %s" % str(e))
raise CMException('image_create')
DownloadImage(image, path, size).start()
@user_log(log=True)
def get_list(caller_id, access, group_id=None):
images = SystemImage.objects.exclude(state=image_states['locked']).filter(access=access)
if access == image_access['private']:
images = images.filter(user__id__exact=caller_id)
if access == image_access['group']:
images = images.filter(systemimagegroup__group_id__in=group_id)
return [img.dict for img in images]
@user_log(log=True) | Apache License 2.0 |
mscroggs/symfem | symfem/functionals.py | InnerProductIntegralMoment.dot | python | def dot(self, function):
tdim = len(self.inner_with_left)
return vdot(self.inner_with_left,
tuple(vdot(function[tdim * i: tdim * (i + 1)], self.inner_with_right)
for i in range(0, tdim))) * self.f * self.reference.jacobian() | Take the inner product of a function with the moment direction. | https://github.com/mscroggs/symfem/blob/a08155837e49abe9123d2d8edf60fd36f7f1b8ee/symfem/functionals.py#L506-L511 | import sympy
import numpy
from .symbolic import subs, x, t, PiecewiseFunction, sym_sum, to_sympy, to_float
from .vectors import vdot
from .calculus import derivative, jacobian_component, grad, diff, div
from . import mappings
class BaseFunctional:
def __init__(self, entity=(None, None), mapping="identity"):
self.entity = entity
self.mapping = mapping
def eval(self, fun, symbolic=True):
raise NotImplementedError
def dof_point(self):
return tuple(None for i in range(self.reference.gdim))
def dof_direction(self):
return None
def entity_dim(self):
return self.entity[0]
def perform_mapping(self, fs, map, inverse_map, tdim):
return [getattr(mappings, self.mapping)(f, map, inverse_map, tdim) for f in fs]
get_points_and_weights = None
name = None
class PointEvaluation(BaseFunctional):
def __init__(self, point, entity=(None, None), mapping="identity"):
super().__init__(entity, mapping)
self.point = point
def eval(self, function, symbolic=True):
value = subs(function, x, self.point)
if symbolic:
return value
else:
return to_float(value)
def dof_point(self):
return self.point
def get_points_and_weights(self, max_order=None):
return numpy.array([self.point]), numpy.array([1])
name = "Point evaluation"
class WeightedPointEvaluation(BaseFunctional):
def __init__(self, point, weight, entity=(None, None), mapping="identity"):
super().__init__(entity, mapping)
self.point = point
self.weight = weight
def eval(self, function, symbolic=True):
value = subs(function, x, self.point) * self.weight
if symbolic:
return value
else:
return to_float(value)
def dof_point(self):
return self.point
def get_points_and_weights(self, max_order=None):
return numpy.array([self.point]), numpy.array([self.weight])
name = "Weighted point evaluation"
class DerivativePointEvaluation(BaseFunctional):
def __init__(self, point, derivative, entity=(None, None), mapping=None):
super().__init__(entity, mapping)
self.point = point
self.derivative = derivative
def eval(self, function, symbolic=True):
for i, j in zip(x, self.derivative):
for k in range(j):
function = diff(function, i)
value = subs(function, x, self.point)
if symbolic:
return value
else:
return to_float(value)
def dof_point(self):
return self.point
def perform_mapping(self, fs, map, inverse_map, tdim):
if self.mapping is not None:
return super().perform_mapping(fs, map, inverse_map, tdim)
out = []
J = sympy.Matrix([[diff(map[i], x[j]) for j in range(tdim)] for i in range(tdim)])
for dofs in zip(*[fs[i::tdim] for i in range(tdim)]):
for i in range(tdim):
out.append(sym_sum(a * b for a, b in zip(dofs, J.row(i))))
return [subs(b, x, inverse_map) for b in out]
name = "Point derivative evaluation"
class PointDirectionalDerivativeEvaluation(BaseFunctional):
def __init__(self, point, direction, entity=(None, None), mapping="identity"):
super().__init__(entity, mapping)
self.point = point
self.dir = direction
def eval(self, function, symbolic=True):
if isinstance(function, PiecewiseFunction):
function = function.get_piece(self.point)
value = subs(derivative(function, self.dir), x, self.point)
if symbolic:
return value
else:
return to_float(value)
def dof_point(self):
return self.point
def dof_direction(self):
return self.dir
name = "Point evaluation of directional derivative"
class PointNormalDerivativeEvaluation(PointDirectionalDerivativeEvaluation):
def __init__(self, point, edge, entity=(None, None), mapping="identity"):
super().__init__(point, edge.normal(), entity=entity, mapping=mapping)
self.reference = edge
name = "Point evaluation of normal derivative"
class PointComponentSecondDerivativeEvaluation(BaseFunctional):
def __init__(self, point, component, entity=(None, None), mapping="identity"):
super().__init__(entity, mapping)
self.point = point
self.component = component
def eval(self, function, symbolic=True):
value = subs(jacobian_component(function, self.component), x, self.point)
if symbolic:
return value
else:
return to_float(value)
def dof_point(self):
return self.point
name = "Point evaluation of Jacobian component"
class PointInnerProduct(BaseFunctional):
def __init__(self, point, lvec, rvec, entity=(None, None), mapping="identity"):
super().__init__(entity, mapping)
self.point = point
self.lvec = lvec
self.rvec = rvec
def eval(self, function, symbolic=True):
v = subs(function, x, self.point)
tdim = len(self.lvec)
assert len(function) == tdim ** 2
value = vdot(self.lvec,
tuple(vdot(v[tdim * i: tdim * (i + 1)], self.rvec)
for i in range(0, tdim)))
if symbolic:
return value
else:
return to_float(value)
def dof_point(self):
return self.point
def dof_direction(self):
if self.rvec != self.lvec:
return None
return self.lvec
name = "Point inner product"
class DotPointEvaluation(BaseFunctional):
def __init__(self, point, vector, entity=(None, None), mapping="identity"):
super().__init__(entity, mapping)
self.point = point
self.vector = vector
def eval(self, function, symbolic=True):
value = vdot(subs(function, x, self.point), subs(self.vector, x, self.point))
if symbolic:
return value
else:
return to_float(value)
def dof_point(self):
return self.point
def dof_direction(self):
return self.vector
name = "Dot point evaluation"
class IntegralAgainst(BaseFunctional):
def __init__(self, reference, f, entity=(None, None), mapping="identity"):
super().__init__(entity, mapping)
self.reference = reference
self.f = subs(f, x, t)
if isinstance(self.f, tuple):
if len(self.f) == self.reference.tdim:
self.f = tuple(
sum(self.reference.axes[j][i] * c / to_sympy(self.reference.jacobian())
for j, c in enumerate(self.f))
for i, o in enumerate(self.reference.origin)
)
else:
assert len(self.f) == self.reference.tdim ** 2
assert self.reference.vertices == self.reference.reference_vertices
def dof_point(self):
return tuple(sympy.Rational(sum(i), len(i)) for i in zip(*self.reference.vertices))
def eval(self, function, symbolic=True):
point = [i for i in self.reference.origin]
for i, a in enumerate(zip(*self.reference.axes)):
for j, k in zip(a, t):
point[i] += j * k
integrand = self.dot(subs(function, x, point))
value = self.reference.integral(integrand)
if symbolic:
return value
else:
return to_float(value)
def dot(self, function):
return vdot(function, self.f)
name = "Integral against"
class IntegralOfDirectionalMultiderivative(BaseFunctional):
def __init__(self, reference, directions, orders, scale=1, entity=(None, None),
mapping="identity"):
super().__init__(entity, mapping)
self.reference = reference
self.directions = directions
self.orders = orders
self.scale = scale
def dof_point(self):
return tuple(sympy.Rational(sum(i), len(i)) for i in zip(*self.reference.vertices))
def eval(self, function, symbolic=True):
for dir, o in zip(self.directions, self.orders):
for i in range(o):
function = sum(d * diff(function, x[j]) for j, d in enumerate(dir))
point = [i for i in self.reference.origin]
for i, a in enumerate(zip(*self.reference.axes)):
for j, k in zip(a, t):
point[i] += j * k
integrand = self.scale * subs(function, x, point)
value = self.reference.integral(integrand)
if symbolic:
return value
else:
return to_float(value)
def perform_mapping(self, fs, map, inverse_map, tdim):
if sum(self.orders) > 0:
raise NotImplementedError("Mapping high order derivatives not implemented")
return super().perform_mapping(fs, map, inverse_map, tdim)
name = "Integral of a directional derivative"
class IntegralMoment(BaseFunctional):
def __init__(self, reference, f, dof, entity=(None, None), mapping="identity"):
super().__init__(entity, mapping)
self.reference = reference
self.dof = dof
self.f = subs(f, x, t)
if isinstance(self.f, tuple):
if len(self.f) == self.reference.tdim:
self.f = tuple(
sum(self.reference.axes[j][i] * c / to_sympy(self.reference.jacobian())
for j, c in enumerate(self.f))
for i, o in enumerate(self.reference.origin)
)
else:
assert len(self.f) == self.reference.tdim ** 2
assert self.reference.vertices == self.reference.reference_vertices
def eval(self, function, symbolic=True):
point = [i for i in self.reference.origin]
for i, a in enumerate(zip(*self.reference.axes)):
for j, k in zip(a, t):
point[i] += j * k
integrand = self.dot(subs(function, x, point))
if isinstance(integrand, PiecewiseFunction):
integrand = integrand.get_piece(self.reference.midpoint())
value = self.reference.integral(to_sympy(integrand))
if symbolic:
return value
else:
return to_float(value)
def dot(self, function):
return vdot(function, self.f)
def dof_point(self):
p = self.dof.dof_point()
return tuple(
o + sum(self.reference.axes[j][i] * c for j, c in enumerate(p))
for i, o in enumerate(self.reference.origin)
)
def dof_direction(self):
p = self.dof.dof_direction()
if p is None:
return None
return tuple(
sum(self.reference.axes[j][i] * c for j, c in enumerate(p))
for i in range(self.reference.gdim)
)
name = "Integral moment"
class VecIntegralMoment(IntegralMoment):
def __init__(self, reference, f, dot_with, dof, entity=(None, None), mapping="identity"):
super().__init__(reference, f, dof, entity=entity, mapping=mapping)
self.dot_with = dot_with
def dot(self, function):
return vdot(function, self.dot_with) * self.f
def dof_direction(self):
return self.dot_with
name = "Vector integral moment"
class DerivativeIntegralMoment(IntegralMoment):
def __init__(self, reference, f, dot_with, dof, entity=(None, None), mapping="identity"):
super().__init__(reference, f, dof, entity=entity, mapping=mapping)
self.dot_with = dot_with
def dot(self, function):
return vdot(function, self.dot_with) * self.f
def dof_direction(self):
return self.dot_with
def eval(self, function, symbolic=True):
point = [i for i in self.reference.origin]
for i, a in enumerate(zip(*self.reference.axes)):
for j, k in zip(a, t):
point[i] += j * k
integrand = self.dot(subs(grad(function, self.reference.gdim), x, point))
value = self.reference.integral(integrand)
if symbolic:
return value
else:
return to_float(value)
name = "Derivative integral moment"
class DivergenceIntegralMoment(IntegralMoment):
def __init__(self, reference, f, dof, entity=(None, None), mapping="identity"):
super().__init__(reference, f, dof, entity=entity, mapping=mapping)
def eval(self, function, symbolic=True):
point = [i for i in self.reference.origin]
for i, a in enumerate(zip(*self.reference.axes)):
for j, k in zip(a, t):
point[i] += j * k
integrand = self.dot(subs(div(function), x, point))
value = self.reference.integral(integrand)
if symbolic:
return value
else:
return to_float(value)
name = "Integral moment of divergence"
class TangentIntegralMoment(VecIntegralMoment):
def __init__(self, reference, f, dof, entity=(None, None), mapping="covariant"):
super().__init__(reference, f, reference.tangent(), dof, entity=entity, mapping=mapping)
name = "Tangential integral moment"
class NormalIntegralMoment(VecIntegralMoment):
def __init__(self, reference, f, dof, entity=(None, None), mapping="contravariant"):
super().__init__(reference, f, reference.normal(), dof, entity=entity, mapping=mapping)
name = "Normal integral moment"
class NormalDerivativeIntegralMoment(DerivativeIntegralMoment):
def __init__(self, reference, f, dof, entity=(None, None), mapping="identity"):
super().__init__(reference, f, reference.normal(), dof, entity=entity, mapping=mapping)
name = "Normal derivative integral moment"
class InnerProductIntegralMoment(IntegralMoment):
def __init__(self, reference, f, inner_with_left, inner_with_right, dof,
entity=(None, None), mapping="identity"):
super().__init__(reference, f, dof, entity=entity, mapping=mapping)
self.inner_with_left = inner_with_left
self.inner_with_right = inner_with_right | MIT License |
openforcefield/openff-interchange | openff/interchange/components/interchange.py | Interchange.remove_handler | python | def remove_handler(self, handler_name: str):
self._inner_data.handlers.pop(handler_name) | Remove a PotentialHandler in this Interchange object. | https://github.com/openforcefield/openff-interchange/blob/a080e348b62c36c3c6a6b04e8afde64556f3186e/openff/interchange/components/interchange.py#L92-L94 | import warnings
from copy import deepcopy
from pathlib import Path
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
import mdtraj as md
import numpy as np
from openff.toolkit.topology.topology import Topology
from openff.toolkit.typing.engines.smirnoff import ForceField
from openff.utilities.utilities import has_package, requires_package
from pydantic import Field, validator
from openff.interchange.components.mdtraj import _OFFBioTop
from openff.interchange.components.potentials import PotentialHandler
from openff.interchange.components.smirnoff import (
SMIRNOFF_POTENTIAL_HANDLERS,
SMIRNOFFBondHandler,
SMIRNOFFConstraintHandler,
)
from openff.interchange.exceptions import (
InternalInconsistencyError,
InvalidBoxError,
InvalidTopologyError,
MissingParameterHandlerError,
MissingPositionsError,
SMIRNOFFHandlersNotImplementedError,
UnsupportedExportError,
)
from openff.interchange.models import DefaultModel
from openff.interchange.types import ArrayQuantity
if TYPE_CHECKING:
if has_package("foyer"):
from foyer.forcefield import Forcefield as FoyerForcefield
_SUPPORTED_SMIRNOFF_HANDLERS = {
"Constraints",
"Bonds",
"Angles",
"ProperTorsions",
"ImproperTorsions",
"vdW",
"Electrostatics",
"LibraryCharges",
"ChargeIncrementModel",
"VirtualSites",
}
class Interchange(DefaultModel):
class InnerSystem(DefaultModel):
handlers: Dict[str, PotentialHandler] = dict()
topology: Optional[_OFFBioTop] = Field(None)
box: ArrayQuantity["nanometer"] = Field(None)
positions: ArrayQuantity["nanometer"] = Field(None)
@validator("box")
def validate_box(cls, val):
if val is None:
return val
if val.shape == (3, 3):
return val
elif val.shape == (3,):
val = val * np.eye(3)
return val
else:
raise InvalidBoxError
def __init__(self):
self._inner_data = self.InnerSystem()
@property
def handlers(self):
return self._inner_data.handlers
def add_handler(self, handler_name: str, handler):
self._inner_data.handlers.update({handler_name: handler}) | MIT License |
weblyzard/weblyzard_api | src/python/weblyzard_api/client/domain_specificity.py | DomainSpecificity.parse_documents | python | def parse_documents(self, matview_name, documents, is_case_sensitive=False,
batch_size=None):
found_tags = {}
for document_batch in self.get_document_batch(documents=documents,
batch_size=batch_size):
result = self.request('parse_documents/%s/%s' %
(matview_name, is_case_sensitive),
document_batch)
if result:
found_tags.update(result[matview_name])
return found_tags | :param matview_name: a comma separated list of matview_names to check \
for domain specificity.
:param documents: a list of dictionaries containing the document
:param is_case_sensitive: case sensitive or not
:returns: dict (profilename: (content_id, dom_spec)) | https://github.com/weblyzard/weblyzard_api/blob/9dfc8d617e1fb0f78548a40162b0d3c2cff6d12b/src/python/weblyzard_api/client/domain_specificity.py#L64-L82 | from __future__ import unicode_literals
from eWRT.ws.rest import MultiRESTClient
from weblyzard_api.client import (
WEBLYZARD_API_URL, WEBLYZARD_API_USER, WEBLYZARD_API_PASS)
class DomainSpecificity(MultiRESTClient):
URL_PATH = 'rest/domain_specificity'
def __init__(self, url=WEBLYZARD_API_URL, usr=WEBLYZARD_API_USER,
pwd=WEBLYZARD_API_PASS, default_timeout=None):
MultiRESTClient.__init__(self, service_urls=url, user=usr, password=pwd,
default_timeout=default_timeout)
def add_profile(self, profile_name, profile_mapping):
return self.request('add_or_refresh_profile/%s' % profile_name,
profile_mapping, execute_all_services=True)
def get_domain_specificity(self, profile_name, documents,
is_case_sensitive=True):
return self.request('parse_documents/%s/%s' % (profile_name,
is_case_sensitive),
documents) | Apache License 2.0 |
nteract/scrapbook | scrapbook/models.py | Notebook.filename | python | def filename(self):
return os.path.basename(self.path) | str: filename found a the specified path | https://github.com/nteract/scrapbook/blob/3c74e63f7df99cca3148182454797792aede4b9b/scrapbook/models.py#L93-L95 | from __future__ import unicode_literals
import os
import copy
import nbformat
import collections
import pandas as pd
from six import string_types
from collections import OrderedDict
from papermill.iorw import papermill_io
from .scraps import Scrap, Scraps, payload_to_scrap, scrap_to_payload
from .schemas import GLUE_PAYLOAD_PREFIX, RECORD_PAYLOAD_PREFIX
from .encoders import registry as encoder_registry
from .exceptions import ScrapbookException
from .utils import kernel_required, deprecated
try:
from urllib.parse import urlparse
except ImportError:
from urlparse import urlparse
def merge_dicts(dicts):
iterdicts = iter(dicts)
outcome = next(iterdicts).copy()
for d in iterdicts:
outcome.update(d)
return outcome
class Notebook(object):
def __init__(self, node_or_path):
if isinstance(node_or_path, string_types):
path = urlparse(node_or_path).path
if not os.path.splitext(path)[-1].endswith('ipynb'):
raise Warning(
"Requires an '.ipynb' file extension. Provided path: '{}'".format(node_or_path)
)
self.path = node_or_path
self.node = nbformat.reads(papermill_io.read(node_or_path), as_version=4)
else:
self.path = ""
self.node = node_or_path
self._scraps = None
self._outputs = None
def copy(self):
cp = Notebook(self.node.copy())
cp.path = self.path
return cp
@property
def metadata(self):
return self.node.metadata
@property
def nbformat_minor(self):
return self.node.nbformat_minor
@property
def nbformat(self):
return self.node.nbformat
@property
def cells(self):
return self.node.cells
@property | BSD 3-Clause New or Revised License |
elastic/eland | eland/field_mappings.py | FieldMappings.field_name_pd_dtype | python | def field_name_pd_dtype(self, es_field_name: str) -> str:
if es_field_name not in self._mappings_capabilities.es_field_name:
raise KeyError(f"es_field_name {es_field_name} does not exist")
pd_dtype = self._mappings_capabilities.loc[
self._mappings_capabilities.es_field_name == es_field_name
].pd_dtype.squeeze()
return pd_dtype | Parameters
----------
es_field_name: str
Returns
-------
pd_dtype: str
The pandas data type we map to
Raises
------
KeyError
If es_field_name does not exist in mapping | https://github.com/elastic/eland/blob/704c8982bcd5f89787c47c267b3d1572bb1cecdb/eland/field_mappings.py#L653-L675 | import warnings
from typing import (
TYPE_CHECKING,
Any,
Dict,
List,
Mapping,
NamedTuple,
Optional,
Set,
TextIO,
Tuple,
Union,
)
import numpy as np
import pandas as pd
from pandas.core.dtypes.common import (
is_bool_dtype,
is_datetime_or_timedelta_dtype,
is_float_dtype,
is_integer_dtype,
is_string_dtype,
)
from pandas.core.dtypes.inference import is_list_like
if TYPE_CHECKING:
from elasticsearch import Elasticsearch
from numpy.typing import DTypeLike
ES_FLOAT_TYPES: Set[str] = {"double", "float", "half_float", "scaled_float"}
ES_INTEGER_TYPES: Set[str] = {"long", "integer", "short", "byte"}
ES_COMPATIBLE_TYPES: Dict[str, Set[str]] = {
"double": ES_FLOAT_TYPES,
"scaled_float": ES_FLOAT_TYPES,
"float": ES_FLOAT_TYPES,
"half_float": ES_FLOAT_TYPES,
"long": ES_INTEGER_TYPES,
"integer": ES_INTEGER_TYPES,
"short": ES_INTEGER_TYPES,
"byte": ES_INTEGER_TYPES,
"date": {"date_nanos"},
"date_nanos": {"date"},
"keyword": {"text"},
}
class Field(NamedTuple):
column: str
es_field_name: str
is_source: bool
es_dtype: str
es_date_format: Optional[str]
pd_dtype: type
is_searchable: bool
is_aggregatable: bool
is_scripted: bool
aggregatable_es_field_name: str
@property
def is_numeric(self) -> bool:
return is_integer_dtype(self.pd_dtype) or is_float_dtype(self.pd_dtype)
@property
def is_timestamp(self) -> bool:
return is_datetime_or_timedelta_dtype(self.pd_dtype)
@property
def is_bool(self) -> bool:
return is_bool_dtype(self.pd_dtype)
@property
def np_dtype(self):
return np.dtype(self.pd_dtype)
def is_es_agg_compatible(self, es_agg) -> bool:
if isinstance(es_agg, tuple):
if es_agg[0] == "extended_stats":
es_agg = es_agg[1]
elif es_agg[0] == "percentiles":
es_agg = "percentiles"
if es_agg == "median_absolute_deviation" and self.is_bool:
return False
if (
es_agg in {"cardinality", "value_count", "mode"}
or self.is_numeric
or self.is_bool
):
return True
if es_agg in {"min", "max", "avg", "percentiles"} and self.is_timestamp:
return True
return False
@property
def nan_value(self) -> Any:
if self.is_timestamp:
return pd.NaT
return np.float64(np.NaN)
class FieldMappings:
ES_DTYPE_TO_PD_DTYPE: Dict[str, str] = {
"text": "object",
"keyword": "object",
"long": "int64",
"integer": "int64",
"short": "int64",
"byte": "int64",
"binary": "int64",
"double": "float64",
"float": "float64",
"half_float": "float64",
"scaled_float": "float64",
"date": "datetime64[ns]",
"date_nanos": "datetime64[ns]",
"boolean": "bool",
}
column_labels: List[str] = [
"es_field_name",
"is_source",
"es_dtype",
"es_date_format",
"pd_dtype",
"is_searchable",
"is_aggregatable",
"is_scripted",
"aggregatable_es_field_name",
]
def __init__(
self,
client: "Elasticsearch",
index_pattern: str,
display_names: Optional[List[str]] = None,
):
if (client is None) or (index_pattern is None):
raise ValueError(
f"Can not initialise mapping without client "
f"or index_pattern {client} {index_pattern}",
)
get_mapping = client.indices.get_mapping(index=index_pattern)
if not get_mapping:
raise ValueError(
f"Can not get mapping for {index_pattern} "
f"check indexes exist and client has permission to get mapping."
)
all_fields = FieldMappings._extract_fields_from_mapping(get_mapping)
all_fields_caps = client.field_caps(index=index_pattern, fields="*")
source_fields = FieldMappings._extract_fields_from_mapping(
get_mapping, source_only=True
)
self._mappings_capabilities = FieldMappings._create_capability_matrix(
all_fields, source_fields, all_fields_caps
)
if display_names is not None:
self.display_names = display_names
@staticmethod
def _extract_fields_from_mapping(
mappings: Dict[str, Any], source_only: bool = False
) -> Dict[str, str]:
fields = {}
def flatten(x, name=""):
if isinstance(x, dict):
for a in x:
if a == "type" and isinstance(
x[a], str
):
field_name = name[:-1]
field_type = x[a]
date_format = None
if field_type == "date" and "format" in x:
date_format = x["format"]
if field_name in fields and fields[field_name] != (
field_type,
date_format,
):
warnings.warn(
f"Field {field_name} has conflicting types "
f"{fields[field_name]} != {field_type}",
UserWarning,
)
else:
fields[field_name] = (field_type, date_format)
elif a == "properties" or (not source_only and a == "fields"):
flatten(x[a], name)
elif not (
source_only and a == "fields"
):
flatten(x[a], name + a + ".")
for index in mappings:
if "properties" in mappings[index]["mappings"]:
properties = mappings[index]["mappings"]["properties"]
else:
es_types = list(mappings[index]["mappings"].keys())
if len(es_types) != 1:
raise NotImplementedError(
f"eland only supports 0 or 1 Elasticsearch types. es_types={es_types}"
)
properties = mappings[index]["mappings"][es_types[0]]["properties"]
flatten(properties)
return fields
@staticmethod
def _create_capability_matrix(all_fields, source_fields, all_fields_caps):
all_fields_caps_fields = all_fields_caps["fields"]
capability_matrix = {}
for field, field_caps in all_fields_caps_fields.items():
if field in all_fields:
for kk, vv in field_caps.items():
_source = field in source_fields
es_field_name = field
es_dtype = vv["type"]
es_date_format = all_fields[field][1]
pd_dtype = FieldMappings._es_dtype_to_pd_dtype(vv["type"])
is_searchable = vv["searchable"]
is_aggregatable = vv["aggregatable"]
scripted = False
aggregatable_es_field_name = None
caps = [
es_field_name,
_source,
es_dtype,
es_date_format,
pd_dtype,
is_searchable,
is_aggregatable,
scripted,
aggregatable_es_field_name,
]
capability_matrix[field] = caps
if "non_aggregatable_indices" in vv:
warnings.warn(
f"Field {field} has conflicting aggregatable fields across indexes "
f"{str(vv['non_aggregatable_indices'])}",
UserWarning,
)
if "non_searchable_indices" in vv:
warnings.warn(
f"Field {field} has conflicting searchable fields across indexes "
f"{str(vv['non_searchable_indices'])}",
UserWarning,
)
capability_matrix_df = pd.DataFrame.from_dict(
capability_matrix, orient="index", columns=FieldMappings.column_labels
)
def find_aggregatable(row, df):
row_as_dict = row.to_dict()
if not row_as_dict["is_aggregatable"]:
es_field_name_keyword = row.es_field_name + ".keyword"
try:
series = df.loc[df.es_field_name == es_field_name_keyword]
if not series.empty and series.is_aggregatable.squeeze():
row_as_dict[
"aggregatable_es_field_name"
] = es_field_name_keyword
else:
row_as_dict["aggregatable_es_field_name"] = None
except KeyError:
row_as_dict["aggregatable_es_field_name"] = None
else:
row_as_dict["aggregatable_es_field_name"] = row_as_dict["es_field_name"]
return pd.Series(data=row_as_dict)
capability_matrix_df = capability_matrix_df.apply(
find_aggregatable, args=(capability_matrix_df,), axis="columns"
)
return capability_matrix_df[capability_matrix_df.is_source].sort_index()
@classmethod
def _es_dtype_to_pd_dtype(cls, es_dtype):
return cls.ES_DTYPE_TO_PD_DTYPE.get(es_dtype, "object")
@staticmethod
def _pd_dtype_to_es_dtype(pd_dtype) -> Optional[str]:
es_dtype: Optional[str] = None
if is_float_dtype(pd_dtype):
es_dtype = "double"
elif is_integer_dtype(pd_dtype):
es_dtype = "long"
elif is_bool_dtype(pd_dtype):
es_dtype = "boolean"
elif is_string_dtype(pd_dtype):
es_dtype = "keyword"
elif is_datetime_or_timedelta_dtype(pd_dtype):
es_dtype = "date"
else:
warnings.warn(
f"No mapping for pd_dtype: [{pd_dtype}], using default mapping"
)
return es_dtype
@staticmethod
def _generate_es_mappings(
dataframe: "pd.DataFrame", es_type_overrides: Optional[Mapping[str, str]] = None
) -> Dict[str, Dict[str, Dict[str, Any]]]:
es_dtype: Union[str, Dict[str, Any]]
mapping_props: Dict[str, Any] = {}
if es_type_overrides is not None:
non_existing_columns: List[str] = [
key for key in es_type_overrides.keys() if key not in dataframe.columns
]
if non_existing_columns:
raise KeyError(
f"{repr(non_existing_columns)[1:-1]} column(s) not in given dataframe"
)
for column, dtype in dataframe.dtypes.iteritems():
if es_type_overrides is not None and column in es_type_overrides:
es_dtype = es_type_overrides[column]
if es_dtype == "text":
es_dtype = {
"type": "text",
"fields": {"keyword": {"type": "keyword"}},
}
else:
es_dtype = FieldMappings._pd_dtype_to_es_dtype(dtype)
if isinstance(es_dtype, str):
mapping_props[column] = {"type": es_dtype}
else:
mapping_props[column] = es_dtype
return {"mappings": {"properties": mapping_props}}
def aggregatable_field_name(self, display_name: str) -> Optional[str]:
mapping: Optional[pd.Series] = None
try:
mapping = self._mappings_capabilities.loc[display_name]
except KeyError:
raise KeyError(
f"Can not get aggregatable field name for invalid display name {display_name}"
) from None
if mapping is not None and mapping.aggregatable_es_field_name is None:
warnings.warn(f"Aggregations not supported for '{display_name}'")
return mapping.aggregatable_es_field_name
def aggregatable_field_names(self) -> Dict[str, str]:
non_aggregatables = self._mappings_capabilities[
self._mappings_capabilities.aggregatable_es_field_name.isna()
]
if not non_aggregatables.empty:
warnings.warn(f"Aggregations not supported for '{non_aggregatables}'")
aggregatables = self._mappings_capabilities[
self._mappings_capabilities.aggregatable_es_field_name.notna()
]
return dict(
aggregatables[["aggregatable_es_field_name", "es_field_name"]].to_dict(
orient="split"
)["data"]
)
def date_field_format(self, es_field_name: str) -> str:
return self._mappings_capabilities.loc[
self._mappings_capabilities.es_field_name == es_field_name
].es_date_format.squeeze() | Apache License 2.0 |
pactools/pactools | pactools/dar_model/base_dar.py | BaseDAR.bic | python | def bic(self):
return self._compute_criterion()['bic'] | Bayesian information criterion (BIC) of the model | https://github.com/pactools/pactools/blob/1e95893bdfedf6e646749cf380c3815d4165bd9a/pactools/dar_model/base_dar.py#L446-L448 | from abc import ABCMeta, abstractmethod
import warnings
import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg
from scipy.signal import fftconvolve
from scipy import stats
from ..utils.progress_bar import ProgressBar
from ..utils.maths import squared_norm
from ..utils.validation import check_array, check_consistent_shape
from ..utils.validation import check_is_fitted
from ..utils.spectrum import Spectrum
from ..utils.viz import add_colorbar, compute_vmin_vmax, phase_string
EPSILON = np.finfo(np.float32).eps
class BaseDAR(object):
__metaclass__ = ABCMeta
def __init__(self, ordar=1, ordriv=0, criterion=None, normalize=True,
ortho=True, center=True, iter_gain=10, eps_gain=1.0e-4,
progress_bar=False, use_driver_phase=False, max_ordar=None,
warn_gain_estimation_failure=False):
self.ordar = ordar
self.criterion = criterion
self.normalize = normalize
self.ortho = ortho
self.center = center
self.iter_gain = iter_gain
self.eps_gain = eps_gain
self.progress_bar = progress_bar
self.use_driver_phase = use_driver_phase
self.warn_gain_estimation_failure = warn_gain_estimation_failure
self.max_ordar = max_ordar
self.ordriv = ordriv
self._compute_cross_orders(ordriv)
self.train_weights = None
self.test_weights = None
self.basis_ = None
def _check_all_arrays(self, sigin, sigdriv, sigdriv_imag, train_weights,
test_weights):
sigin = check_array(sigin)
sigdriv = check_array(sigdriv)
sigdriv_imag = check_array(sigdriv_imag, accept_none=True)
check_consistent_shape(sigin, sigdriv, sigdriv_imag)
check_consistent_shape(sigdriv, sigdriv_imag)
train_weights = check_array(train_weights, accept_none=True)
test_weights = check_array(test_weights, accept_none=True)
if train_weights is not None:
self.train_mask_ = train_weights == 0
check_consistent_shape(sigdriv, train_weights)
if test_weights is None:
mask = train_weights == 0
else:
mask = np.logical_and(train_weights == 0, test_weights == 0)
train_weights, test_weights, sigin, sigdriv, sigdriv_imag = self._remove_far_masked_data(
mask, [train_weights, test_weights, sigin,
sigdriv, sigdriv_imag])
self.train_mask_ = train_weights == 0
if test_weights is not None:
self.test_mask_ = test_weights == 0
else:
self.test_mask_ = None
check_consistent_shape(sigdriv, train_weights)
else:
self.train_mask_ = None
self.test_mask_ = None
if self.use_driver_phase and self.ordriv > 0:
if sigdriv_imag is None:
raise ValueError('Impossible to use use_driver_phase=True '
'without giving sigdriv_imag.')
amplitude = np.sqrt(sigdriv ** 2 + sigdriv_imag ** 2)
sigdriv = sigdriv / amplitude
sigdriv_imag = sigdriv_imag / amplitude
if self.center:
sigin = sigin - np.mean(sigin)
self.sigin = sigin
self.sigdriv = sigdriv
self.sigdriv_imag = sigdriv_imag
self.train_weights = train_weights
self.test_weights = test_weights
def fit(self, sigin, sigdriv, fs, sigdriv_imag=None, train_weights=None,
test_weights=None):
self._reset_criterions()
self._check_all_arrays(sigin, sigdriv, sigdriv_imag, train_weights,
test_weights)
self.fs = fs
if self.ordar < 0:
raise ValueError('self.ordar is negative')
if self.ordriv < 0:
raise ValueError('self.ordriv is negative')
self.AR_ = np.ndarray(0)
self.G_ = np.ndarray(0)
if self.criterion:
self._order_selection()
self._estimate_error(recompute=True)
else:
self._fit()
self._estimate_fit_std()
return self
def _fit(self):
self.ordriv_ = self.ordriv
self._make_basis()
self._estimate_ar()
self._estimate_error(recompute=self.test_weights is not None)
self._estimate_gain()
def _compute_cross_orders(self, ordriv):
power_list_re, power_list_im = [], []
for j in np.arange(ordriv + 1):
for k in np.arange(j + 1):
power_list_re.append(j - k)
power_list_im.append(k)
self.n_basis = len(power_list_re)
return power_list_re, power_list_im, self.n_basis
def _make_basis(self, sigdriv=None, sigdriv_imag=None, ordriv=None):
if sigdriv is None:
sigdriv = self.sigdriv
sigdriv_imag = self.sigdriv_imag
save_basis = True
ortho, normalize = self.ortho, self.normalize
else:
sigdriv = check_array(sigdriv)
sigdriv_imag = check_array(sigdriv_imag, accept_none=True)
save_basis = False
ortho, normalize = False, False
n_epochs, n_points = sigdriv.shape
if ordriv is None:
ordriv = self.ordriv
if sigdriv_imag is None:
power_list_re = np.arange(ordriv + 1)
power_list_im = np.zeros(ordriv + 1)
n_basis = ordriv + 1
self.n_basis = ordriv + 1
else:
power_list_re, power_list_im, n_basis = self._compute_cross_orders(
ordriv)
alpha = np.eye(n_basis)
basis = np.zeros((n_basis, n_epochs * n_points))
for k, (power_real,
power_imag) in enumerate(zip(power_list_re, power_list_im)):
if power_imag == 0 and power_real == 0:
basis[k] = 1.0
elif power_imag > 0 and power_real == 0:
basis[k] = sigdriv_imag.ravel() ** power_imag
elif power_imag == 0 and power_real > 0:
basis[k] = sigdriv.ravel() ** power_real
elif power_imag > 0 and power_real > 0:
basis[k] = sigdriv_imag.ravel() ** power_imag
basis[k] *= sigdriv.ravel() ** power_real
else:
raise ValueError('Power cannot be negative : (%s, %s)' %
(power_real, power_imag))
if ortho:
for m in range(k):
alpha[k, m] = -(np.sum(basis[k] * basis[m]) / np.sum(
basis[m] * basis[m]))
basis[k] += np.dot(alpha[k, :k], basis[:k, :])
alpha[k, :k] = np.dot(alpha[k, :k], alpha[:k, :k])
if normalize:
scale = np.sqrt(
float(n_epochs * n_points) / squared_norm(basis[k]))
basis[k] *= scale
alpha[k, :k + 1] *= scale
if save_basis:
self.basis_ = basis.reshape(-1, n_epochs, n_points)
self.alpha_ = alpha
else:
if self.normalize or self.ortho:
basis = np.dot(self.alpha_, basis)
return basis.reshape(-1, n_epochs, n_points)
def _estimate_ar(self):
if self.progress_bar:
bar = ProgressBar(title=self.get_title(name=True))
for AR_ in self._last_model():
self.AR_ = AR_
if self.progress_bar:
bar.update(
float(self.ordar_) / self.ordar, title=self.get_title(
name=True))
def _remove_far_masked_data(self, mask, list_signals):
if mask is None:
return list_signals
selection = ~mask
kernel = np.ones(self.ordar * 2 + 1)
kernel[-self.ordar:] = 0.
delayed_selection = fftconvolve(selection, kernel[None, :],
mode='same')
delayed_selection[np.abs(delayed_selection) < 1e-13] = 0.
time_selection = delayed_selection.sum(axis=0) != 0
epoch_selection = delayed_selection.sum(axis=1) != 0
if not np.any(time_selection) or not np.any(epoch_selection):
raise ValueError("The mask seems to hide everything.")
output_signals = []
for sig in list_signals:
if sig is not None:
sig = sig[..., epoch_selection, :]
sig = sig[..., :, time_selection]
output_signals.append(sig)
return output_signals
def _get_train_data(self, sig_list):
if not isinstance(sig_list, list):
sig_list = list(sig_list)
train_weights = self.train_weights
sig_list.append(train_weights)
sig_list = self._remove_far_masked_data(self.train_mask_, sig_list)
return sig_list
def _get_test_data(self, sig_list):
if not isinstance(sig_list, list):
sig_list = list(sig_list)
test_weights = self.test_weights
if test_weights is None:
test_weights = self.train_weights
sig_list.append(test_weights)
sig_list = self._remove_far_masked_data(self.test_mask_, sig_list)
return sig_list
def degrees_of_freedom(self):
return ((self.ordar_ + 1) * self.n_basis)
def get_title(self, name=True, criterion=None):
title = ''
if name:
title += self.__class__.__name__
if hasattr(self, 'AR_'):
ordar_ = self.ordar_
ordriv_ = self.ordriv_
title += '(%d, %d)' % (ordar_, ordriv_)
if criterion is not None and criterion is not False:
title += '_%s=%.4f' % (criterion,
self.get_criterion(criterion))
else:
ordar = self.ordar
ordriv = self.ordriv
title += '(%d, %d)' % (ordar, ordriv)
return title
def get_criterion(self, criterion, train=False):
criterion = criterion.lower()
try:
value = self._compute_criterion(train=train)[criterion]
except KeyError:
raise KeyError('Wrong criterion: %s' % criterion)
return value
def _compute_criterion(self, train=False):
check_is_fitted(self, 'AR_')
criterions = getattr(self, 'criterions_', None)
if criterions is not None:
return criterions
max_ordar = self.max_ordar
if self.max_ordar is None:
max_ordar = self.ordar
logl, tmax = self._estimate_log_likelihood(train=train, skip=max_ordar)
degrees = self.degrees_of_freedom()
eta_aic = 2.0
aic = -2.0 * logl + eta_aic * degrees
eta_bic = np.log(tmax)
bic = -2.0 * logl + eta_bic * degrees
self.criterions_ = {
'aic': aic / tmax,
'bic': bic / tmax,
'logl': logl / tmax,
'-logl': -logl / tmax,
'tmax': tmax
}
return self.criterions_
@property
def logl(self):
return self._compute_criterion()['logl']
@property
def aic(self):
return self._compute_criterion()['aic']
@property | BSD 3-Clause New or Revised License |
lttm/gmnet | Deeplab/research/deeplab/core/resnet_v1_beta.py | root_block_fn_for_beta_variant | python | def root_block_fn_for_beta_variant(net, depth_multiplier=1.0):
net = conv2d_ws.conv2d_same(
net, int(64 * depth_multiplier), 3, stride=2, scope='conv1_1')
net = conv2d_ws.conv2d_same(
net, int(64 * depth_multiplier), 3, stride=1, scope='conv1_2')
net = conv2d_ws.conv2d_same(
net, int(128 * depth_multiplier), 3, stride=1, scope='conv1_3')
return net | Gets root_block_fn for beta variant.
ResNet-v1 beta variant modifies the first original 7x7 convolution to three
3x3 convolutions.
Args:
net: A tensor of size [batch, height, width, channels], input to the model.
depth_multiplier: Controls the number of convolution output channels for
each input channel. The total number of depthwise convolution output
channels will be equal to `num_filters_out * depth_multiplier`.
Returns:
A tensor after three 3x3 convolutions. | https://github.com/lttm/gmnet/blob/e17959eb219e1884e2be271c9244ba284c2f4ffa/Deeplab/research/deeplab/core/resnet_v1_beta.py#L153-L175 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from six.moves import range
import tensorflow as tf
from tensorflow.contrib import slim as contrib_slim
from research.deeplab.core import conv2d_ws
from research.deeplab.core import utils
from tensorflow.contrib.slim.nets import resnet_utils
slim = contrib_slim
_DEFAULT_MULTI_GRID = [1, 1, 1]
_DEFAULT_MULTI_GRID_RESNET_18 = [1, 1]
@slim.add_arg_scope
def bottleneck(inputs,
depth,
depth_bottleneck,
stride,
unit_rate=1,
rate=1,
outputs_collections=None,
scope=None):
with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = conv2d_ws.conv2d(
inputs,
depth,
[1, 1],
stride=stride,
activation_fn=None,
scope='shortcut')
residual = conv2d_ws.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
scope='conv1')
residual = conv2d_ws.conv2d_same(residual, depth_bottleneck, 3, stride,
rate=rate * unit_rate, scope='conv2')
residual = conv2d_ws.conv2d(residual, depth, [1, 1], stride=1,
activation_fn=None, scope='conv3')
output = tf.nn.relu(shortcut + residual)
return slim.utils.collect_named_outputs(outputs_collections, sc.name, output)
@slim.add_arg_scope
def lite_bottleneck(inputs,
depth,
stride,
unit_rate=1,
rate=1,
outputs_collections=None,
scope=None):
with tf.variable_scope(scope, 'lite_bottleneck_v1', [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = conv2d_ws.conv2d(
inputs,
depth, [1, 1],
stride=stride,
activation_fn=None,
scope='shortcut')
residual = conv2d_ws.conv2d_same(
inputs, depth, 3, 1, rate=rate * unit_rate, scope='conv1')
with slim.arg_scope([conv2d_ws.conv2d], activation_fn=None):
residual = conv2d_ws.conv2d_same(
residual, depth, 3, stride, rate=rate * unit_rate, scope='conv2')
output = tf.nn.relu(shortcut + residual)
return slim.utils.collect_named_outputs(outputs_collections, sc.name,
output) | Apache License 2.0 |
sally20921/all4depth | all4depth/loggers/wandb_logger.py | prep_image | python | def prep_image(prefix, key, image):
if is_tensor(image):
image = image.detach().permute(1, 2, 0).cpu().numpy()
prefix_key = '{}-{}'.format(prefix, key)
return {prefix_key: wandb.Image(image, caption=key)} | Prepare image for wandb logging
Parameters
----------
prefix : str
Prefix added to the key for logging
key : str
Key from data containing the inverse depth map
image : torch.Tensor [3,H,W]
Image to be logged
Returns
-------
output : dict
Dictionary with key and value for logging | https://github.com/sally20921/all4depth/blob/ef058839e16b277b4ffa6a890d03cd90b6c36283/all4depth/loggers/wandb_logger.py#L252-L273 | from argparse import Namespace
from collections import OrderedDict
import numpy as np
import torch.nn as nn
import wandb
from wandb.wandb_run import Run
from all4depth.utils.depth import viz_inv_depth
from all4depth.utils.logging import prepare_dataset_prefix
from all4depth.utils.types import is_dict, is_tensor
class WandbLogger:
def __init__(self,
name=None, dir=None, id=None, anonymous=False,
version=None, project=None, entity=None,
tags=None, log_model=False, experiment=None
):
super().__init__()
self._name = name
self._dir = dir
self._anonymous = 'allow' if anonymous else None
self._id = version or id
self._tags = tags
self._project = project
self._entity = entity
self._log_model = log_model
self._experiment = experiment if experiment else self.create_experiment()
self._metrics = OrderedDict()
def __getstate__(self):
state = self.__dict__.copy()
state['_id'] = self._experiment.id if self._experiment is not None else None
state['_experiment'] = None
return state
def create_experiment(self):
experiment = wandb.init(
name=self._name, dir=self._dir, project=self._project,
anonymous=self._anonymous, reinit=True, id=self._id,
resume='allow', tags=self._tags, entity=self._entity
)
wandb.run.save()
return experiment
def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100):
self.experiment.watch(model, log=log, log_freq=log_freq)
@property
def experiment(self) -> Run:
if self._experiment is None:
self._experiment = self.create_experiment()
return self._experiment
@property
def version(self) -> str:
return self._experiment.id if self._experiment else None
@property
def name(self) -> str:
name = self._experiment.project_name() if self._experiment else None
return name
@property
def run_name(self) -> str:
return wandb.run.name if self._experiment else None
@property
def run_url(self) -> str:
return 'https://app.wandb.ai/{}/{}/runs/{}'.format(
wandb.run.entity, wandb.run.project, wandb.run.id) if self._experiment else None
@staticmethod
def _convert_params(params):
if isinstance(params, Namespace):
params = vars(params)
if params is None:
params = {}
return params
def log_config(self, params):
params = self._convert_params(params)
self.experiment.config.update(params, allow_val_change=True)
def log_metrics(self, metrics):
self._metrics.update(metrics)
if 'global_step' in metrics:
self.experiment.log(self._metrics)
self._metrics.clear()
def log_images(self, func, mode, batch, output,
args, dataset, world_size, config):
dataset_idx = 0 if len(args) == 1 else args[1]
prefix = prepare_dataset_prefix(config, dataset_idx)
interval = len(dataset[dataset_idx]) // world_size // config.num_logs
if args[0] % interval == 0:
prefix_idx = '{}-{}-{}'.format(mode, prefix, batch['idx'][0].item())
func(prefix_idx, batch, output)
def log_depth(self, *args, **kwargs):
def log(prefix_idx, batch, output):
self._metrics.update(log_rgb('rgb', prefix_idx, batch))
self._metrics.update(log_inv_depth('inv_depth', prefix_idx, output))
if 'depth' in batch:
self._metrics.update(log_depth('depth', prefix_idx, batch))
self.log_images(log, *args, **kwargs)
def log_rgb(key, prefix, batch, i=0):
rgb = batch[key] if is_dict(batch) else batch
return prep_image(prefix, key,
rgb[i])
def log_depth(key, prefix, batch, i=0):
depth = batch[key] if is_dict(batch) else batch
inv_depth = 1. / depth[i]
inv_depth[depth[i] == 0] = 0
return prep_image(prefix, key,
viz_inv_depth(inv_depth, filter_zeros=True))
def log_inv_depth(key, prefix, batch, i=0):
inv_depth = batch[key] if is_dict(batch) else batch
return prep_image(prefix, key,
viz_inv_depth(inv_depth[i])) | MIT License |
catalyst-cooperative/pudl | src/pudl/glue/ferc1_eia.py | get_lost_utils_eia | python | def get_lost_utils_eia(pudl_engine):
db_utils_eia = get_db_utils_eia(pudl_engine)
mapped_utils_eia = get_mapped_utils_eia()
lost_utils_idx = mapped_utils_eia.index.difference(db_utils_eia.index)
lost_utils_eia = mapped_utils_eia.loc[lost_utils_idx]
return lost_utils_eia | Get a list of all mapped EIA Utilites not found in the PUDL DB. | https://github.com/catalyst-cooperative/pudl/blob/6a75069b90219a2da55262737b92fe0a024c4fb8/src/pudl/glue/ferc1_eia.py#L565-L571 | import importlib
import logging
import pandas as pd
import sqlalchemy as sa
import pudl
from pudl import constants as pc
logger = logging.getLogger(__name__)
def get_plant_map():
map_eia_ferc_file = importlib.resources.open_binary(
'pudl.package_data.glue', 'mapping_eia923_ferc1.xlsx')
return pd.read_excel(
map_eia_ferc_file,
'plants_output',
na_values='',
keep_default_na=False,
converters={
'plant_id_pudl': int,
'plant_name_pudl': str,
'utility_id_ferc1': int,
'utility_name_ferc1': str,
'plant_name_ferc1': str,
'plant_id_eia': int,
'plant_name_eia': str,
'utility_name_eia': str,
'utility_id_eia': int
},
)
def get_utility_map():
map_eia_ferc_file = importlib.resources.open_binary(
'pudl.package_data.glue', 'mapping_eia923_ferc1.xlsx')
return pd.read_excel(
map_eia_ferc_file,
'utilities_output',
na_values='',
keep_default_na=False,
converters={
'utility_id_pudl': int,
'utility_name_pudl': str,
'utility_id_ferc1': int,
'utility_name_ferc1': str,
'utility_id_eia': int,
'utility_name_eia': str
},
)
def get_db_plants_ferc1(pudl_settings, years):
for yr in years:
if yr not in pc.data_years['ferc1']:
raise ValueError(
f"Input year {yr} is not available in the FERC data.")
ferc1_engine = sa.create_engine(pudl_settings["ferc1_db"])
ferc1_tables = pudl.output.pudltabl.get_table_meta(ferc1_engine)
respondent_table = ferc1_tables['f1_respondent_id']
plant_tables = ['f1_steam', 'f1_gnrt_plant',
'f1_hydro', 'f1_pumped_storage']
capacity_cols = {'f1_steam': 'tot_capacity',
'f1_gnrt_plant': 'capacity_rating',
'f1_hydro': 'tot_capacity',
'f1_pumped_storage': 'tot_capacity'}
all_plants = pd.DataFrame()
for tbl in plant_tables:
plant_select = sa.sql.select(
ferc1_tables[tbl].c.respondent_id,
ferc1_tables[tbl].c.plant_name,
ferc1_tables[tbl].columns[capacity_cols[tbl]],
respondent_table.c.respondent_name
).distinct().where(
sa.and_(
ferc1_tables[tbl].c.respondent_id == respondent_table.c.respondent_id,
ferc1_tables[tbl].c.plant_name != '',
ferc1_tables[tbl].c.report_year.in_(years)
)
)
all_plants = all_plants.append(
pd.read_sql(plant_select, ferc1_engine).
rename(columns={"respondent_id": "utility_id_ferc1",
"respondent_name": "utility_name_ferc1",
"plant_name": "plant_name_ferc1",
capacity_cols[tbl]: "capacity_mw"}).
pipe(pudl.helpers.simplify_strings, columns=["plant_name_ferc1",
"utility_name_ferc1"]).
assign(plant_table=tbl).
loc[:, ["utility_id_ferc1",
"utility_name_ferc1",
"plant_name_ferc1",
"capacity_mw",
"plant_table"]]
)
all_plants = (
all_plants.drop_duplicates(["utility_id_ferc1", "plant_name_ferc1"]).
sort_values(["utility_id_ferc1", "plant_name_ferc1"])
)
return all_plants
def get_mapped_plants_ferc1():
ferc1_mapped_plants = (
pudl.glue.ferc1_eia.get_plant_map().
loc[:, ["utility_id_ferc1", "utility_name_ferc1", "plant_name_ferc1"]].
dropna(subset=["utility_id_ferc1"]).
pipe(pudl.helpers.simplify_strings,
columns=["utility_id_ferc1",
"utility_name_ferc1",
"plant_name_ferc1"]).
astype({"utility_id_ferc1": int}).
drop_duplicates(["utility_id_ferc1", "plant_name_ferc1"]).
sort_values(["utility_id_ferc1", "plant_name_ferc1"])
)
return ferc1_mapped_plants
def get_mapped_utils_ferc1():
ferc1_mapped_utils = (
pudl.glue.ferc1_eia.get_utility_map()
.loc[:, ["utility_id_ferc1", "utility_name_ferc1"]]
.dropna(subset=["utility_id_ferc1"])
.pipe(pudl.helpers.simplify_strings,
columns=["utility_id_ferc1", "utility_name_ferc1"])
.drop_duplicates(["utility_id_ferc1", "utility_name_ferc1"])
.astype({"utility_id_ferc1": int, "utility_name_ferc1": str})
.sort_values(["utility_id_ferc1"])
)
return ferc1_mapped_utils
def get_unmapped_plants_ferc1(pudl_settings, years):
db_plants = (
get_db_plants_ferc1(pudl_settings, years).
set_index(["utility_id_ferc1", "plant_name_ferc1"])
)
mapped_plants = (
get_mapped_plants_ferc1().
set_index(["utility_id_ferc1", "plant_name_ferc1"])
)
new_plants_index = db_plants.index.difference(mapped_plants.index)
unmapped_plants = db_plants.loc[new_plants_index].reset_index()
return unmapped_plants
def get_unmapped_utils_ferc1(ferc1_engine):
all_utils_ferc1 = (
pd.read_sql_table("f1_respondent_id", ferc1_engine)
.rename(columns={
"respondent_id": "utility_id_ferc1",
"respondent_name": "utility_name_ferc1",
})
.pipe(pudl.helpers.simplify_strings, ["utility_name_ferc1"])
.set_index(["utility_id_ferc1", "utility_name_ferc1"])
)
mapped_utils_ferc1 = (
get_mapped_utils_ferc1()
.pipe(pudl.helpers.simplify_strings, ["utility_name_ferc1"])
.set_index(["utility_id_ferc1", "utility_name_ferc1"])
)
unmapped_utils_ferc1 = (
all_utils_ferc1.loc[
all_utils_ferc1.index
.difference(mapped_utils_ferc1.index)
]
.reset_index()
.loc[:, ["utility_id_ferc1", "utility_name_ferc1"]]
)
return unmapped_utils_ferc1
def get_db_plants_eia(pudl_engine):
db_plants_eia = (
pd.read_sql("plants_entity_eia", pudl_engine).
loc[:, ["plant_id_eia", "plant_name_eia", "state"]].
pipe(pudl.helpers.simplify_strings, columns=["plant_name_eia"]).
astype({"plant_id_eia": int}).
drop_duplicates("plant_id_eia").
sort_values("plant_id_eia")
)
return db_plants_eia
def get_mapped_plants_eia():
mapped_plants_eia = (
pudl.glue.ferc1_eia.get_plant_map().
loc[:, ["plant_id_eia", "plant_name_eia"]].
dropna(subset=["plant_id_eia"]).
pipe(pudl.helpers.simplify_strings, columns=["plant_name_eia"]).
astype({"plant_id_eia": int}).
drop_duplicates("plant_id_eia").
sort_values("plant_id_eia")
)
return mapped_plants_eia
def get_unmapped_plants_eia(pudl_engine):
plants_utils_eia = (
pd.read_sql("""SELECT DISTINCT plant_id_eia, utility_id_eia
FROM plants_eia860;""", pudl_engine).
dropna().
astype({"plant_id_eia": int,
"utility_id_eia": int}).
drop_duplicates().
merge(get_db_utils_eia(pudl_engine).reset_index(),
on="utility_id_eia")
)
plant_capacity_mw = (
pd.read_sql("SELECT * FROM generators_eia860;", pudl_engine).
groupby(["plant_id_eia"])[["capacity_mw"]].agg(sum).
reset_index()
)
db_plants_eia = get_db_plants_eia(pudl_engine).set_index("plant_id_eia")
mapped_plants_eia = get_mapped_plants_eia().set_index("plant_id_eia")
unmapped_plants_idx = (
db_plants_eia.index.
difference(mapped_plants_eia.index)
)
unmapped_plants_eia = (
db_plants_eia.loc[unmapped_plants_idx].
merge(plants_utils_eia, how="left", on="plant_id_eia").
merge(plant_capacity_mw, how="left", on="plant_id_eia").
loc[:, ["plant_id_eia", "plant_name_eia",
"utility_id_eia", "utility_name_eia",
"state", "capacity_mw"]].
astype({"utility_id_eia": "Int32"})
)
return unmapped_plants_eia
def get_lost_plants_eia(pudl_engine):
mapped_plants_eia = get_mapped_plants_eia().set_index("plant_id_eia")
db_plants_eia = get_db_plants_eia(pudl_engine).set_index("plant_id_eia")
lost_plants_idx = mapped_plants_eia.index.difference(db_plants_eia.index)
lost_plants_eia = mapped_plants_eia.loc[lost_plants_idx]
return lost_plants_eia
def get_db_utils_eia(pudl_engine):
db_utils_eia = (
pd.read_sql("utilities_entity_eia", pudl_engine).
loc[:, ["utility_id_eia", "utility_name_eia"]].
pipe(pudl.helpers.simplify_strings, columns=["utility_name_eia"]).
astype({"utility_id_eia": int}).
drop_duplicates("utility_id_eia").
sort_values("utility_id_eia").
set_index("utility_id_eia")
)
return db_utils_eia
def get_utility_most_recent_capacity(pudl_engine):
query = """
select utility_id_eia, capacity_mw, report_date from generators_eia860
"""
with pudl_engine.connect() as conn:
generator_capacities = pd.read_sql(query, conn, parse_dates=["report_date"])
generator_capacities['utility_id_eia'] = generator_capacities['utility_id_eia'].astype(
"Int64")
most_recent_generators_idx = generator_capacities.groupby(
"utility_id_eia")["report_date"].transform(max) == generator_capacities["report_date"]
most_recent_generators = generator_capacities[most_recent_generators_idx]
utility_capacities = most_recent_generators.groupby("utility_id_eia").sum()
utility_capacities = utility_capacities.rename(
columns={"capacity_mw": "most_recent_total_capacity_mw"})
return utility_capacities
def get_mapped_utils_eia():
mapped_utils_eia = (
pudl.glue.ferc1_eia.get_utility_map().
loc[:, ["utility_id_eia", "utility_name_eia"]].
dropna(subset=["utility_id_eia"]).
pipe(pudl.helpers.simplify_strings, columns=["utility_name_eia"]).
astype({"utility_id_eia": int}).
drop_duplicates(["utility_id_eia"]).
sort_values(["utility_id_eia"]).
set_index("utility_id_eia")
)
return mapped_utils_eia
def get_unmapped_utils_eia(pudl_engine):
db_utils_eia = get_db_utils_eia(pudl_engine)
mapped_utils_eia = get_mapped_utils_eia()
unmapped_utils_idx = db_utils_eia.index.difference(mapped_utils_eia.index)
unmapped_utils_eia = db_utils_eia.loc[unmapped_utils_idx]
utils_recent_capacity = get_utility_most_recent_capacity(pudl_engine)
unmapped_utils_eia = unmapped_utils_eia.merge(
utils_recent_capacity, on="utility_id_eia", how="left", validate="1:1")
unmapped_utils_eia = unmapped_utils_eia.sort_values(
by="most_recent_total_capacity_mw", ascending=False)
return unmapped_utils_eia
def get_unmapped_utils_with_plants_eia(pudl_engine):
pudl_out = pudl.output.pudltabl.PudlTabl(pudl_engine)
utils_idx = ["utility_id_eia", "report_date"]
plants_idx = ["plant_id_eia", "report_date"]
own_idx = ["plant_id_eia", "generator_id",
"owner_utility_id_eia", "report_date"]
utils_eia860 = (
pudl_out.utils_eia860()
.dropna(subset=utils_idx)
.set_index(utils_idx)
)
plants_eia860 = (
pudl_out.plants_eia860()
.dropna(subset=plants_idx)
.set_index(plants_idx)
)
own_eia860 = (
pudl_out.own_eia860()
.dropna(subset=own_idx)
.set_index(own_idx)
)
own_miss_utils = set(
own_eia860[own_eia860.utility_id_pudl.isnull()]
.utility_id_eia.unique()
)
plants_miss_utils = set(
plants_eia860[plants_eia860.utility_id_pudl.isnull()]
.utility_id_eia.unique()
)
utils_eia860 = utils_eia860.reset_index()
miss_utils = utils_eia860[
(utils_eia860.utility_id_pudl.isna()) &
(
(utils_eia860.plants_reported_owner == "True") |
(utils_eia860.plants_reported_asset_manager == "True") |
(utils_eia860.plants_reported_operator == "True") |
(utils_eia860.plants_reported_other_relationship == "True") |
(utils_eia860.utility_id_eia.isin(own_miss_utils)) |
(utils_eia860.utility_id_eia.isin(plants_miss_utils))
)
]
miss_utils = (
miss_utils.drop_duplicates("utility_id_eia")
.set_index("utility_id_eia")
.loc[:, ["utility_name_eia"]]
)
utils_recent_capacity = get_utility_most_recent_capacity(pudl_engine)
miss_utils = miss_utils.merge(
utils_recent_capacity, on="utility_id_eia", how="left", validate="1:1")
miss_utils = miss_utils.sort_values(
by="most_recent_total_capacity_mw", ascending=False)
return miss_utils | MIT License |
tell-k/goolabs | goolabs/commands.py | morph | python | def morph(ctx, app_id, sentence_file, json_flag,
sentence, info_filter, pos_filter, request_id):
app_id = clean_app_id(app_id)
sentence = clean_sentence(sentence, sentence_file)
if info_filter:
info_filter = info_filter.replace(',', '|')
if pos_filter:
pos_filter = pos_filter.replace(',', '|')
api = GoolabsAPI(app_id)
ret = api.morph(
sentence=sentence,
info_filter=info_filter,
pos_filter=pos_filter,
request_id=request_id,
)
if json_flag:
click.echo(format_json(api.response.json()))
return
for words in ret['word_list']:
for word in words:
click.echo(','.join(word)) | Morphological analysis for Japanese. | https://github.com/tell-k/goolabs/blob/3b87d0409e55c71290158ad6d5e2d8bb9a338c46/goolabs/commands.py#L107-L135 | from __future__ import division, print_function, absolute_import
import json
import locale
import click
import six
import goolabs
from goolabs import GoolabsAPI
if 0:
from typing import Optional, IO, List, Dict, Any
from click.core import Context
def text(s):
if isinstance(s, six.binary_type):
return s.decode(locale.getpreferredencoding())
return s
def clean_app_id(app_id):
if not app_id:
raise click.UsageError('Missing option "--app-id" / "-a" '
'or GOOLABS_APP_ID enviroment value.')
return app_id
def clean_sentence(sentence, sentence_file):
if not sentence and not sentence_file:
raise click.UsageError('Missing sentence. You must set'
' SENTENCE argument or --file option.')
if not sentence and sentence_file:
sentence = text(sentence_file.read())
return sentence
def clean_review(review, review_file):
if not review and not review_file:
raise click.UsageError('Missing review. You must set'
' REVIEW argument or --file option.')
if not review and review_file:
review = text(review_file.read())
return review.split('\n')
def clean_body(body, body_file):
if not body and not body_file:
raise click.UsageError('Missing body. You must set'
' BODY argument or --file option.')
if not body and body_file:
body = text(body_file.read())
return body
def clean_length(length):
if length is None:
return None
try:
return int(length)
except ValueError:
raise click.UsageError(
'--length is not Integer. You must choice length from 60/120/180.'
)
def format_json(json_data):
return json.dumps(json_data, indent=2, ensure_ascii=False)
@click.group()
@click.pass_context
@click.version_option(version=goolabs.__version__)
def main(ctx):
@main.command()
@click.argument('sentence', required=False, type=text)
@click.option('--app-id', '-a', 'app_id', envvar='GOOLABS_APP_ID', type=text)
@click.option('--request-id', '-r', 'request_id', type=text)
@click.option('--info-filter', '-i', 'info_filter',
type=text, help='form,pos,read')
@click.option('--pos-filter', '-p', 'pos_filter',
type=text, help=u'名刺,動詞活用語尾,句点..etc')
@click.option('--file', '-f', 'sentence_file', type=click.File('rb'))
@click.option('--json/--no-json', '-j', 'json_flag', default=False)
@click.pass_context | MIT License |
machine-learning-exchange/mlx | api/client/swagger_client/models/api_pipeline_extended.py | ApiPipelineExtended.__init__ | python | def __init__(self, id=None, created_at=None, name=None, description=None, parameters=None, status=None, default_version_id=None, namespace=None, annotations=None, featured=None, publish_approved=None):
self._id = None
self._created_at = None
self._name = None
self._description = None
self._parameters = None
self._status = None
self._default_version_id = None
self._namespace = None
self._annotations = None
self._featured = None
self._publish_approved = None
self.discriminator = None
if id is not None:
self.id = id
if created_at is not None:
self.created_at = created_at
if name is not None:
self.name = name
if description is not None:
self.description = description
if parameters is not None:
self.parameters = parameters
if status is not None:
self.status = status
if default_version_id is not None:
self.default_version_id = default_version_id
if namespace is not None:
self.namespace = namespace
if annotations is not None:
self.annotations = annotations
if featured is not None:
self.featured = featured
if publish_approved is not None:
self.publish_approved = publish_approved | ApiPipelineExtended - a model defined in Swagger | https://github.com/machine-learning-exchange/mlx/blob/be1503c45538dac1a8188560fbec4a07b2a367bf/api/client/swagger_client/models/api_pipeline_extended.py#L68-L105 | import pprint
import re
import six
from swagger_client.models.api_parameter import ApiParameter
from swagger_client.models.api_pipeline import ApiPipeline
from swagger_client.models.api_pipeline_extension import ApiPipelineExtension
class ApiPipelineExtended(ApiPipeline, ApiPipelineExtension):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'id': 'str',
'created_at': 'datetime',
'name': 'str',
'description': 'str',
'parameters': 'list[ApiParameter]',
'status': 'str',
'default_version_id': 'str',
'namespace': 'str',
'annotations': 'dict(str, str)',
'featured': 'bool',
'publish_approved': 'bool'
}
attribute_map = {
'id': 'id',
'created_at': 'created_at',
'name': 'name',
'description': 'description',
'parameters': 'parameters',
'status': 'status',
'default_version_id': 'default_version_id',
'namespace': 'namespace',
'annotations': 'annotations',
'featured': 'featured',
'publish_approved': 'publish_approved'
} | Apache License 2.0 |
osmr/imgclsmob | keras_/kerascv/models/igcv3.py | igcv3_w3d4 | python | def igcv3_w3d4(**kwargs):
return get_igcv3(width_scale=0.75, model_name="igcv3_w3d4", **kwargs) | IGCV3-D 0.75x model from 'IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks,'
https://arxiv.org/abs/1806.00178.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.keras/models'
Location for keeping the model parameters. | https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/keras_/kerascv/models/igcv3.py#L230-L242 | __all__ = ['igcv3', 'igcv3_w1', 'igcv3_w3d4', 'igcv3_wd2', 'igcv3_wd4']
import os
from keras import layers as nn
from keras.models import Model
from .common import conv1x1_block, conv3x3_block, dwconv3x3_block, channel_shuffle_lambda, is_channels_first, flatten
def inv_res_unit(x,
in_channels,
out_channels,
strides,
expansion,
name="inv_res_unit"):
residual = (in_channels == out_channels) and (strides == 1)
mid_channels = in_channels * 6 if expansion else in_channels
groups = 2
if residual:
identity = x
x = conv1x1_block(
x=x,
in_channels=in_channels,
out_channels=mid_channels,
groups=groups,
activation=None,
name=name + "/conv1")
x = channel_shuffle_lambda(
channels=mid_channels,
groups=groups,
name=name + "/c_shuffle")(x)
x = dwconv3x3_block(
x=x,
in_channels=mid_channels,
out_channels=mid_channels,
strides=strides,
activation="relu6",
name=name + "/conv2")
x = conv1x1_block(
x=x,
in_channels=mid_channels,
out_channels=out_channels,
groups=groups,
activation=None,
name=name + "/conv3")
if residual:
x = nn.add([x, identity], name=name + "/add")
return x
def igcv3(channels,
init_block_channels,
final_block_channels,
in_channels=3,
in_size=(224, 224),
classes=1000):
input_shape = (in_channels, in_size[0], in_size[1]) if is_channels_first() else (in_size[0], in_size[1], in_channels)
input = nn.Input(shape=input_shape)
x = conv3x3_block(
x=input,
in_channels=in_channels,
out_channels=init_block_channels,
strides=2,
activation="relu6",
name="features/init_block")
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
for j, out_channels in enumerate(channels_per_stage):
strides = 2 if (j == 0) and (i != 0) else 1
expansion = (i != 0) or (j != 0)
x = inv_res_unit(
x=x,
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
expansion=expansion,
name="features/stage{}/unit{}".format(i + 1, j + 1))
in_channels = out_channels
x = conv1x1_block(
x=x,
in_channels=in_channels,
out_channels=final_block_channels,
activation="relu6",
name="features/final_block")
in_channels = final_block_channels
x = nn.AvgPool2D(
pool_size=7,
strides=1,
name="features/final_pool")(x)
x = flatten(x)
x = nn.Dense(
units=classes,
input_dim=in_channels,
name="output")(x)
model = Model(inputs=input, outputs=x)
model.in_size = in_size
model.classes = classes
return model
def get_igcv3(width_scale,
model_name=None,
pretrained=False,
root=os.path.join("~", ".keras", "models"),
**kwargs):
init_block_channels = 32
final_block_channels = 1280
layers = [1, 4, 6, 8, 6, 6, 1]
downsample = [0, 1, 1, 1, 0, 1, 0]
channels_per_layers = [16, 24, 32, 64, 96, 160, 320]
from functools import reduce
channels = reduce(
lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]],
zip(channels_per_layers, layers, downsample),
[[]])
if width_scale != 1.0:
def make_even(x):
return x if (x % 2 == 0) else x + 1
channels = [[make_even(int(cij * width_scale)) for cij in ci] for ci in channels]
init_block_channels = make_even(int(init_block_channels * width_scale))
if width_scale > 1.0:
final_block_channels = make_even(int(final_block_channels * width_scale))
net = igcv3(
channels=channels,
init_block_channels=init_block_channels,
final_block_channels=final_block_channels,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import download_model
download_model(
net=net,
model_name=model_name,
local_model_store_dir_path=root)
return net
def igcv3_w1(**kwargs):
return get_igcv3(width_scale=1.0, model_name="igcv3_w1", **kwargs) | MIT License |
argoproj-labs/argo-client-python | argo/workflows/client/models/v1alpha1_hdfs_artifact.py | V1alpha1HDFSArtifact.krb_realm | python | def krb_realm(self, krb_realm):
self._krb_realm = krb_realm | Sets the krb_realm of this V1alpha1HDFSArtifact.
KrbRealm is the Kerberos realm used with Kerberos keytab It must be set if keytab is used. # noqa: E501
:param krb_realm: The krb_realm of this V1alpha1HDFSArtifact. # noqa: E501
:type: str | https://github.com/argoproj-labs/argo-client-python/blob/993d684cab39a834770b296e028519cec035c7b5/argo/workflows/client/models/v1alpha1_hdfs_artifact.py#L244-L253 | import pprint
import re
import six
from argo.workflows.client.configuration import Configuration
class V1alpha1HDFSArtifact(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'addresses': 'list[str]',
'force': 'bool',
'hdfs_user': 'str',
'krb_c_cache_secret': 'V1SecretKeySelector',
'krb_config_config_map': 'V1ConfigMapKeySelector',
'krb_keytab_secret': 'V1SecretKeySelector',
'krb_realm': 'str',
'krb_service_principal_name': 'str',
'krb_username': 'str',
'path': 'str'
}
attribute_map = {
'addresses': 'addresses',
'force': 'force',
'hdfs_user': 'hdfsUser',
'krb_c_cache_secret': 'krbCCacheSecret',
'krb_config_config_map': 'krbConfigConfigMap',
'krb_keytab_secret': 'krbKeytabSecret',
'krb_realm': 'krbRealm',
'krb_service_principal_name': 'krbServicePrincipalName',
'krb_username': 'krbUsername',
'path': 'path'
}
def __init__(self, addresses=None, force=None, hdfs_user=None, krb_c_cache_secret=None, krb_config_config_map=None, krb_keytab_secret=None, krb_realm=None, krb_service_principal_name=None, krb_username=None, path=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._addresses = None
self._force = None
self._hdfs_user = None
self._krb_c_cache_secret = None
self._krb_config_config_map = None
self._krb_keytab_secret = None
self._krb_realm = None
self._krb_service_principal_name = None
self._krb_username = None
self._path = None
self.discriminator = None
self.addresses = addresses
if force is not None:
self.force = force
if hdfs_user is not None:
self.hdfs_user = hdfs_user
if krb_c_cache_secret is not None:
self.krb_c_cache_secret = krb_c_cache_secret
if krb_config_config_map is not None:
self.krb_config_config_map = krb_config_config_map
if krb_keytab_secret is not None:
self.krb_keytab_secret = krb_keytab_secret
if krb_realm is not None:
self.krb_realm = krb_realm
if krb_service_principal_name is not None:
self.krb_service_principal_name = krb_service_principal_name
if krb_username is not None:
self.krb_username = krb_username
self.path = path
@property
def addresses(self):
return self._addresses
@addresses.setter
def addresses(self, addresses):
if self.local_vars_configuration.client_side_validation and addresses is None:
raise ValueError("Invalid value for `addresses`, must not be `None`")
self._addresses = addresses
@property
def force(self):
return self._force
@force.setter
def force(self, force):
self._force = force
@property
def hdfs_user(self):
return self._hdfs_user
@hdfs_user.setter
def hdfs_user(self, hdfs_user):
self._hdfs_user = hdfs_user
@property
def krb_c_cache_secret(self):
return self._krb_c_cache_secret
@krb_c_cache_secret.setter
def krb_c_cache_secret(self, krb_c_cache_secret):
self._krb_c_cache_secret = krb_c_cache_secret
@property
def krb_config_config_map(self):
return self._krb_config_config_map
@krb_config_config_map.setter
def krb_config_config_map(self, krb_config_config_map):
self._krb_config_config_map = krb_config_config_map
@property
def krb_keytab_secret(self):
return self._krb_keytab_secret
@krb_keytab_secret.setter
def krb_keytab_secret(self, krb_keytab_secret):
self._krb_keytab_secret = krb_keytab_secret
@property
def krb_realm(self):
return self._krb_realm
@krb_realm.setter | Apache License 2.0 |
lightly-ai/lightly | lightly/openapi_generated/swagger_client/api/datasets_api.py | DatasetsApi.delete_dataset_by_id_with_http_info | python | def delete_dataset_by_id_with_http_info(self, dataset_id, **kwargs):
all_params = ['dataset_id']
all_params.append('async_req')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in six.iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method delete_dataset_by_id" % key
)
params[key] = val
del params['kwargs']
if self.api_client.client_side_validation and ('dataset_id' not in params or
params['dataset_id'] is None):
raise ValueError("Missing the required parameter `dataset_id` when calling `delete_dataset_by_id`")
collection_formats = {}
path_params = {}
if 'dataset_id' in params:
path_params['datasetId'] = params['dataset_id']
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
auth_settings = ['ApiKeyAuth', 'auth0Bearer']
return self.api_client.call_api(
'/v1/datasets/{datasetId}', 'DELETE',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
async_req=params.get('async_req'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats) | delete_dataset_by_id # noqa: E501
Delete a specific dataset # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.delete_dataset_by_id_with_http_info(dataset_id, async_req=True)
>>> result = thread.get()
:param async_req bool
:param MongoObjectID dataset_id: ObjectId of the dataset (required)
:return: None
If the method is called asynchronously,
returns the request thread. | https://github.com/lightly-ai/lightly/blob/00820e5a60522effb3685a8d792f15e99770ea50/lightly/openapi_generated/swagger_client/api/datasets_api.py#L157-L228 | from __future__ import absolute_import
import re
import six
from lightly.openapi_generated.swagger_client.api_client import ApiClient
class DatasetsApi(object):
def __init__(self, api_client=None):
if api_client is None:
api_client = ApiClient()
self.api_client = api_client
def create_dataset(self, body, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.create_dataset_with_http_info(body, **kwargs)
else:
(data) = self.create_dataset_with_http_info(body, **kwargs)
return data
def create_dataset_with_http_info(self, body, **kwargs):
all_params = ['body']
all_params.append('async_req')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in six.iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method create_dataset" % key
)
params[key] = val
del params['kwargs']
if self.api_client.client_side_validation and ('body' not in params or
params['body'] is None):
raise ValueError("Missing the required parameter `body` when calling `create_dataset`")
collection_formats = {}
path_params = {}
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'body' in params:
body_params = params['body']
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = ['ApiKeyAuth', 'auth0Bearer']
return self.api_client.call_api(
'/v1/datasets', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='CreateEntityResponse',
auth_settings=auth_settings,
async_req=params.get('async_req'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
def delete_dataset_by_id(self, dataset_id, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.delete_dataset_by_id_with_http_info(dataset_id, **kwargs)
else:
(data) = self.delete_dataset_by_id_with_http_info(dataset_id, **kwargs)
return data | MIT License |
genomicsengland/gelreportmodels | protocols/migration/migration_reports_500_to_reports_400.py | MigrateReports500To400.migrate_interpretation_request_rd | python | def migrate_interpretation_request_rd(self, old_instance, old_ig):
new_instance = self.convert_class(self.new_model.InterpretationRequestRD, old_instance)
new_instance.versionControl = self.new_model.ReportVersionControl()
new_instance.genomeAssemblyVersion = old_instance.genomeAssembly
if new_instance.bams is None:
new_instance.bams = []
if new_instance.vcfs is None:
new_instance.vcfs = []
new_instance.tieredVariants = self.convert_collection(old_ig.variants, self._migrate_reported_variant)
new_instance.tieringVersion = old_ig.softwareVersions.get("tiering", "")
new_instance.analysisVersion = ''
new_instance.analysisReturnUri = ''
if old_instance.additionalInfo:
new_instance.analysisVersion = old_instance.additionalInfo.get('analysisVersion') or ''
new_instance.analysisReturnUri = old_instance.additionalInfo.get('analysisReturnUri', '')
new_instance.tieringVersion = old_instance.additionalInfo.get('tieringVersion', '')
new_instance.complexGeneticPhenomena = old_instance.additionalInfo.get('complexGeneticPhenomena')
new_instance.cellbaseVersion = old_instance.additionalInfo.get('cellbaseVersion', '')
new_instance.interpretGenome = bool(distutils.util.strtobool(old_instance.additionalInfo.get('interpretGenome', 'false')))
if not old_instance.pedigree:
raise MigrationError("Cannot reverse migrate an Interpretation Request for RD with null pedigree")
new_instance.pedigree = MigrateParticipant110To100().migrate_pedigree(old_instance.pedigree)
return self.validate_object(object_to_validate=new_instance, object_type=self.new_model.InterpretationRequestRD) | Migrates a reports_5_0_0.InterpretationRequestRD into a reports_4_0_0.InterpretationRequestRD
:type old_instance: reports_5_0_0.InterpretationRequestRD
:type old_ig: reports_5_0_0.InterpretedGenomeRD
:rtype: reports_4_0_0.InterpretationRequestRD | https://github.com/genomicsengland/gelreportmodels/blob/879bf5dd6d16efc274257e1c3f527d6b7459fa45/protocols/migration/migration_reports_500_to_reports_400.py#L58-L90 | import logging
import distutils.util
from protocols import reports_4_0_0 as reports_4_0_0
from protocols import reports_5_0_0 as reports_5_0_0
from protocols.migration.base_migration import BaseMigrateReports400And500
from protocols.migration.base_migration import MigrationError
from protocols.migration import MigrateParticipant110To100
class MigrateReports500To400(BaseMigrateReports400And500):
old_model = reports_5_0_0
new_model = reports_4_0_0
cip_short_codes = {
'omicia': 'OPA',
'congenica': 'SAP',
'nextcode': 'CSA',
'illumina': 'ILMN',
'genomics_england': 'GEL',
'exomiser': 'EXM'
}
tier_map = {
old_model.Tier.NONE: new_model.Tier.NONE,
old_model.Tier.TIER1: new_model.Tier.TIER1,
old_model.Tier.TIER2: new_model.Tier.TIER2,
old_model.Tier.TIER3: new_model.Tier.TIER3,
old_model.Tier.TIER4: new_model.Tier.NONE,
old_model.Tier.TIER5: new_model.Tier.NONE,
}
genotype_map = {
old_model.Zygosity.reference_homozygous: new_model.Zygosity.reference_homozygous,
old_model.Zygosity.heterozygous: new_model.Zygosity.heterozygous,
old_model.Zygosity.alternate_homozygous: new_model.Zygosity.alternate_homozygous,
old_model.Zygosity.missing: new_model.Zygosity.missing,
old_model.Zygosity.half_missing_reference: new_model.Zygosity.half_missing_reference,
old_model.Zygosity.half_missing_alternate: new_model.Zygosity.half_missing_alternate,
old_model.Zygosity.alternate_hemizigous: new_model.Zygosity.alternate_hemizigous,
old_model.Zygosity.reference_hemizigous: new_model.Zygosity.reference_hemizigous,
old_model.Zygosity.unk: new_model.Zygosity.unk,
}
feature_type_map = {
old_model.GenomicEntityType.transcript: new_model.FeatureTypes.Transcript,
old_model.GenomicEntityType.regulatory_region: new_model.FeatureTypes.RegulatoryRegion,
old_model.GenomicEntityType.gene: new_model.FeatureTypes.Gene,
}
variant_classification_map = {
old_model.ClinicalSignificance.benign: new_model.VariantClassification.benign_variant,
old_model.ClinicalSignificance.likely_benign: new_model.VariantClassification.likely_benign_variant,
old_model.ClinicalSignificance.VUS: new_model.VariantClassification.variant_of_unknown_clinical_significance,
old_model.ClinicalSignificance.uncertain_significance:
new_model.VariantClassification.variant_of_unknown_clinical_significance,
old_model.ClinicalSignificance.likely_pathogenic: new_model.VariantClassification.likely_pathogenic_variant,
old_model.ClinicalSignificance.pathogenic: new_model.VariantClassification.pathogenic_variant,
} | Apache License 2.0 |
joonaspu/video-game-behavioural-cloning | record_human_play.py | finish_recording | python | def finish_recording(recording_path, env_name, unique_id, data):
trajectory_file = os.path.join(
recording_path,
"trajectories_pressed_buttons",
"{}".format(env_name),
"{}.json".format(unique_id)
)
with open(trajectory_file, "w") as f:
json.dump(data, f) | Store recorded data into a json file | https://github.com/joonaspu/video-game-behavioural-cloning/blob/828aaba3d8d275564f15f809611a3c253cea0298/record_human_play.py#L66-L75 | import argparse
import time
import os
import json
from video_game_env.connection import Connection
parser = argparse.ArgumentParser("""Record humans playing video games.
Hotkeys:
- Page Up + Q: Quit
- Page Up + R: Start recording, or
stop and start new recording
- Page Up + S: Stop recording
""")
parser.add_argument("--dont-start-binary", action="store_true",
help="Do not start the recorder binary.")
parser.add_argument("--binary", default="video_game_env/main",
help="Path to the recorder binary.")
parser.add_argument("-f", "--framerate", type=int, default=20,
help="At what FPS we should store experiences (default: 20)")
parser.add_argument("-q", "--quality", type=int, default=80,
help="JPEG compression quality (default: 80)")
parser.add_argument("process_name", type=str,
help="Name of process to be recorded.")
parser.add_argument("env_name", type=str,
help="Name to be used when storing samples.")
parser.add_argument("output", type=str,
help="Root directory for saved recordings.") | MIT License |
tomplus/kubernetes_asyncio | kubernetes_asyncio/client/models/admissionregistration_v1beta1_webhook_client_config.py | AdmissionregistrationV1beta1WebhookClientConfig.ca_bundle | python | def ca_bundle(self, ca_bundle):
if (self.local_vars_configuration.client_side_validation and
ca_bundle is not None and not re.search(r'^(?:[A-Za-z0-9+\/]{4})*(?:[A-Za-z0-9+\/]{2}==|[A-Za-z0-9+\/]{3}=)?$', ca_bundle)):
raise ValueError(r"Invalid value for `ca_bundle`, must be a follow pattern or equal to `/^(?:[A-Za-z0-9+\/]{4})*(?:[A-Za-z0-9+\/]{2}==|[A-Za-z0-9+\/]{3}=)?$/`")
self._ca_bundle = ca_bundle | Sets the ca_bundle of this AdmissionregistrationV1beta1WebhookClientConfig.
`caBundle` is a PEM encoded CA bundle which will be used to validate the webhook's server certificate. If unspecified, system trust roots on the apiserver are used. # noqa: E501
:param ca_bundle: The ca_bundle of this AdmissionregistrationV1beta1WebhookClientConfig. # noqa: E501
:type: str | https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/admissionregistration_v1beta1_webhook_client_config.py#L77-L89 | import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class AdmissionregistrationV1beta1WebhookClientConfig(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'ca_bundle': 'str',
'service': 'AdmissionregistrationV1beta1ServiceReference',
'url': 'str'
}
attribute_map = {
'ca_bundle': 'caBundle',
'service': 'service',
'url': 'url'
}
def __init__(self, ca_bundle=None, service=None, url=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._ca_bundle = None
self._service = None
self._url = None
self.discriminator = None
if ca_bundle is not None:
self.ca_bundle = ca_bundle
if service is not None:
self.service = service
if url is not None:
self.url = url
@property
def ca_bundle(self):
return self._ca_bundle
@ca_bundle.setter | Apache License 2.0 |
hbdmapi/huobi_futures_python | alpha/quant.py | Quant.initialize | python | def initialize(self, config_module=None):
self._get_event_loop()
self._load_settings(config_module)
self._init_logger()
self._init_db_instance()
self._get_version()
self._do_heartbeat() | Initialize.
Args:
config_module: config file path, normally it"s a json file. | https://github.com/hbdmapi/huobi_futures_python/blob/a505cfef0591d4adc610b7ef11bd06cb2d2ae2a5/alpha/quant.py#L29-L40 | import signal
import asyncio
from alpha.utils import logger
from alpha.config import config
from alpha.const import VERSION
class Quant:
def __init__(self):
self.loop = None | MIT License |
hopshadoop/hdfscontents | hdfscontents/hdfsio.py | HDFSManagerMixin._hdfs_ensure_dir_exists | python | def _hdfs_ensure_dir_exists(self, hdfs_path):
if not self.hdfs.exists(hdfs_path):
try:
self.hdfs.create_directory(hdfs_path)
self.hdfs.chmod(hdfs_path, 0o0770)
except OSError as e:
if e.errno != errno.EEXIST:
raise
elif not self._hdfs_dir_exists(hdfs_path):
raise IOError("%r exists but is not a directory" % hdfs_path) | ensure that a directory exists
If it doesn't exist, try to create it and protect against a race condition
if another process is doing the same. | https://github.com/hopshadoop/hdfscontents/blob/1eafd6260f2edca0ec9093196167d2233fdecfb2/hdfscontents/hdfsio.py#L174-L189 | from contextlib import contextmanager
import errno
import os
from tornado.web import HTTPError
from notebook.utils import (
to_api_path,
to_os_path,
)
import nbformat
from pydoop.hdfs.path import split
from ipython_genutils.py3compat import str_to_unicode
from traitlets.config import Configurable
from traitlets import Bool, Integer, Unicode, default, Instance
try:
from base64 import encodebytes, decodebytes
except ImportError:
from base64 import encodestring as encodebytes, decodestring as decodebytes
def path_to_intermediate(path):
dirname, basename = os.path.split(path)
return os.path.join(dirname, '.~' + basename)
def path_to_invalid(path):
dirname, basename = os.path.split(path)
return os.path.join(dirname, basename + '.invalid')
def hdfs_copy_file(hdfs, src, dst):
chunk = 2 ** 16
with hdfs.open_file(dst, 'w') as f1:
with hdfs.open_file(src, 'r') as f2:
while True:
out = f2.read(chunk)
if len(out) == 0:
break
f1.write(out)
hdfs.chmod(dst, 0o0770)
def hdfs_replace_file(hdfs, src, dst):
hdfs.delete(dst)
hdfs.move(src, hdfs, dst)
hdfs.chmod(dst, 0o0770)
def hdfs_file_exists(hdfs, hdfs_path):
return hdfs.exists(hdfs_path) and hdfs.get_path_info(hdfs_path).get(u'kind') == u'file'
@contextmanager
def atomic_writing(hdfs, hdfs_path):
tmp_path = path_to_intermediate(hdfs_path)
if hdfs_file_exists(hdfs, hdfs_path):
hdfs_copy_file(hdfs, hdfs_path, tmp_path)
fileobj = hdfs.open_file(hdfs_path, 'w')
try:
yield fileobj
except:
fileobj.close()
hdfs_replace_file(hdfs, tmp_path, hdfs_path)
raise
fileobj.flush()
fileobj.close()
hdfs.chmod(hdfs_path, 0o0770)
if hdfs_file_exists(hdfs, tmp_path):
hdfs.delete(tmp_path)
@contextmanager
def _simple_writing(hdfs, hdfs_path):
fileobj = hdfs.open_file(hdfs_path, 'w')
try:
yield fileobj
except:
fileobj.close()
raise
fileobj.flush()
fileobj.close()
hdfs.chmod(hdfs_path, 0o0770)
class HDFSManagerMixin(Configurable):
use_atomic_writing = Bool(True, config=True, help=
"""By default notebooks are saved on disk on a temporary file and then if succefully written, it replaces the old ones.
This procedure, namely 'atomic_writing', causes some bugs on file system whitout operation order enforcement (like some networked fs).
If set to False, the new notebook is written directly on the old one which could fail (eg: full filesystem or quota )""")
def _hdfs_dir_exists(self, hdfs_path):
if self.hdfs.exists(hdfs_path):
return self.hdfs.get_path_info(hdfs_path).get(u'kind') == u'directory'
else:
return False | Apache License 2.0 |
fusionauth/fusionauth-python-client | src/main/python/fusionauth/fusionauth_client.py | FusionAuthClient.create_user_consent | python | def create_user_consent(self, request, user_consent_id=None):
return self.start().uri('/api/user/consent') .url_segment(user_consent_id) .body_handler(JSONBodyHandler(request)) .post() .go() | Creates a single User consent.
Attributes:
user_consent_id: (Optional) The Id for the User consent. If not provided a secure random UUID will be generated.
request: The request that contains the user consent information. | https://github.com/fusionauth/fusionauth-python-client/blob/20bf313710eb0af6bfb9c07b7864b52fe5853eb0/src/main/python/fusionauth/fusionauth_client.py#L497-L509 | from deprecated import deprecated
from fusionauth.rest_client import RESTClient, JSONBodyHandler, FormDataBodyHandler
class FusionAuthClient:
def __init__(self, api_key, base_url):
self.api_key = api_key
self.base_url = base_url
self.tenant_id = None
def set_tenant_id(self, tenant_id):
self.tenant_id = tenant_id
def action_user(self, request):
return self.start().uri('/api/user/action') .body_handler(JSONBodyHandler(request)) .post() .go()
def activate_reactor(self, request):
return self.start().uri('/api/reactor') .body_handler(JSONBodyHandler(request)) .post() .go()
def add_user_to_family(self, family_id, request):
return self.start().uri('/api/user/family') .url_segment(family_id) .body_handler(JSONBodyHandler(request)) .put() .go()
def cancel_action(self, action_id, request):
return self.start().uri('/api/user/action') .url_segment(action_id) .body_handler(JSONBodyHandler(request)) .delete() .go()
def change_password(self, change_password_id, request):
return self.start_anonymous().uri('/api/user/change-password') .url_segment(change_password_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def change_password_by_identity(self, request):
return self.start().uri('/api/user/change-password') .body_handler(JSONBodyHandler(request)) .post() .go()
def comment_on_user(self, request):
return self.start().uri('/api/user/comment') .body_handler(JSONBodyHandler(request)) .post() .go()
def create_api_key(self, request, key_id=None):
return self.start().uri('/api/api-key') .url_segment(key_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_application(self, request, application_id=None):
return self.start().uri('/api/application') .url_segment(application_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_application_role(self, application_id, request, role_id=None):
return self.start().uri('/api/application') .url_segment(application_id) .url_segment("role") .url_segment(role_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_audit_log(self, request):
return self.start().uri('/api/system/audit-log') .body_handler(JSONBodyHandler(request)) .post() .go()
def create_connector(self, request, connector_id=None):
return self.start().uri('/api/connector') .url_segment(connector_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_consent(self, request, consent_id=None):
return self.start().uri('/api/consent') .url_segment(consent_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_email_template(self, request, email_template_id=None):
return self.start().uri('/api/email/template') .url_segment(email_template_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_entity(self, request, entity_id=None):
return self.start().uri('/api/entity') .url_segment(entity_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_entity_type(self, request, entity_type_id=None):
return self.start().uri('/api/entity/type') .url_segment(entity_type_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_entity_type_permission(self, entity_type_id, request, permission_id=None):
return self.start().uri('/api/entity/type') .url_segment(entity_type_id) .url_segment("permission") .url_segment(permission_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_family(self, request, family_id=None):
return self.start().uri('/api/user/family') .url_segment(family_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_form(self, request, form_id=None):
return self.start().uri('/api/form') .url_segment(form_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_form_field(self, request, field_id=None):
return self.start().uri('/api/form/field') .url_segment(field_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_group(self, request, group_id=None):
return self.start().uri('/api/group') .url_segment(group_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_group_members(self, request):
return self.start().uri('/api/group/member') .body_handler(JSONBodyHandler(request)) .post() .go()
def create_ip_access_control_list(self, request, access_control_list_id=None):
return self.start().uri('/api/ip-acl') .url_segment(access_control_list_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_identity_provider(self, request, identity_provider_id=None):
return self.start().uri('/api/identity-provider') .url_segment(identity_provider_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_lambda(self, request, lambda_id=None):
return self.start().uri('/api/lambda') .url_segment(lambda_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_message_template(self, request, message_template_id=None):
return self.start().uri('/api/message/template') .url_segment(message_template_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_messenger(self, request, messenger_id=None):
return self.start().uri('/api/messenger') .url_segment(messenger_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_tenant(self, request, tenant_id=None):
return self.start().uri('/api/tenant') .url_segment(tenant_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_theme(self, request, theme_id=None):
return self.start().uri('/api/theme') .url_segment(theme_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_user(self, request, user_id=None):
return self.start().uri('/api/user') .url_segment(user_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_user_action(self, request, user_action_id=None):
return self.start().uri('/api/user-action') .url_segment(user_action_id) .body_handler(JSONBodyHandler(request)) .post() .go()
def create_user_action_reason(self, request, user_action_reason_id=None):
return self.start().uri('/api/user-action-reason') .url_segment(user_action_reason_id) .body_handler(JSONBodyHandler(request)) .post() .go() | Apache License 2.0 |
stlehmann/pyads | pyads/constants.py | PLCTYPE_ARR_SHORT | python | def PLCTYPE_ARR_SHORT(n: int) -> Type[Array]:
return c_int16 * n | Return an array with n short values. | https://github.com/stlehmann/pyads/blob/3c505092dafb2cd3f85c77ab6c700b99976cf5da/pyads/constants.py#L166-L168 | from typing import Type, Dict, Callable, Union
from ctypes import (
Array,
c_bool,
c_ubyte,
c_int8,
c_uint8,
c_int16,
c_uint16,
c_int32,
c_uint32,
c_float,
c_double,
c_char,
c_int64,
c_uint64,
)
STRING_BUFFER: int = 1024
PLC_DEFAULT_STRING_SIZE: int = 80
MAX_ADS_SUB_COMMANDS: int = 500
PLCTYPE_BOOL = c_bool
PLCTYPE_BYTE = c_ubyte
PLCTYPE_DWORD = c_uint32
PLCTYPE_DINT = c_int32
PLCTYPE_INT = c_int16
PLCTYPE_LREAL = c_double
PLCTYPE_REAL = c_float
PLCTYPE_SINT = c_int8
PLCTYPE_STRING = c_char
PLCTYPE_TOD = c_int32
PLCTYPE_UBYTE = c_ubyte
PLCTYPE_UDINT = c_uint32
PLCTYPE_UINT = c_uint16
PLCTYPE_USINT = c_uint8
PLCTYPE_WORD = c_uint16
PLCTYPE_LINT = c_int64
PLCTYPE_ULINT = c_uint64
PLCTYPE_DATE = PLCTYPE_DWORD
PLCTYPE_DATE_AND_TIME = PLCTYPE_DWORD
PLCTYPE_DT = PLCTYPE_DWORD
PLCTYPE_TIME = PLCTYPE_DWORD
PLCSimpleDataType = Union[
PLCTYPE_BOOL,
PLCTYPE_BYTE,
PLCTYPE_DWORD,
PLCTYPE_DINT,
PLCTYPE_INT,
PLCTYPE_LREAL,
PLCTYPE_REAL,
PLCTYPE_SINT,
PLCTYPE_STRING,
PLCTYPE_TOD,
PLCTYPE_UBYTE,
PLCTYPE_UDINT,
PLCTYPE_UINT,
PLCTYPE_USINT,
PLCTYPE_WORD,
PLCTYPE_LINT,
PLCTYPE_ULINT,
PLCTYPE_DATE,
PLCTYPE_DATE_AND_TIME,
PLCTYPE_DT,
PLCTYPE_TIME,
]
PLCDataType = Union[Array, PLCSimpleDataType]
DATATYPE_MAP: Dict[Type, str] = {
PLCTYPE_BOOL: "<?",
PLCTYPE_BYTE: "<B",
PLCTYPE_DINT: "<i",
PLCTYPE_DWORD: "<I",
PLCTYPE_INT: "<h",
PLCTYPE_LREAL: "<d",
PLCTYPE_REAL: "<f",
PLCTYPE_SINT: "<b",
PLCTYPE_UDINT: "<I",
PLCTYPE_UINT: "<H",
PLCTYPE_USINT: "<B",
PLCTYPE_LINT: "<q",
PLCTYPE_ULINT: "<Q",
PLCTYPE_WORD: "<H",
}
ADST_VOID: int = 0
ADST_INT8: int = 16
ADST_UINT8: int = 17
ADST_INT16: int = 2
ADST_UINT16: int = 18
ADST_INT32: int = 3
ADST_UINT32: int = 19
ADST_INT64: int = 20
ADST_UINT64: int = 21
ADST_REAL32: int = 4
ADST_REAL64: int = 5
ADST_BIGTYPE: int= 65
ADST_STRING: int = 30
ADST_WSTRING: int = 31
ADST_REAL80: int = 32
ADST_BIT: int = 33
ADST_MAXTYPES: int = 34
ads_type_to_ctype = {
ADST_INT8: PLCTYPE_BYTE,
ADST_UINT8: PLCTYPE_UBYTE,
ADST_INT16: PLCTYPE_INT,
ADST_UINT16: PLCTYPE_UINT,
ADST_INT32: PLCTYPE_DINT,
ADST_UINT32: PLCTYPE_UDINT,
ADST_INT64: PLCTYPE_LINT,
ADST_UINT64: PLCTYPE_ULINT,
ADST_REAL32: PLCTYPE_REAL,
ADST_REAL64: PLCTYPE_LREAL,
ADST_STRING: PLCTYPE_STRING,
ADST_BIT: PLCTYPE_BOOL,
}
def PLCTYPE_ARR_REAL(n: int) -> Type[Array]:
return c_float * n
def PLCTYPE_ARR_LREAL(n: int) -> Type[Array]:
return c_double * n
def PLCTYPE_ARR_BOOL(n: int) -> Type[Array]:
return c_bool * n
def PLCTYPE_ARR_INT(n: int) -> Type[Array]:
return c_int16 * n
def PLCTYPE_ARR_UINT(n: int) -> Type[Array]:
return c_uint16 * n | MIT License |
marqeta/marqeta-python | marqeta/resources/commando_modes.py | CommandoModesCollection.__call__ | python | def __call__(self, token):
return CommandoModesContext(token, self.client) | Special case call made with token
:param token: commandomodes token
:return: CommandoModesContext object | https://github.com/marqeta/marqeta-python/blob/66fa690eb910825c510a391720b0fe717fac0234/marqeta/resources/commando_modes.py#L24-L30 | from marqeta.resources.collection import Collection
from marqeta.response_models.commando_mode_response import CommandoModeResponse
from marqeta.response_models.commando_mode_transition_response import CommandoModeTransitionResponse
class CommandoModesCollection(object):
_endpoint = 'commandomodes'
def __init__(self, client):
self.client = client
self.collections = Collection(self.client, CommandoModeResponse) | MIT License |
simplejwt/django-rest-framework-simplejwt | rest_framework_simplejwt/tokens.py | BlacklistMixin.blacklist | python | def blacklist(self):
jti = self.payload[api_settings.JTI_CLAIM]
exp = self.payload['exp']
token, _ = OutstandingToken.objects.get_or_create(
jti=jti,
defaults={
'token': str(self),
'expires_at': datetime_from_epoch(exp),
},
)
return BlacklistedToken.objects.get_or_create(token=token) | Ensures this token is included in the outstanding token list and
adds it to the blacklist. | https://github.com/simplejwt/django-rest-framework-simplejwt/blob/2003a24276f334c5e1d1b03c91d5343c0d3376bf/rest_framework_simplejwt/tokens.py#L218-L235 | from datetime import timedelta
from uuid import uuid4
from django.conf import settings
from django.utils.translation import gettext_lazy as _
from django.utils.module_loading import import_string
from .exceptions import TokenBackendError, TokenError
from .settings import api_settings
from .token_blacklist.models import BlacklistedToken, OutstandingToken
from .utils import (
aware_utcnow, datetime_from_epoch, datetime_to_epoch, format_lazy,
)
class Token:
token_type = None
lifetime = None
def __init__(self, token=None, verify=True):
if self.token_type is None or self.lifetime is None:
raise TokenError(_('Cannot create token with no type or lifetime'))
self.token = token
self.current_time = aware_utcnow()
if token is not None:
token_backend = self.get_token_backend()
try:
self.payload = token_backend.decode(token, verify=verify)
except TokenBackendError:
raise TokenError(_('Token is invalid or expired'))
if verify:
self.verify()
else:
self.payload = {api_settings.TOKEN_TYPE_CLAIM: self.token_type}
self.set_exp(from_time=self.current_time, lifetime=self.lifetime)
self.set_iat(at_time=self.current_time)
self.set_jti()
def __repr__(self):
return repr(self.payload)
def __getitem__(self, key):
return self.payload[key]
def __setitem__(self, key, value):
self.payload[key] = value
def __delitem__(self, key):
del self.payload[key]
def __contains__(self, key):
return key in self.payload
def get(self, key, default=None):
return self.payload.get(key, default)
def __str__(self):
return self.get_token_backend().encode(self.payload)
def verify(self):
self.check_exp()
if api_settings.JTI_CLAIM not in self.payload:
raise TokenError(_('Token has no id'))
self.verify_token_type()
def verify_token_type(self):
try:
token_type = self.payload[api_settings.TOKEN_TYPE_CLAIM]
except KeyError:
raise TokenError(_('Token has no type'))
if self.token_type != token_type:
raise TokenError(_('Token has wrong type'))
def set_jti(self):
self.payload[api_settings.JTI_CLAIM] = uuid4().hex
def set_exp(self, claim='exp', from_time=None, lifetime=None):
if from_time is None:
from_time = self.current_time
if lifetime is None:
lifetime = self.lifetime
self.payload[claim] = datetime_to_epoch(from_time + lifetime)
def set_iat(self, claim='iat', at_time=None):
if at_time is None:
at_time = self.current_time
self.payload[claim] = datetime_to_epoch(at_time)
def check_exp(self, claim='exp', current_time=None):
if current_time is None:
current_time = self.current_time
try:
claim_value = self.payload[claim]
except KeyError:
raise TokenError(format_lazy(_("Token has no '{}' claim"), claim))
claim_time = datetime_from_epoch(claim_value)
if claim_time <= current_time:
raise TokenError(format_lazy(_("Token '{}' claim has expired"), claim))
@classmethod
def for_user(cls, user):
user_id = getattr(user, api_settings.USER_ID_FIELD)
if not isinstance(user_id, int):
user_id = str(user_id)
token = cls()
token[api_settings.USER_ID_CLAIM] = user_id
return token
_token_backend = None
def get_token_backend(self):
if self._token_backend is None:
self._token_backend = import_string(
"rest_framework_simplejwt.state.token_backend"
)
return self._token_backend
class BlacklistMixin:
if 'rest_framework_simplejwt.token_blacklist' in settings.INSTALLED_APPS:
def verify(self, *args, **kwargs):
self.check_blacklist()
super().verify(*args, **kwargs)
def check_blacklist(self):
jti = self.payload[api_settings.JTI_CLAIM]
if BlacklistedToken.objects.filter(token__jti=jti).exists():
raise TokenError(_('Token is blacklisted')) | MIT License |
rbuffat/pyepw | pyepw/epw.py | DesignCondition.unkown_field | python | def unkown_field(self):
return self._unkown_field | Get unkown_field.
Returns:
str: the value of `unkown_field` or None if not set | https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L945-L952 | from collections import OrderedDict
import re
class Location(object):
_internal_name = "LOCATION"
field_count = 9
def __init__(self):
self._city = None
self._state_province_region = None
self._country = None
self._source = None
self._wmo = None
self._latitude = None
self._longitude = None
self._timezone = None
self._elevation = None
def read(self, vals):
i = 0
if len(vals[i]) == 0:
self.city = None
else:
self.city = vals[i]
i += 1
if len(vals[i]) == 0:
self.state_province_region = None
else:
self.state_province_region = vals[i]
i += 1
if len(vals[i]) == 0:
self.country = None
else:
self.country = vals[i]
i += 1
if len(vals[i]) == 0:
self.source = None
else:
self.source = vals[i]
i += 1
if len(vals[i]) == 0:
self.wmo = None
else:
self.wmo = vals[i]
i += 1
if len(vals[i]) == 0:
self.latitude = None
else:
self.latitude = vals[i]
i += 1
if len(vals[i]) == 0:
self.longitude = None
else:
self.longitude = vals[i]
i += 1
if len(vals[i]) == 0:
self.timezone = None
else:
self.timezone = vals[i]
i += 1
if len(vals[i]) == 0:
self.elevation = None
else:
self.elevation = vals[i]
i += 1
@property
def city(self):
return self._city
@city.setter
def city(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str '
'for field `city`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `city`')
self._city = value
@property
def state_province_region(self):
return self._state_province_region
@state_province_region.setter
def state_province_region(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError(
'value {} need to be of type str '
'for field `state_province_region`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `state_province_region`')
self._state_province_region = value
@property
def country(self):
return self._country
@country.setter
def country(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str '
'for field `country`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `country`')
self._country = value
@property
def source(self):
return self._source
@source.setter
def source(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str '
'for field `source`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `source`')
self._source = value
@property
def wmo(self):
return self._wmo
@wmo.setter
def wmo(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str '
'for field `wmo`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `wmo`')
self._wmo = value
@property
def latitude(self):
return self._latitude
@latitude.setter
def latitude(self, value=0.0):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float '
'for field `latitude`'.format(value))
if value < -90.0:
raise ValueError('value need to be greater or equal -90.0 '
'for field `latitude`')
if value > 90.0:
raise ValueError('value need to be smaller 90.0 '
'for field `latitude`')
self._latitude = value
@property
def longitude(self):
return self._longitude
@longitude.setter
def longitude(self, value=0.0):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float '
'for field `longitude`'.format(value))
if value < -180.0:
raise ValueError('value need to be greater or equal -180.0 '
'for field `longitude`')
if value > 180.0:
raise ValueError('value need to be smaller 180.0 '
'for field `longitude`')
self._longitude = value
@property
def timezone(self):
return self._timezone
@timezone.setter
def timezone(self, value=0.0):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float '
'for field `timezone`'.format(value))
if value < -12.0:
raise ValueError('value need to be greater or equal -12.0 '
'for field `timezone`')
if value > 12.0:
raise ValueError('value need to be smaller 12.0 '
'for field `timezone`')
self._timezone = value
@property
def elevation(self):
return self._elevation
@elevation.setter
def elevation(self, value=0.0):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float '
'for field `elevation`'.format(value))
if value < -1000.0:
raise ValueError('value need to be greater or equal -1000.0 '
'for field `elevation`')
if value >= 9999.9:
raise ValueError('value need to be smaller 9999.9 '
'for field `elevation`')
self._elevation = value
@classmethod
def _to_str(cls, value):
if value is None:
return ''
else:
return str(value)
def export(self, top=True):
out = []
if top:
out.append(self._internal_name)
out.append(self._to_str(self.city))
out.append(self._to_str(self.state_province_region))
out.append(self._to_str(self.country))
out.append(self._to_str(self.source))
out.append(self._to_str(self.wmo))
out.append(self._to_str(self.latitude))
out.append(self._to_str(self.longitude))
out.append(self._to_str(self.timezone))
out.append(self._to_str(self.elevation))
return ",".join(out)
def __str__(self):
return self.export(True)
class DesignCondition(object):
_internal_name = "DESIGN CONDITION"
field_count = 68
def __init__(self):
self._title_of_design_condition = None
self._unkown_field = None
self._design_stat_heating = None
self._coldestmonth = None
self._db996 = None
self._db990 = None
self._dp996 = None
self._hr_dp996 = None
self._db_dp996 = None
self._dp990 = None
self._hr_dp990 = None
self._db_dp990 = None
self._ws004c = None
self._db_ws004c = None
self._ws010c = None
self._db_ws010c = None
self._ws_db996 = None
self._wd_db996 = None
self._design_stat_cooling = None
self._hottestmonth = None
self._dbr = None
self._db004 = None
self._wb_db004 = None
self._db010 = None
self._wb_db010 = None
self._db020 = None
self._wb_db020 = None
self._wb004 = None
self._db_wb004 = None
self._wb010 = None
self._db_wb010 = None
self._wb020 = None
self._db_wb020 = None
self._ws_db004 = None
self._wd_db004 = None
self._dp004 = None
self._hr_dp004 = None
self._db_dp004 = None
self._dp010 = None
self._hr_dp010 = None
self._db_dp010 = None
self._dp020 = None
self._hr_dp020 = None
self._db_dp020 = None
self._en004 = None
self._db_en004 = None
self._en010 = None
self._db_en010 = None
self._en020 = None
self._db_en020 = None
self._hrs_84_and_db12_8_or_20_6 = None
self._design_stat_extremes = None
self._ws010 = None
self._ws025 = None
self._ws050 = None
self._wbmax = None
self._dbmin_mean = None
self._dbmax_mean = None
self._dbmin_stddev = None
self._dbmax_stddev = None
self._dbmin05years = None
self._dbmax05years = None
self._dbmin10years = None
self._dbmax10years = None
self._dbmin20years = None
self._dbmax20years = None
self._dbmin50years = None
self._dbmax50years = None
def read(self, vals):
i = 0
if len(vals[i]) == 0:
self.title_of_design_condition = None
else:
self.title_of_design_condition = vals[i]
i += 1
if len(vals[i]) == 0:
self.unkown_field = None
else:
self.unkown_field = vals[i]
i += 1
if len(vals[i]) == 0:
self.design_stat_heating = None
else:
self.design_stat_heating = vals[i]
i += 1
if len(vals[i]) == 0:
self.coldestmonth = None
else:
self.coldestmonth = vals[i]
i += 1
if len(vals[i]) == 0:
self.db996 = None
else:
self.db996 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db990 = None
else:
self.db990 = vals[i]
i += 1
if len(vals[i]) == 0:
self.dp996 = None
else:
self.dp996 = vals[i]
i += 1
if len(vals[i]) == 0:
self.hr_dp996 = None
else:
self.hr_dp996 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_dp996 = None
else:
self.db_dp996 = vals[i]
i += 1
if len(vals[i]) == 0:
self.dp990 = None
else:
self.dp990 = vals[i]
i += 1
if len(vals[i]) == 0:
self.hr_dp990 = None
else:
self.hr_dp990 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_dp990 = None
else:
self.db_dp990 = vals[i]
i += 1
if len(vals[i]) == 0:
self.ws004c = None
else:
self.ws004c = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_ws004c = None
else:
self.db_ws004c = vals[i]
i += 1
if len(vals[i]) == 0:
self.ws010c = None
else:
self.ws010c = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_ws010c = None
else:
self.db_ws010c = vals[i]
i += 1
if len(vals[i]) == 0:
self.ws_db996 = None
else:
self.ws_db996 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wd_db996 = None
else:
self.wd_db996 = vals[i]
i += 1
if len(vals[i]) == 0:
self.design_stat_cooling = None
else:
self.design_stat_cooling = vals[i]
i += 1
if len(vals[i]) == 0:
self.hottestmonth = None
else:
self.hottestmonth = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbr = None
else:
self.dbr = vals[i]
i += 1
if len(vals[i]) == 0:
self.db004 = None
else:
self.db004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wb_db004 = None
else:
self.wb_db004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db010 = None
else:
self.db010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wb_db010 = None
else:
self.wb_db010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db020 = None
else:
self.db020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wb_db020 = None
else:
self.wb_db020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wb004 = None
else:
self.wb004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_wb004 = None
else:
self.db_wb004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wb010 = None
else:
self.wb010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_wb010 = None
else:
self.db_wb010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wb020 = None
else:
self.wb020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_wb020 = None
else:
self.db_wb020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.ws_db004 = None
else:
self.ws_db004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wd_db004 = None
else:
self.wd_db004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.dp004 = None
else:
self.dp004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.hr_dp004 = None
else:
self.hr_dp004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_dp004 = None
else:
self.db_dp004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.dp010 = None
else:
self.dp010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.hr_dp010 = None
else:
self.hr_dp010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_dp010 = None
else:
self.db_dp010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.dp020 = None
else:
self.dp020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.hr_dp020 = None
else:
self.hr_dp020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_dp020 = None
else:
self.db_dp020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.en004 = None
else:
self.en004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_en004 = None
else:
self.db_en004 = vals[i]
i += 1
if len(vals[i]) == 0:
self.en010 = None
else:
self.en010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_en010 = None
else:
self.db_en010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.en020 = None
else:
self.en020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.db_en020 = None
else:
self.db_en020 = vals[i]
i += 1
if len(vals[i]) == 0:
self.hrs_84_and_db12_8_or_20_6 = None
else:
self.hrs_84_and_db12_8_or_20_6 = vals[i]
i += 1
if len(vals[i]) == 0:
self.design_stat_extremes = None
else:
self.design_stat_extremes = vals[i]
i += 1
if len(vals[i]) == 0:
self.ws010 = None
else:
self.ws010 = vals[i]
i += 1
if len(vals[i]) == 0:
self.ws025 = None
else:
self.ws025 = vals[i]
i += 1
if len(vals[i]) == 0:
self.ws050 = None
else:
self.ws050 = vals[i]
i += 1
if len(vals[i]) == 0:
self.wbmax = None
else:
self.wbmax = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmin_mean = None
else:
self.dbmin_mean = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmax_mean = None
else:
self.dbmax_mean = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmin_stddev = None
else:
self.dbmin_stddev = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmax_stddev = None
else:
self.dbmax_stddev = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmin05years = None
else:
self.dbmin05years = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmax05years = None
else:
self.dbmax05years = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmin10years = None
else:
self.dbmin10years = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmax10years = None
else:
self.dbmax10years = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmin20years = None
else:
self.dbmin20years = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmax20years = None
else:
self.dbmax20years = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmin50years = None
else:
self.dbmin50years = vals[i]
i += 1
if len(vals[i]) == 0:
self.dbmax50years = None
else:
self.dbmax50years = vals[i]
i += 1
@property
def title_of_design_condition(self):
return self._title_of_design_condition
@title_of_design_condition.setter
def title_of_design_condition(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError(
'value {} need to be of type str '
'for field `title_of_design_condition`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `title_of_design_condition`')
self._title_of_design_condition = value
@property | Apache License 2.0 |
vagrawal/deepsphinx | deepsphinx/attention.py | BahdanauAttentionCutoff.__init__ | python | def __init__(self,
num_units,
memory,
memory_sequence_length=None,
normalize=False,
score_mask_value=float('-inf'),
name='BahdanauAttention'):
def probability_fn_cutoff(scores, previous_alignments):
ran = tf.range(tf.to_float(
tf.shape(previous_alignments)[1]), dtype=tf.float32)
mean = (tf.reduce_sum(ran * previous_alignments, axis=1) /
tf.reduce_sum(previous_alignments, axis=1))
mask = tf.logical_and(
ran > mean - FLAGS.cutoff_range,
ran < mean + FLAGS.cutoff_range)
return tf.nn.softmax(tf.where(mask, scores, tf.ones_like(scores) * -1000))
probability_fn = tf.nn.softmax
def probability_fn_cutoff(score, _):
return probability_fn(score)
super(BahdanauAttentionCutoff, self).__init__(
query_layer=Dense(
num_units, name='query_layer', use_bias=False),
memory_layer=Dense(
num_units, name='memory_layer', use_bias=False),
memory=memory,
probability_fn=probability_fn_cutoff,
memory_sequence_length=memory_sequence_length,
score_mask_value=score_mask_value,
name=name)
self._num_units = num_units
self._normalize = normalize
self._name = name
dtype = tf.float32
self.v = tf.get_variable(
'attention_v', [self._num_units], dtype=dtype)
if FLAGS.use_conv_feat_att:
self.conv_filt = tf.get_variable(
'conv_filter',
shape = [200, 1, num_units])
if self._normalize:
self.g = tf.get_variable(
'attention_g', dtype=dtype,
initializer=tf.sqrt((1. / self._num_units)))
self.b = tf.get_variable(
'attention_b', [self._num_units], dtype=dtype,
initializer=tf.zeros_initializer()) | Construct the Attention mechanism.
Args:
num_units: The depth of the query mechanism.
memory: The memory to query; usually the output of an RNN encoder. This
tensor should be shaped `[batch_size, max_time, ...]`.
memory_sequence_length (optional): Sequence lengths for the batch entries
in memory. If provided, the memory tensor rows are masked with zeros
for values past the respective sequence lengths.
normalize: Python boolean. Whether to normalize the energy term.
probability_fn: (optional) A `callable`. Converts the score to
probabilities. The default is @{tf.nn.softmax}. Other options include
@{tf.contrib.seq2seq.hardmax} and @{tf.contrib.sparsemax.sparsemax}.
Its signature should be: `probabilities = probability_fn(score)`.
score_mask_value: (optional): The mask value for score before passing into
`probability_fn`. The default is -inf. Only used if
`memory_sequence_length` is not None.
name: Name to use when creating ops. | https://github.com/vagrawal/deepsphinx/blob/5fa7a2e3f22a69d956cc4866a40f73fcdecb14e2/deepsphinx/attention.py#L25-L94 | import tensorflow as tf
from tensorflow.python.layers.core import Dense
from tensorflow.python.ops.rnn_cell_impl import _zero_state_tensors
from deepsphinx.utils import FLAGS
class BahdanauAttentionCutoff(tf.contrib.seq2seq.BahdanauAttention.__base__): | MIT License |
santinic/pampy | pampy/pampy.py | match | python | def match(var, *args, default=NoDefault, strict=True):
if len(args) % 2 != 0:
raise MatchError("Every guard must have an action.")
if default is NoDefault and strict is False:
default = False
pairs = list(pairwise(args))
patterns = [patt for (patt, action) in pairs]
for patt, action in pairs:
matched_as_value, args = match_value(patt, var)
if matched_as_value:
lambda_args = args if len(args) > 0 else BoxedArgs(var)
return run(action, lambda_args)
if default is NoDefault:
if _ not in patterns:
raise MatchError("'_' not provided. This case is not handled:\n%s" % str(var))
else:
return default | Match `var` against a number of potential patterns.
Example usage:
```
match(x,
3, "this matches the number 3",
int, "matches any integer",
(str, int), lambda a, b: "a tuple (a, b) you can use in a function",
[1, 2, _], "any list of 3 elements that begins with [1, 2]",
{'x': _}, "any dict with a key 'x' and any value associated",
_, "anything else"
)
```
:param var: The variable to test patterns against.
:param args: Alternating patterns and actions. There must be an action for every pattern specified.
Patterns can take many forms, see README.md for examples.
Actions can be either a literal value or a callable which will be called with the arguments that were
matched in corresponding pattern.
:param default: If `default` is specified then it will be returned if none of the patterns match.
If `default` is unspecified then a `MatchError` will be thrown instead.
:return: The result of the action which corresponds to the first matching pattern. | https://github.com/santinic/pampy/blob/665c6b88bca00a0b1a9a744ebd0764dcdecafab4/pampy/pampy.py#L260-L305 | from collections.abc import (
Iterable,
Mapping,
Callable as ACallable,
)
from itertools import zip_longest
from enum import Enum
from typing import (
Any,
Generic,
TypeVar,
Tuple,
List,
Pattern as RegexPattern,
Callable,
)
import inspect
from pampy.helpers import (
UnderscoreType,
HeadType,
TailType,
get_lambda_args_error_msg,
BoxedArgs,
PaddedValue,
NoDefault,
is_typing_stuff,
is_dataclass,
is_generic,
is_newtype,
is_union,
pairwise,
peek,
get_real_type,
get_extra,
)
T = TypeVar('T')
_ = ANY = UnderscoreType()
HEAD = HeadType()
REST = TAIL = TailType()
def run(action, var):
if callable(action):
if isinstance(var, Iterable):
try:
return action(*var)
except TypeError as err:
raise MatchError(get_lambda_args_error_msg(action, var, err))
elif isinstance(var, BoxedArgs):
return action(var.get())
else:
return action(var)
else:
return action
def match_value(pattern, value) -> Tuple[bool, List]:
if value is PaddedValue:
return False, []
elif is_typing_stuff(pattern):
return match_typing_stuff(pattern, value)
elif isinstance(pattern, (int, float, str, bool, Enum)):
eq = pattern == value
type_eq = type(pattern) == type(value)
return eq and type_eq, []
elif pattern is None:
return value is None, []
elif isinstance(pattern, type):
if isinstance(value, pattern):
return True, [value]
elif isinstance(pattern, (list, tuple)):
return match_iterable(pattern, value)
elif isinstance(pattern, dict):
return match_dict(pattern, value)
elif callable(pattern):
return_value = pattern(value)
if isinstance(return_value, bool):
return return_value, [value]
elif isinstance(return_value, tuple) and len(return_value) == 2 and isinstance(return_value[0], bool) and isinstance(return_value[1], list):
return return_value
else:
raise MatchError("Warning! pattern function %s is not returning a boolean "
"nor a tuple of (boolean, list), but instead %s" %
(pattern, return_value))
elif isinstance(pattern, RegexPattern):
rematch = pattern.search(value)
if rematch is not None:
return True, list(rematch.groups())
elif pattern is _:
return True, [value]
elif pattern is HEAD or pattern is TAIL:
raise MatchError("HEAD or TAIL should only be used inside an Iterable (list or tuple).")
elif is_dataclass(pattern) and pattern.__class__ == value.__class__:
return match_dict(pattern.__dict__, value.__dict__)
return False, []
def match_dict(pattern, value) -> Tuple[bool, List]:
if not isinstance(value, dict) or not isinstance(pattern, dict):
return False, []
total_extracted = []
still_usable_value_keys = set(value.keys())
still_usable_pattern_keys = set(pattern.keys())
for pkey, pval in pattern.items():
if pkey not in still_usable_pattern_keys:
continue
matched_left_and_right = False
for vkey, vval in value.items():
if vkey not in still_usable_value_keys:
continue
if pkey not in still_usable_pattern_keys:
continue
key_matched, key_extracted = match_value(pkey, vkey)
if key_matched:
value_matched, value_extracted = match_value(pval, vval)
if value_matched:
total_extracted += key_extracted + value_extracted
matched_left_and_right = True
still_usable_pattern_keys.remove(pkey)
still_usable_value_keys.remove(vkey)
break
if not matched_left_and_right:
return False, []
return True, total_extracted
def only_padded_values_follow(padded_pairs, i):
i += 1
while i < len(padded_pairs):
pattern, value = padded_pairs[i]
if pattern is not PaddedValue:
return False
i += 1
return True
def match_iterable(patterns, values) -> Tuple[bool, List]:
if not isinstance(patterns, Iterable) or not isinstance(values, Iterable):
return False, []
total_extracted = []
padded_pairs = list(zip_longest(patterns, values, fillvalue=PaddedValue))
for i, (pattern, value) in enumerate(padded_pairs):
if pattern is HEAD:
if i != 0:
raise MatchError("HEAD can only be in first position of a pattern.")
else:
if value is PaddedValue:
return False, []
else:
total_extracted += [value]
elif pattern is TAIL:
if not only_padded_values_follow(padded_pairs, i):
raise MatchError("TAIL must me in last position of the pattern.")
else:
tail = [value for (pattern, value) in padded_pairs[i:] if value is not PaddedValue]
total_extracted.append(tail)
break
else:
matched, extracted = match_value(pattern, value)
if not matched:
return False, []
else:
total_extracted += extracted
return True, total_extracted
def match_typing_stuff(pattern, value) -> Tuple[bool, List]:
if pattern == Any:
return match_value(ANY, value)
elif is_union(pattern):
for subpattern in pattern.__args__:
is_matched, extracted = match_value(subpattern, value)
if is_matched:
return True, extracted
else:
return False, []
elif is_newtype(pattern):
return match_value(pattern.__supertype__, value)
elif is_generic(pattern):
return match_generic(pattern, value)
else:
return False, []
def match_generic(pattern: Generic[T], value) -> Tuple[bool, List]:
if get_extra(pattern) == type:
real_value = None
if is_newtype(value):
real_value = value
value = get_real_type(value)
if not inspect.isclass(value):
return False, []
type_ = pattern.__args__[0]
if type_ == Any:
return True, [real_value or value]
if is_newtype(type_):
type_ = get_real_type(type_)
if issubclass(value, type_):
return True, [real_value or value]
else:
return False, []
elif get_extra(pattern) == ACallable:
if callable(value):
spec = inspect.getfullargspec(value)
annotations = spec.annotations
artgtypes = [annotations.get(arg, Any) for arg in spec.args]
ret_type = annotations.get('return', Any)
if pattern == Callable[[*artgtypes], ret_type]:
return True, [value]
else:
return False, []
else:
return False, []
elif get_extra(pattern) == tuple:
return match_value(pattern.__args__, value)
elif issubclass(get_extra(pattern), Mapping):
type_matched, _captured = match_value(get_extra(pattern), value)
if not type_matched:
return False, []
k_type, v_type = pattern.__args__
key_example = peek(value)
key_matched, _captured = match_value(k_type, key_example)
if not key_matched:
return False, []
value_matched, _captured = match_value(v_type, value[key_example])
if not value_matched:
return False, []
else:
return True, [value]
elif issubclass(get_extra(pattern), Iterable):
type_matched, _captured = match_value(get_extra(pattern), value)
if not type_matched:
return False, []
v_type, = pattern.__args__
v = peek(value)
value_matched, _captured = match_value(v_type, v)
if not value_matched:
return False, []
else:
return True, [value]
else:
return False, [] | MIT License |
pegase745/sublime-flowtype | flowtype/commands/add_pragma.py | FlowtypeAddPragma.is_enabled | python | def is_enabled(self):
content = self.get_content()
no_pragma = "// @flow" not in content and "/* @flow */" not in content
return is_js_source(self.view) and no_pragma | Enable the command only on Javascript files and has flow pragma. | https://github.com/pegase745/sublime-flowtype/blob/d1f95f22fb698029d09771dfe0959eb2d7f0c722/flowtype/commands/add_pragma.py#L11-L16 | from ..logger import Logger
from .base import BaseCommand
from ..helpers import is_js_source
logger = Logger()
class FlowtypeAddPragma(BaseCommand): | MIT License |
openstack/tempest-lib | tempest_lib/services/compute/aggregates_client.py | AggregatesClient.show_aggregate | python | def show_aggregate(self, aggregate_id):
resp, body = self.get("os-aggregates/%s" % aggregate_id)
body = json.loads(body)
self.validate_response(schema.get_aggregate, resp, body)
return rest_client.ResponseBody(resp, body) | Get details of the given aggregate. | https://github.com/openstack/tempest-lib/blob/023426894a4f72d906ed6f79c55ed7152a732b44/tempest_lib/services/compute/aggregates_client.py#L32-L37 | from oslo_serialization import jsonutils as json
from tempest_lib.api_schema.response.compute.v2_1 import aggregates as schema
from tempest_lib.common import rest_client
from tempest_lib import exceptions as lib_exc
class AggregatesClient(rest_client.RestClient):
def list_aggregates(self):
resp, body = self.get("os-aggregates")
body = json.loads(body)
self.validate_response(schema.list_aggregates, resp, body)
return rest_client.ResponseBody(resp, body) | Apache License 2.0 |
airesearch-in-th/kora | kora/kaggle.py | ls | python | def ls(dataset):
cmd = 'kaggle datasets files -v '+dataset
return _show_csv(getoutput(cmd)) | List all files for this dataset name | https://github.com/airesearch-in-th/kora/blob/dcf3cc4dec0caa91ffbee7e8942a57a433ab099f/kora/kaggle.py#L33-L36 | import os
import pandas as pd
from io import StringIO
from subprocess import getoutput
from IPython import get_ipython
import kora.data_table
assert os.path.exists('/content/drive'), "You need to mount the drive first"
assert os.path.exists('/content/drive/My Drive/kaggle.json'), "You need to create API token and store it as kaggle.json in your drive"
os.makedirs('/root/.kaggle', exist_ok=True)
os.system("cp 'drive/My Drive/kaggle.json' /root/.kaggle/")
os.chmod('/root/.kaggle/kaggle.json', 0o600)
def _show_csv(csv):
buf = StringIO(csv)
if csv.startswith('Warning:'):
buf.readline()
return pd.read_csv(buf)
def search(query):
cmd = 'kaggle datasets list -v -s '+query
return _show_csv(getoutput(cmd)) | MIT License |
pyviz-dev/nbsite | examples/sites/holoviews/holoviews/streams.py | Stream.add_subscriber | python | def add_subscriber(self, subscriber, precedence=0):
if not callable(subscriber):
raise TypeError('Subscriber must be a callable.')
self._subscribers.append((precedence, subscriber)) | Register a callable subscriber to this stream which will be
invoked either when event is called or when this stream is
passed to the trigger classmethod.
Precedence allows the subscriber ordering to be
controlled. Users should only add subscribers with precedence
between zero and one while HoloViews itself reserves the use of
higher precedence values. Subscribers with high precedence are
invoked later than ones with low precedence. | https://github.com/pyviz-dev/nbsite/blob/7a4752e6ed6a3b0c3698473a6dd3a71ff9ba2acb/examples/sites/holoviews/holoviews/streams.py#L232-L246 | import uuid
import math
import param
import numpy as np
from numbers import Number
from collections import defaultdict
from .core import util
from contextlib import contextmanager
@contextmanager
def triggering_streams(streams):
for stream in streams:
stream._triggering = True
try:
yield
except:
raise
finally:
for stream in streams:
stream._triggering = False
class Stream(param.Parameterized):
registry = defaultdict(list)
_callbacks = defaultdict(dict)
@classmethod
def define(cls, name, **kwargs):
params = {'name':param.String(default=name)}
for k,v in kwargs.items():
kws = dict(default=v, constant=True)
if isinstance(v, param.Parameter):
params[k] = v
elif isinstance(v, bool):
params[k] = param.Boolean(**kws)
elif isinstance(v, int):
params[k] = param.Integer(**kws)
elif isinstance(v, float):
params[k] = param.Number(**kws)
elif isinstance(v,str):
params[k] = param.String(**kws)
elif isinstance(v,dict):
params[k] = param.Dict(**kws)
elif isinstance(v, tuple):
params[k] = param.Tuple(**kws)
elif isinstance(v,list):
params[k] = param.List(**kws)
elif isinstance(v,np.ndarray):
params[k] = param.Array(**kws)
else:
params[k] = param.Parameter(**kws)
return type(name, (Stream,), params)
@classmethod
def trigger(cls, streams):
items = [stream.contents.items() for stream in streams]
union = [kv for kvs in items for kv in kvs]
klist = [k for k,_ in union]
clashes = set([k for k in klist if klist.count(k) > 1])
if clashes:
param.main.warning('Parameter name clashes for keys: %r' % clashes)
subscriber_precedence = defaultdict(list)
for stream in streams:
for precedence, subscriber in stream._subscribers:
subscriber_precedence[precedence].append(subscriber)
sorted_subscribers = sorted(subscriber_precedence.items(), key=lambda x: x[0])
subscribers = util.unique_iterator([s for _, subscribers in sorted_subscribers
for s in subscribers])
with triggering_streams(streams):
for subscriber in subscribers:
subscriber(**dict(union))
for stream in streams:
with util.disable_constant(stream):
if stream.transient:
stream.reset()
def __init__(self, rename={}, source=None, subscribers=[], linked=False,
transient=False, **params):
self._source = source
self._subscribers = []
for subscriber in subscribers:
self.add_subscriber(subscriber)
self.linked = linked
self._rename = self._validate_rename(rename)
self.transient = transient
self._triggering = False
self._metadata = {}
super(Stream, self).__init__(**params)
if source is not None:
self.registry[id(source)].append(self)
@property
def subscribers(self):
return [s for p, s in sorted(self._subscribers, key=lambda x: x[0])]
def clear(self, policy='all'):
policies = ['all', 'user', 'internal']
if policy not in policies:
raise ValueError('Policy for clearing subscribers must be one of %s' % policies)
if policy == 'all':
remaining = []
elif policy == 'user':
remaining = [(p,s) for (p,s) in self._subscribers if p > 1]
else:
remaining = [(p,s) for (p,s) in self._subscribers if p <= 1]
self._subscribers = remaining
def reset(self):
with util.disable_constant(self):
for k, p in self.params().items():
if k != 'name':
setattr(self, k, p.default) | BSD 3-Clause New or Revised License |
salesforce/pomgen | crawl/workspace.py | Workspace.filter_artifact_producing_packages | python | def filter_artifact_producing_packages(self, packages):
art_defs = [self.parse_maven_artifact_def(p) for p in packages]
return [art_def.bazel_package for art_def in art_defs if art_def.pom_generation_mode.produces_artifact] | Given a list of packages, returns those that are actually producing
a Maven artifact.
This is based on the pom_generation_mode specified in the BUILD.pom
file. | https://github.com/salesforce/pomgen/blob/4fb427c95c9dc35bfcf47f921e85d6be3876ef6c/crawl/workspace.py#L108-L117 | from common import logger
from crawl import artifactprocessor
from crawl import bazel
from crawl import buildpom
from crawl import dependency
from crawl import dependencymd
class Workspace:
def __init__(self, repo_root_path, excluded_dependency_paths,
source_exclusions,
maven_install_info,
pom_content,
verbose=False):
self.repo_root_path = repo_root_path
self.excluded_dependency_paths = excluded_dependency_paths
self.source_exclusions = source_exclusions
self.pom_content = pom_content
self.verbose = verbose
self.dependency_metadata = dependencymd.DependencyMetadata()
self._name_to_ext_deps = self._parse_maven_install(maven_install_info, repo_root_path)
self._package_to_artifact_def = {}
@property
def name_to_external_dependencies(self):
return self._name_to_ext_deps
def parse_maven_artifact_def(self, package):
if package in self._package_to_artifact_def:
return self._package_to_artifact_def[package]
art_def = buildpom.parse_maven_artifact_def(self.repo_root_path, package)
if art_def is not None:
art_def = artifactprocessor.augment_artifact_def(self.repo_root_path, art_def, self.source_exclusions)
self._package_to_artifact_def[package] = art_def
return art_def
def parse_dep_labels(self, dep_labels):
deps = []
for label in dep_labels:
dep = self._parse_dep_label(label)
if dep is not None:
deps.append(dep)
return deps
def normalize_deps(self, artifact_def, deps):
updated_deps = []
for dep in deps:
if dep.bazel_package is not None and dep.bazel_package == artifact_def.bazel_package:
if artifact_def.pom_generation_mode.produces_artifact:
continue
updated_deps.append(dep)
return updated_deps | BSD 3-Clause New or Revised License |
lithium876/controll_remote_access_trojan | pyinstaller/PyInstaller/depend/dylib.py | mac_set_relative_dylib_deps | python | def mac_set_relative_dylib_deps(libname, distname):
from PyInstaller.lib.macholib import util
from PyInstaller.lib.macholib.MachO import MachO
if os.path.basename(libname) in _BOOTLOADER_FNAMES:
return
parent_dir = ''
if os.path.dirname(distname):
parent_level = len(os.path.dirname(distname).split(os.sep))
parent_dir = parent_level * (os.pardir + os.sep)
def match_func(pth):
if not util.in_system_path(pth):
return os.path.join('@loader_path', parent_dir,
os.path.basename(pth))
dll = MachO(libname)
dll.rewriteLoadCommands(match_func)
try:
f = open(dll.filename, 'rb+')
for header in dll.headers:
f.seek(0)
dll.write(f)
f.seek(0, 2)
f.flush()
f.close()
except Exception:
pass | On Mac OS X set relative paths to dynamic library dependencies
of `libname`.
Relative paths allow to avoid using environment variable DYLD_LIBRARY_PATH.
There are known some issues with DYLD_LIBRARY_PATH. Relative paths is
more flexible mechanism.
Current location of dependend libraries is derived from the location
of the library path (paths start with '@loader_path').
'distname' path of the library relative to dist directory of frozen
executable. We need this to determine the level of directory
level for @loader_path of binaries not found in dist directory.
E.g. qt4 plugins are not in the same directory as Qt*.dylib
files. Without using '@loader_path/../..' for qt plugins
Mac OS X would not be able to resolve shared library
dependencies and qt plugins will not be loaded. | https://github.com/lithium876/controll_remote_access_trojan/blob/7ba48b51d98723e0dd0bca7d0e2586d422f78419/pyinstaller/PyInstaller/depend/dylib.py#L177-L242 | __all__ = ['exclude_list', 'include_list', 'include_library']
import os
import re
from PyInstaller import is_win, is_unix, is_aix, is_darwin
from PyInstaller.compat import set
import PyInstaller.log as logging
logger = logging.getLogger('PyInstaller.build.dylib')
_BOOTLOADER_FNAMES = set(['run', 'run_d', 'runw', 'runw_d'])
_excludes = {}
_includes = {}
_win_excludes = {
r'^Microsoft\.Windows\.Common-Controls$': 1,
}
_unix_excludes = {
r'/libc\.so\..*': 1,
r'/libdl\.so\..*': 1,
r'/libm\.so\..*': 1,
r'/libpthread\.so\..*': 1,
r'/librt\.so\..*': 1,
r'/libthread_db\.so\..*': 1,
r'/libdb-.*\.so': 1,
r'/ld-linux\.so\..*': 1,
r'/libBrokenLocale\.so\..*': 1,
r'/libanl\.so\..*': 1,
r'/libcidn\.so\..*': 1,
r'/libcrypt\.so\..*': 1,
r'/libnsl\.so\..*': 1,
r'/libnss_compat.*\.so\..*': 1,
r'/libnss_dns.*\.so\..*': 1,
r'/libnss_files.*\.so\..*': 1,
r'/libnss_hesiod.*\.so\..*': 1,
r'/libnss_nis.*\.so\..*': 1,
r'/libnss_nisplus.*\.so\..*': 1,
r'/libresolv\.so\..*': 1,
r'/libutil\.so\..*': 1,
r'/libGL\..*': 1,
}
_aix_excludes = {
r'/libbz2\.a': 1,
r'/libc\.a': 1,
r'/libC\.a': 1,
r'/libcrypt\.a': 1,
r'/libdl\.a': 1,
r'/libintl\.a': 1,
r'/libpthreads\.a': 1,
r'/librt\\.a': 1,
r'/librtl\.a': 1,
r'/libz\.a': 1,
}
if is_win:
_excludes = _win_excludes
from PyInstaller.utils import winutils
sep = '[%s]' % re.escape(os.sep + os.altsep)
windir = re.escape(winutils.get_windows_dir())
_excludes['^%s%s' % (windir, sep)] = 1
_includes[r'%spy(?:thon(?:com(?:loader)?)?|wintypes)\d+\.dll$' % sep] = 1
elif is_aix:
_excludes = _aix_excludes
elif is_unix:
_excludes = _unix_excludes
class ExcludeList(object):
def __init__(self):
self.regex = re.compile('|'.join(_excludes.keys()), re.I)
def search(self, libname):
if _excludes:
return self.regex.search(libname)
else:
return False
class IncludeList(object):
def __init__(self):
self.regex = re.compile('|'.join(_includes.keys()), re.I)
def search(self, libname):
if _includes:
return self.regex.search(libname)
else:
return False
exclude_list = ExcludeList()
include_list = IncludeList()
if is_darwin:
from PyInstaller.lib.macholib import util
class MacExcludeList(object):
def search(self, libname):
return util.in_system_path(libname)
exclude_list = MacExcludeList()
def include_library(libname):
if exclude_list:
if exclude_list.search(libname) and not include_list.search(libname):
return False
else:
return True
else:
return True | Apache License 2.0 |
weasyl/weasyl | libweasyl/libweasyl/cache.py | ThreadCacheProxy.get_multi | python | def get_multi(self, keys):
d = self._dict
to_fetch = []
ret = []
for key in keys:
ret.append(d.get(key, NO_VALUE))
if ret[-1] is NO_VALUE:
to_fetch.append((key, len(ret) - 1))
if not to_fetch:
return ret
keys_to_fetch, indices = zip(*to_fetch)
for key, index, value in zip(keys_to_fetch, indices, self.proxied.get_multi(keys_to_fetch)):
if value is NO_VALUE:
continue
d[key] = ret[index] = value
return ret | Proxy a ``get_multi`` call.
This works like :py:meth:`.get`, except *keys* is a list of keys, and
the result is a list of values.
Parameters:
keys: A list of :term:`native string` objects.
Returns:
list: The values corresponding to the *keys*. | https://github.com/weasyl/weasyl/blob/80c86942c6f20a815086e2895fdad51d3aa77eed/libweasyl/libweasyl/cache.py#L89-L116 | import json
import threading
import dogpile.cache
import dogpile.cache.backends.memcached
import pylibmc
from dogpile.cache.api import CachedValue, NO_VALUE
from dogpile.cache.proxy import ProxyBackend
from dogpile.cache import make_region
region = make_region()
class ThreadCacheProxy(ProxyBackend):
_local = threading.local()
@classmethod
def zap_cache(cls):
try:
del cls._local.cache_dict
except AttributeError:
pass
@property
def _dict(self):
if not hasattr(self._local, 'cache_dict'):
self._local.cache_dict = {}
return self._local.cache_dict
def get(self, key):
d = self._dict
if key in d:
return d[key]
ret = self.proxied.get(key)
if ret is not NO_VALUE:
d[key] = ret
return ret | Apache License 2.0 |
dapr/python-sdk | dapr/clients/grpc/client.py | DaprGrpcClient.wait | python | def wait(self, timeout_s: float):
host_port_str = self._address.split(":")
host_port = (host_port_str[0], int(host_port_str[1]))
start = time.time()
while True:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(timeout_s)
try:
s.connect(host_port)
return
except Exception as e:
remaining = (start + timeout_s) - time.time()
if remaining < 0:
raise e
time.sleep(min(1, remaining)) | Waits for sidecar to be available within the timeout.
It checks if sidecar socket is available within the given timeout.
The example gets a secret from secret store:
from dapr.clients import DaprClient
with DaprClient() as d:
d.wait(1000) # waits for 1 second.
# Sidecar is available after this.
Args:
timeout_s (float): timeout in seconds | https://github.com/dapr/python-sdk/blob/3ac8416559338dffb04b900d4ebdd201a2672960/dapr/clients/grpc/client.py#L791-L821 | import time
import socket
import grpc
from grpc import (
UnaryUnaryClientInterceptor,
UnaryStreamClientInterceptor,
StreamUnaryClientInterceptor,
StreamStreamClientInterceptor
)
from dapr.clients.grpc._state import StateOptions, StateItem
from typing import Dict, Optional, Union, Sequence, List
from google.protobuf.message import Message as GrpcMessage
from google.protobuf.empty_pb2 import Empty as GrpcEmpty
from dapr.conf import settings
from dapr.proto import api_v1, api_service_v1, common_v1
from dapr.clients.grpc._helpers import MetadataTuple, DaprClientInterceptor, to_bytes
from dapr.clients.grpc._request import (
InvokeMethodRequest,
BindingRequest,
TransactionalStateOperation,
)
from dapr.clients.grpc._response import (
BindingResponse,
DaprResponse,
GetSecretResponse,
GetBulkSecretResponse,
InvokeMethodResponse,
StateResponse,
BulkStatesResponse,
BulkStateItem,
)
from urllib.parse import urlencode
class DaprGrpcClient:
def __init__(
self,
address: Optional[str] = None,
interceptors: Optional[List[Union[
UnaryUnaryClientInterceptor,
UnaryStreamClientInterceptor,
StreamUnaryClientInterceptor,
StreamStreamClientInterceptor]]] = None):
if not address:
address = f"{settings.DAPR_RUNTIME_HOST}:{settings.DAPR_GRPC_PORT}"
self._address = address
self._channel = grpc.insecure_channel(address)
if settings.DAPR_API_TOKEN:
api_token_interceptor = DaprClientInterceptor([
('dapr-api-token', settings.DAPR_API_TOKEN), ])
self._channel = grpc.intercept_channel(
self._channel, api_token_interceptor)
if interceptors:
self._channel = grpc.intercept_channel(
self._channel, *interceptors)
self._stub = api_service_v1.DaprStub(self._channel)
def close(self):
if self._channel:
self._channel.close()
def __del__(self):
self.close()
def __enter__(self) -> 'DaprGrpcClient':
return self
def __exit__(self, exc_type, exc_value, traceback) -> None:
self.close()
def _get_http_extension(
self, http_verb: str,
http_querystring: Optional[MetadataTuple] = ()
) -> common_v1.HTTPExtension:
verb = common_v1.HTTPExtension.Verb.Value(http_verb)
http_ext = common_v1.HTTPExtension(verb=verb)
if http_querystring is not None and len(http_querystring):
http_ext.querystring = urlencode(http_querystring)
return http_ext
def invoke_method(
self,
app_id: str,
method_name: str,
data: Union[bytes, str, GrpcMessage],
content_type: Optional[str] = None,
metadata: Optional[MetadataTuple] = None,
http_verb: Optional[str] = None,
http_querystring: Optional[MetadataTuple] = None) -> InvokeMethodResponse:
req_data = InvokeMethodRequest(data, content_type)
http_ext = None
if http_verb:
http_ext = self._get_http_extension(http_verb, http_querystring)
content_type = ""
if req_data.content_type:
content_type = req_data.content_type
req = api_v1.InvokeServiceRequest(
id=app_id,
message=common_v1.InvokeRequest(
method=method_name,
data=req_data.proto,
content_type=content_type,
http_extension=http_ext)
)
response, call = self._stub.InvokeService.with_call(req, metadata=metadata)
resp_data = InvokeMethodResponse(response.data, response.content_type)
resp_data.headers = call.initial_metadata()
return resp_data
def invoke_binding(
self,
binding_name: str,
operation: str,
data: Union[bytes, str],
binding_metadata: Dict[str, str] = {},
metadata: Optional[MetadataTuple] = ()) -> BindingResponse:
req_data = BindingRequest(data, binding_metadata)
req = api_v1.InvokeBindingRequest(
name=binding_name,
data=req_data.data,
metadata=req_data.binding_metadata,
operation=operation
)
response, call = self._stub.InvokeBinding.with_call(req, metadata=metadata)
return BindingResponse(
response.data, dict(response.metadata),
call.initial_metadata())
def publish_event(
self,
pubsub_name: str,
topic_name: str,
data: Union[bytes, str],
metadata: Optional[MetadataTuple] = (),
data_content_type: Optional[str] = None) -> DaprResponse:
if not isinstance(data, bytes) and not isinstance(data, str):
raise ValueError(f'invalid type for data {type(data)}')
req_data: bytes
if isinstance(data, bytes):
req_data = data
else:
if isinstance(data, str):
req_data = data.encode('utf-8')
content_type = ""
if data_content_type:
content_type = data_content_type
req = api_v1.PublishEventRequest(
pubsub_name=pubsub_name,
topic=topic_name,
data=req_data,
data_content_type=content_type)
_, call = self._stub.PublishEvent.with_call(req, metadata=metadata)
return DaprResponse(call.initial_metadata())
def get_state(
self,
store_name: str,
key: str,
state_metadata: Optional[Dict[str, str]] = dict(),
metadata: Optional[MetadataTuple] = ()) -> StateResponse:
if not store_name or len(store_name) == 0 or len(store_name.strip()) == 0:
raise ValueError("State store name cannot be empty")
req = api_v1.GetStateRequest(store_name=store_name, key=key, metadata=state_metadata)
response, call = self._stub.GetState.with_call(req, metadata=metadata)
return StateResponse(
data=response.data,
etag=response.etag,
headers=call.initial_metadata())
def get_bulk_state(
self,
store_name: str,
keys: Sequence[str],
parallelism: int = 1,
states_metadata: Optional[Dict[str, str]] = dict(),
metadata: Optional[MetadataTuple] = ()) -> BulkStatesResponse:
if not store_name or len(store_name) == 0 or len(store_name.strip()) == 0:
raise ValueError("State store name cannot be empty")
req = api_v1.GetBulkStateRequest(
store_name=store_name,
keys=keys,
parallelism=parallelism,
metadata=states_metadata)
response, call = self._stub.GetBulkState.with_call(req, metadata=metadata)
items = []
for item in response.items:
items.append(
BulkStateItem(
key=item.key,
data=item.data,
etag=item.etag,
error=item.error))
return BulkStatesResponse(
items=items,
headers=call.initial_metadata())
def save_state(
self,
store_name: str,
key: str,
value: Union[bytes, str],
etag: Optional[str] = None,
options: Optional[StateOptions] = None,
state_metadata: Optional[Dict[str, str]] = dict(),
metadata: Optional[MetadataTuple] = ()) -> DaprResponse:
if not isinstance(value, (bytes, str)):
raise ValueError(f'invalid type for data {type(value)}')
req_value = value
if not store_name or len(store_name) == 0 or len(store_name.strip()) == 0:
raise ValueError("State store name cannot be empty")
if options is None:
state_options = None
else:
state_options = options.get_proto()
state = common_v1.StateItem(
key=key,
value=to_bytes(req_value),
etag=common_v1.Etag(value=etag) if etag is not None else None,
options=state_options,
metadata=state_metadata)
req = api_v1.SaveStateRequest(store_name=store_name, states=[state])
_, call = self._stub.SaveState.with_call(req, metadata=metadata)
return DaprResponse(
headers=call.initial_metadata())
def save_bulk_state(
self,
store_name: str,
states: List[StateItem],
metadata: Optional[MetadataTuple] = ()) -> DaprResponse:
if not states or len(states) == 0:
raise ValueError("States to be saved cannot be empty")
if not store_name or len(store_name) == 0 or len(store_name.strip()) == 0:
raise ValueError("State store name cannot be empty")
req_states = [common_v1.StateItem(
key=i.key,
value=to_bytes(i.value),
etag=common_v1.Etag(value=i.etag) if i.etag is not None else None,
options=i.options,
metadata=i.metadata) for i in states]
req = api_v1.SaveStateRequest(store_name=store_name, states=req_states)
_, call = self._stub.SaveState.with_call(req, metadata=metadata)
return DaprResponse(
headers=call.initial_metadata())
def execute_state_transaction(
self,
store_name: str,
operations: Sequence[TransactionalStateOperation],
transactional_metadata: Optional[Dict[str, str]] = dict(),
metadata: Optional[MetadataTuple] = ()) -> DaprResponse:
if not store_name or len(store_name) == 0 or len(store_name.strip()) == 0:
raise ValueError("State store name cannot be empty")
req_ops = [api_v1.TransactionalStateOperation(
operationType=o.operation_type.value,
request=common_v1.StateItem(
key=o.key,
value=to_bytes(o.data),
etag=common_v1.Etag(value=o.etag) if o.etag is not None else None))
for o in operations]
req = api_v1.ExecuteStateTransactionRequest(
storeName=store_name,
operations=req_ops,
metadata=transactional_metadata)
_, call = self._stub.ExecuteStateTransaction.with_call(req, metadata=metadata)
return DaprResponse(
headers=call.initial_metadata())
def delete_state(
self,
store_name: str,
key: str,
etag: Optional[str] = None,
options: Optional[StateOptions] = None,
state_metadata: Optional[Dict[str, str]] = dict(),
metadata: Optional[MetadataTuple] = ()) -> DaprResponse:
if not store_name or len(store_name) == 0 or len(store_name.strip()) == 0:
raise ValueError("State store name cannot be empty")
if options is None:
state_options = None
else:
state_options = options.get_proto()
etag_object = common_v1.Etag(value=etag) if etag is not None else None
req = api_v1.DeleteStateRequest(store_name=store_name, key=key,
etag=etag_object, options=state_options,
metadata=state_metadata)
_, call = self._stub.DeleteState.with_call(req, metadata=metadata)
return DaprResponse(
headers=call.initial_metadata())
def get_secret(
self,
store_name: str,
key: str,
secret_metadata: Optional[Dict[str, str]] = {},
metadata: Optional[MetadataTuple] = ()) -> GetSecretResponse:
req = api_v1.GetSecretRequest(
store_name=store_name,
key=key,
metadata=secret_metadata)
response, call = self._stub.GetSecret.with_call(req, metadata=metadata)
return GetSecretResponse(
secret=response.data,
headers=call.initial_metadata())
def get_bulk_secret(
self,
store_name: str,
secret_metadata: Optional[Dict[str, str]] = {},
metadata: Optional[MetadataTuple] = ()) -> GetBulkSecretResponse:
req = api_v1.GetBulkSecretRequest(
store_name=store_name,
metadata=secret_metadata)
response, call = self._stub.GetBulkSecret.with_call(req, metadata=metadata)
secrets_map = {}
for key in response.data.keys():
secret_response = response.data[key]
secrets_submap = {}
for subkey in secret_response.secrets.keys():
secrets_submap[subkey] = secret_response.secrets[subkey]
secrets_map[key] = secrets_submap
return GetBulkSecretResponse(
secrets=secrets_map,
headers=call.initial_metadata()) | MIT License |
google/deluca | deluca/lung/envs/_generalized_stitched_sim_open_loop.py | loop_over_loader | python | def loop_over_loader(model_optimState_lrMult_loss, X_Y, optim, rollout, scheduler):
X_batch, y_batch = X_Y
model, optim_state, lr_mult, loss = model_optimState_lrMult_loss
loss, grad = jax.value_and_grad(map_rollout_over_batch)(model,
(X_batch, y_batch),
rollout)
updates, optim_state = optim.update(grad, optim_state, model)
if scheduler == "ReduceLROnPlateau":
updates = jax.tree_map(lambda g: lr_mult * g, updates)
model = optax.apply_updates(model, updates)
return (model, optim_state, lr_mult, loss), None | rollout has signature (model, data) -> loss where data.shape = (2, N)
X_batch.shape = Y_batch.shape = (num_batches, batch_size, N=29)
lrMult is the multiplier for the scheduler | https://github.com/google/deluca/blob/9fdcb9b382cae2ff9d8c7600469d2c6f1a128d1c/deluca/lung/envs/_generalized_stitched_sim_open_loop.py#L295-L310 | from functools import partial
from absl import logging
from typing import Dict, Any
import time
import os
import jax
import jax.numpy as jnp
import flax.linen as nn
import optax
import copy
from flax.metrics import tensorboard
import deluca.core
from deluca.lung.core import LungEnv
from deluca.lung.utils.data.transform import ShiftScaleTransform
from deluca.lung.utils.nn import SNN
from deluca.lung.utils.nn import MLP
from deluca.lung.utils.nn import CNN
from deluca.lung.utils.nn import LSTM
from deluca.lung.utils.nn import ShallowBoundaryModel
from google3.pyglib import gfile
class StitchedSimObservation(deluca.Obj):
predicted_pressure: float = 0.0
time: float = 0.0
class SimulatorState(deluca.Obj):
u_history: jnp.ndarray
p_history: jnp.ndarray
t_in: int = 0
steps: int = 0
predicted_pressure: float = 0.0
class GeneralizedStitchedSim_open_loop(LungEnv):
params: list = deluca.field(jaxed=True)
init_rng: jnp.array = deluca.field(jaxed=False)
u_window: int = deluca.field(5, jaxed=False)
p_window: int = deluca.field(3, jaxed=False)
u_history_len: int = deluca.field(5, jaxed=False)
p_history_len: int = deluca.field(5, jaxed=False)
u_scaler: ShiftScaleTransform = deluca.field(jaxed=False)
p_scaler: ShiftScaleTransform = deluca.field(jaxed=False)
to_round: bool = deluca.field(False, jaxed=False)
seed: int = deluca.field(0, jaxed=False)
flow: int = deluca.field(0, jaxed=False)
transition_threshold: int = deluca.field(0, jaxed=False)
default_model_parameters: Dict[str, Any] = deluca.field(jaxed=False)
num_boundary_models: int = deluca.field(5, jaxed=False)
boundary_out_dim: int = deluca.field(1, jaxed=False)
boundary_hidden_dim: int = deluca.field(100, jaxed=False)
reset_scaled_peep: float = deluca.field(0.0, jaxed=False)
default_model_name: str = deluca.field("SNN", jaxed=False)
default_model: nn.module = deluca.field(jaxed=False)
boundary_models: list = deluca.field(default_factory=list, jaxed=False)
ensemble_models: list = deluca.field(default_factory=list, jaxed=False)
def setup(self):
self.u_history_len = max(self.u_window, self.num_boundary_models)
self.p_history_len = max(self.p_window, self.num_boundary_models)
if self.default_model_name == "SNN":
self.default_model = SNN(
out_dim=self.default_model_parameters["out_dim"],
hidden_dim=self.default_model_parameters["hidden_dim"],
n_layers=self.default_model_parameters["n_layers"],
droprate=self.default_model_parameters["droprate"])
elif self.default_model_name == "MLP":
self.default_model = MLP(
hidden_dim=self.default_model_parameters["hidden_dim"],
out_dim=self.default_model_parameters["out_dim"],
n_layers=self.default_model_parameters["n_layers"],
droprate=self.default_model_parameters["droprate"],
activation_fn=self.default_model_parameters["activation_fn"])
elif self.default_model_name == "CNN":
self.default_model = CNN(
n_layers=self.default_model_parameters["n_layers"],
out_channels=self.default_model_parameters["out_channels"],
kernel_size=self.default_model_parameters["kernel_size"],
strides=self.default_model_parameters["strides"],
out_dim=self.default_model_parameters["out_dim"],
activation_fn=self.default_model_parameters["activation_fn"])
elif self.default_model_name == "LSTM":
self.default_model = LSTM(
n_layers=self.default_model_parameters["n_layers"],
hidden_dim=self.default_model_parameters["hidden_dim"],
out_dim=self.default_model_parameters["out_dim"],
bptt=self.default_model_parameters["bptt"],
activation_fn=self.default_model_parameters["activation_fn"])
if self.default_model_name == "SNN" or self.default_model_name == "MLP":
default_params = self.default_model.init(
jax.random.PRNGKey(0),
jnp.ones([self.u_history_len + self.p_history_len]))["params"]
elif self.default_model_name == "CNN":
default_params = self.default_model.init(
jax.random.PRNGKey(0),
jnp.ones([1, self.u_history_len + self.p_history_len, 1]))["params"]
logging.info('[1, self.u_history_len + self.p_history_len, 1]:' + str([1, self.u_history_len + self.p_history_len, 1]))
elif self.default_model_name == "LSTM":
default_params = self.default_model.init(
jax.random.PRNGKey(0),
jnp.ones((1, self.u_history_len + self.p_history_len, 1)))["params"]
self.boundary_models = [
ShallowBoundaryModel(
out_dim=self.boundary_out_dim,
hidden_dim=self.boundary_hidden_dim,
model_num=i + 1) for i in range(self.num_boundary_models)
]
boundary_params = [
self.boundary_models[i].init(
jax.random.PRNGKey(0),
jnp.ones([self.u_history_len + self.p_history_len]))["params"]
for i in range(self.num_boundary_models)
]
self.ensemble_models = self.boundary_models + [self.default_model]
if self.params is None:
self.params = boundary_params + [default_params]
logging.info("TREE MAP")
logging.info(jax.tree_map(lambda x: x.shape, self.params))
def reset(self):
scaled_peep = self.reset_scaled_peep
state = SimulatorState(
u_history=jnp.zeros([self.u_history_len]),
p_history=jnp.hstack(
[jnp.zeros([self.p_history_len-1]),
jnp.array([scaled_peep])]),
t_in=0,
steps=0,
predicted_pressure=scaled_peep,
)
state = self.sync_unscaled_pressure(state)
obs = StitchedSimObservation(
predicted_pressure=state.predicted_pressure, time=self.time(state))
return state, obs
def update_history(self, history, value):
history = jnp.roll(history, shift=-1)
history = history.at[-1].set(value)
return history
def sync_unscaled_pressure(self, state):
scaled_pressure = self.p_scaler.inverse(state.predicted_pressure).squeeze()
return state.replace(predicted_pressure=scaled_pressure)
def __call__(self, state, action):
u_in, u_out = action
model_idx = jnp.min(jnp.array([state.t_in, self.num_boundary_models]))
funcs = [
partial(self.ensemble_models[i].apply, {"params": self.params[i]})
for i in range(self.num_boundary_models + 1)
]
def true_func(state):
def call_if_t_in_positive(state):
new_state, _ = self.reset()
return new_state
state = jax.lax.cond(state.t_in > 0, call_if_t_in_positive, lambda x: x,
state)
return state
def false_func(state, u_in, model_idx):
if self.to_round:
u_in_scaled = self.u_scaler(jnp.round(u_in)).squeeze()
else:
u_in_scaled = self.u_scaler(u_in).squeeze()
state = state.replace(
u_history=self.update_history(state.u_history, u_in_scaled),
t_in=state.t_in + 1)
boundary_features = jnp.hstack([
state.u_history[-self.u_history_len:],
state.p_history[-self.p_history_len:]
])
default_features = jnp.hstack(
[state.u_history[-self.u_window:], state.p_history[-self.p_window:]])
default_pad_len = (self.u_history_len + self.p_history_len) - (
self.u_window + self.p_window)
default_features = jnp.hstack(
[jnp.zeros((default_pad_len,)), default_features])
if self.default_model_name == "CNN":
boundary_features = jnp.expand_dims(boundary_features, axis=[0, 2])
default_features = jnp.expand_dims(default_features, axis=[0, 2])
if self.default_model_name == "LSTM":
boundary_features = jnp.expand_dims(boundary_features, axis=[0, 2])
default_features = jnp.expand_dims(default_features, axis=[0, 2])
features = jax.lax.cond(
model_idx == self.num_boundary_models,
lambda x: default_features,
lambda x: boundary_features,
None,
)
if self.default_model_name != "LSTM":
scaled_pressure = jax.lax.switch(model_idx, funcs, features)
else:
scaled_pressure = jax.lax.switch(model_idx, funcs, features)
scaled_pressure = scaled_pressure.astype(jnp.float64)
state = state.replace(predicted_pressure=scaled_pressure)
new_p_history = self.update_history(state.p_history,
scaled_pressure)
state = state.replace(
p_history=new_p_history
)
state = self.sync_unscaled_pressure(state)
return state
partial_false_func = partial(false_func, u_in=u_in, model_idx=model_idx)
state = jax.lax.cond(u_out == 1, true_func, partial_false_func, state)
state = state.replace(steps=state.steps + 1)
obs = StitchedSimObservation(
predicted_pressure=state.predicted_pressure, time=self.time(state))
return state, obs
def get_X_y_for_next_epoch_tf(loader, batch_size):
loader = loader.shuffle(buffer_size=len(loader), seed=0)
loader = loader.batch(batch_size=batch_size, drop_remainder=True)
loader_list = list(loader)
unzipped_loader = list(zip(*loader_list))
X = jnp.array([jnp.array(z.numpy()) for z in unzipped_loader[0]])
y = jnp.array([jnp.array(z.numpy()) for z in unzipped_loader[1]])
return X, y
def rollout(model, data):
start_idx = 0
end_idx = len(data[0])-1
state, _ = model.reset()
new_u_history = jnp.zeros((model.u_history_len,))
new_p_history = jnp.zeros((model.p_history_len,))
state = state.replace(u_history=new_u_history, p_history=new_p_history)
loss_init = jnp.abs(model.p_scaler(state.predicted_pressure) - model.p_scaler(data[1, 0]))
state_loss_init = (state, loss_init)
def predict_and_update_state(i, state_loss):
state, loss = state_loss
u_in, pressure = data[0, i], data[1, i]
def true_func(state, u_in, pressure):
new_p_history = state.p_history.at[-1].set(
model.p_scaler(pressure).squeeze())
state = state.replace(p_history=new_p_history)
next_state, _ = model(state=state, action=(u_in, 0))
return next_state
def false_func(state, u_in):
next_state, _ = model(state=state, action=(u_in, 0))
return next_state
partial_true_func = partial(true_func, u_in=u_in, pressure=pressure)
partial_false_func = partial(false_func, u_in=u_in)
next_state = jax.lax.cond(i >= model.transition_threshold,
partial_true_func,
partial_false_func,
state)
pred = model.p_scaler(next_state.predicted_pressure)
return (next_state, loss + jnp.abs(model.p_scaler(data[1, i + 1]) - pred))
(state, total_loss) = jax.lax.fori_loop(start_idx, end_idx,
predict_and_update_state,
state_loss_init)
'''state_loss = state_loss_init
for i in range(start_idx, end_idx):
state_loss = predict_and_update_state(i, state_loss)
(_, total_loss) = state_loss'''
return total_loss / len(data[0]) | Apache License 2.0 |
pyansys/pyaedt | pyaedt/siwave.py | Siwave.project_path | python | def project_path(self):
return os.path.normpath(self.oSiwave.GetProjectDirectory()) | Project path.
Returns
-------
str
Full absolute path for the project. | https://github.com/pyansys/pyaedt/blob/817c7d706a2d10942470ccac959645e16e9ea971/pyaedt/siwave.py#L159-L168 | from __future__ import absolute_import
from .generic.general_methods import aedt_exception_handler
import os
import sys
import pkgutil
import time
from .misc import list_installed_ansysem
from pyaedt import is_ironpython, _pythonver
if is_ironpython:
import clr
_com = "pythonnet"
import System
elif os.name == "nt":
modules = [tup[1] for tup in pkgutil.iter_modules()]
if "clr" in modules:
import clr
import win32com.client
_com = "pythonnet_v3"
elif "win32com" in modules:
import win32com.client
_com = "pywin32"
else:
raise Exception("Error. No win32com.client or Python.NET modules found. They need to be installed.")
class Siwave:
@property
def version_keys(self):
self._version_keys = []
self._version_ids = {}
version_list = list_installed_ansysem()
for version_env_var in version_list:
current_version_id = version_env_var.replace("ANSYSEM_ROOT", "").replace("ANSYSEMSV_ROOT", "")
version = int(current_version_id[0:2])
release = int(current_version_id[2])
if version < 20:
if release < 3:
version -= 1
else:
release -= 2
v_key = "20{0}.{1}".format(version, release)
self._version_keys.append(v_key)
self._version_ids[v_key] = version_env_var
return self._version_keys
@property
def current_version(self):
return self.version_keys[0]
def __init__(self, specified_version=None):
self._main = sys.modules["__main__"]
print("Launching Siwave Init")
if "oSiwave" in dir(self._main) and self._main.oSiwave is not None:
self._main.AEDTVersion = self._main.oSiwave.GetVersion()[0:6]
self._main.oSiwave.RestoreWindow()
specified_version = self.current_version
assert specified_version in self.version_keys, "Specified version {} not known.".format(specified_version)
version_key = specified_version
base_path = os.getenv(self._version_ids[specified_version])
self._main.sDesktopinstallDirectory = base_path
else:
if specified_version:
assert specified_version in self.version_keys, "Specified version {} not known.".format(
specified_version
)
version_key = specified_version
else:
version_key = self.current_version
base_path = os.getenv(self._version_ids[version_key])
self._main = sys.modules["__main__"]
self._main.sDesktopinstallDirectory = base_path
version = "Siwave.Application." + version_key
self._main.AEDTVersion = version_key
self._main.interpreter = _com
self._main.interpreter_ver = _pythonver
if "oSiwave" in dir(self._main):
del self._main.oSiwave
if _com == "pythonnet":
self._main.oSiwave = System.Activator.CreateInstance(System.Type.GetTypeFromProgID(version))
elif _com == "pythonnet_v3":
print("Launching Siwave with Module win32com")
self._main.oSiwave = win32com.client.Dispatch("Siwave.Application.2021.1")
self._main.AEDTVersion = version_key
self.oSiwave = self._main.oSiwave
self._main.oSiwave.RestoreWindow()
self._main.siwave_initialized = True
self._oproject = self.oSiwave.GetActiveProject()
pass
@property
def project_name(self):
return self._oproject.GetName()
@property | MIT License |
iterative/dvc | dvc/fs/base.py | BaseFileSystem.walk_files | python | def walk_files(self, path_info, **kwargs):
raise NotImplementedError | Return a generator with `PathInfo`s to all the files.
Optional kwargs:
prefix (bool): If true `path_info` will be treated as a prefix
rather than directory path. | https://github.com/iterative/dvc/blob/3a100382bc5d50a4f1243b1c5d894bb5d7058dbf/dvc/fs/base.py#L169-L176 | import contextlib
import logging
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import partialmethod
from multiprocessing import cpu_count
from typing import Any, ClassVar, Dict, FrozenSet, Optional
from tqdm.utils import CallbackIOWrapper
from dvc.exceptions import DvcException
from dvc.path_info import URLInfo
from dvc.progress import DEFAULT_CALLBACK, FsspecCallback
from dvc.ui import ui
from dvc.utils import tmp_fname
from dvc.utils.fs import makedirs, move
logger = logging.getLogger(__name__)
class RemoteCmdError(DvcException):
def __init__(self, remote, cmd, ret, err):
super().__init__(
"{remote} command '{cmd}' finished with non-zero return code"
" {ret}': {err}".format(remote=remote, cmd=cmd, ret=ret, err=err)
)
class RemoteActionNotImplemented(DvcException):
def __init__(self, action, scheme):
m = f"{action} is not supported for {scheme} remotes"
super().__init__(m)
class RemoteMissingDepsError(DvcException):
pass
class BaseFileSystem:
sep = "/"
scheme = "base"
REQUIRES: ClassVar[Dict[str, str]] = {}
PATH_CLS = URLInfo
_JOBS = 4 * cpu_count()
CHECKSUM_DIR_SUFFIX = ".dir"
HASH_JOBS = max(1, min(4, cpu_count() // 2))
LIST_OBJECT_PAGE_SIZE = 1000
TRAVERSE_WEIGHT_MULTIPLIER = 5
TRAVERSE_PREFIX_LEN = 3
TRAVERSE_THRESHOLD_SIZE = 500000
CAN_TRAVERSE = True
CHUNK_SIZE = 64 * 1024 * 1024
PARAM_CHECKSUM: ClassVar[Optional[str]] = None
DETAIL_FIELDS: FrozenSet[str] = frozenset()
def __init__(self, **kwargs):
self._check_requires(**kwargs)
self.jobs = kwargs.get("jobs") or self._JOBS
self.hash_jobs = kwargs.get("checksum_jobs") or self.HASH_JOBS
self._config = kwargs
@property
def config(self):
return self._config
@classmethod
def _strip_protocol(cls, path: str):
return path
@staticmethod
def _get_kwargs_from_urls(urlpath):
return {}
@classmethod
def get_missing_deps(cls):
import importlib
missing = []
for package, module in cls.REQUIRES.items():
try:
importlib.import_module(module)
except ImportError:
missing.append(package)
return missing
def _check_requires(self, **kwargs):
from ..scheme import Schemes
from ..utils import format_link
from ..utils.pkg import PKG
missing = self.get_missing_deps()
if not missing:
return
url = kwargs.get("url", f"{self.scheme}://")
scheme = self.scheme
if scheme == Schemes.WEBDAVS:
scheme = Schemes.WEBDAV
by_pkg = {
"pip": f"pip install 'dvc[{scheme}]'",
"conda": f"conda install -c conda-forge dvc-{scheme}",
}
cmd = by_pkg.get(PKG)
if cmd:
link = format_link("https://dvc.org/doc/install")
hint = (
f"To install dvc with those dependencies, run:\n"
"\n"
f"\t{cmd}\n"
"\n"
f"See {link} for more info."
)
else:
link = format_link("https://github.com/iterative/dvc/issues")
hint = f"Please report this bug to {link}. Thank you!"
raise RemoteMissingDepsError(
f"URL '{url}' is supported but requires these missing "
f"dependencies: {missing}. {hint}"
)
def checksum(self, path_info) -> str:
raise NotImplementedError
def open(self, path_info, mode: str = "r", encoding: str = None, **kwargs):
raise RemoteActionNotImplemented("open", self.scheme)
def exists(self, path_info) -> bool:
raise NotImplementedError
def isdir(self, path_info):
return False
def isfile(self, path_info):
return True
def isexec(self, path_info):
return False
def iscopy(self, path_info):
return False
def walk(self, top, topdown=True, onerror=None, **kwargs):
raise NotImplementedError | Apache License 2.0 |
riotgames/cloud-inquisitor | backend/cloud_inquisitor/utils.py | to_camelcase | python | def to_camelcase(inStr):
return re.sub('_([a-z])', lambda x: x.group(1).upper(), inStr) | Converts a string from snake_case to camelCase
>>> to_camelcase('convert_to_camel_case')
'convertToCamelCase'
Args:
inStr (str): String to convert
Returns:
String formatted as camelCase | https://github.com/riotgames/cloud-inquisitor/blob/29a26c705381fdba3538b4efedb25b9e09b387ed/backend/cloud_inquisitor/utils.py#L380-L392 | import binascii
import hashlib
import json
import logging
import os
import random
import re
import string
import time
import zlib
from base64 import b64decode
from collections import namedtuple
from copy import deepcopy
from datetime import datetime
from difflib import Differ
from functools import wraps
import boto3.session
import jwt
import munch
import pkg_resources
import requests
from argon2 import PasswordHasher
from dateutil import parser
from jinja2 import Environment, BaseLoader
from cloud_inquisitor.constants import RGX_EMAIL_VALIDATION_PATTERN, RGX_BUCKET, ROLE_ADMIN, DEFAULT_CONFIG, CONFIG_FILE_PATHS
from cloud_inquisitor.exceptions import InquisitorError
__jwt_data = None
log = logging.getLogger(__name__)
NotificationContact = namedtuple('NotificationContact', ('type', 'value'))
class MenuItem(object):
def __init__(self, group=None, name=None, state=None, active=None, section=None, args=None, order=100):
self.group = group
self.name = name
self.state = state
self.active = active
self.section = section
self.args = args or {}
self.order = order
def to_json(self):
return {
'group': self.group,
'name': self.name,
'state': self.state,
'active': self.active,
'section': self.section,
'args': self.args or {},
'order': self.order
}
def deprecated(msg):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
logging.getLogger(__name__).warning(msg)
return func(*args, **kwargs)
return wrapper
return decorator
def get_hash(data):
return hashlib.sha256(str(data).encode('utf-8')).hexdigest()
def is_truthy(value, default=False):
if value is None:
return False
if isinstance(value, bool):
return value
if isinstance(value, int):
return value > 0
trues = ('1', 'true', 'y', 'yes', 'ok')
falses = ('', '0', 'false', 'n', 'none', 'no')
if value.lower().strip() in falses:
return False
elif value.lower().strip() in trues:
return True
else:
if default:
return default
else:
raise ValueError('Invalid argument given to truthy: {0}'.format(value))
def validate_email(email, partial_match=False):
rgx = re.compile(RGX_EMAIL_VALIDATION_PATTERN, re.I)
if partial_match:
return rgx.search(email) is not None
else:
return rgx.match(email) is not None
def get_template(template):
from cloud_inquisitor.database import db
tmpl = db.Template.find_one(template_name=template)
if not tmpl:
raise InquisitorError('No such template found: {}'.format(template))
tmplenv = Environment(loader=BaseLoader, autoescape=True)
tmplenv.filters['json_loads'] = json.loads
tmplenv.filters['slack_quote_join'] = lambda data: ', '.join('`{}`'.format(x) for x in data)
return tmplenv.from_string(tmpl.template)
def parse_bucket_info(domain):
match = RGX_BUCKET.match(domain)
if match:
data = match.groupdict()
return data['bucket'], data['region'] or 'us-east-1'
def to_utc_date(date):
return datetime.utcfromtimestamp(float(date.strftime('%s'))).replace(tzinfo=None) if date else None
def isoformat(date):
return date.isoformat() if date else None
def generate_password(length=32):
return ''.join(random.SystemRandom().choice(string.ascii_letters + '!@#$+.,') for _ in range(length))
def generate_csrf_token():
return binascii.hexlify(os.urandom(32)).decode()
def hash_password(password):
return PasswordHasher().hash(password)
def generate_jwt_token(user, authsys, **kwargs):
from cloud_inquisitor.config import dbconfig
token = {
'auth_system': authsys,
'exp': time.time() + dbconfig.get('session_expire_time'),
'roles': [role.name for role in user.roles]
}
if kwargs:
token.update(**kwargs)
enc = jwt.encode(token, get_jwt_key_data(), algorithm='HS512')
return enc.decode()
def get_jwt_key_data():
global __jwt_data
if __jwt_data:
return __jwt_data
from cloud_inquisitor import config_path
from cloud_inquisitor.config import dbconfig
jwt_key_file = dbconfig.get('jwt_key_file_path', default='ssl/private.key')
if not os.path.isabs(jwt_key_file):
jwt_key_file = os.path.join(config_path, jwt_key_file)
with open(os.path.join(jwt_key_file), 'r') as f:
__jwt_data = f.read()
return __jwt_data
def has_access(user, required_roles, match_all=True):
if ROLE_ADMIN in user.roles:
return True
if isinstance(required_roles, str):
if required_roles in user.roles:
return True
return False
if match_all:
for role in required_roles:
if role not in user.roles:
return False
return True
else:
for role in required_roles:
if role in user.roles:
return True
return False
def merge_lists(*args):
out = {}
for contacts in filter(None, args):
for contact in contacts:
out[contact.value] = contact
return list(out.values()) | Apache License 2.0 |
harpribot/deep-summarization | models/simple.py | Simple._train_batch | python | def _train_batch(self, review, summary):
feed_dict = {self.enc_inp[t]: review[t] for t in range(self.seq_length)}
feed_dict.update({self.labels[t]: summary[t] for t in range(self.seq_length)})
_, loss_t = self.sess.run([self.train_op, self.loss], feed_dict)
return loss_t | Train a batch of the data
:param review: The input review data (X) shape[seq_length x batch_length]
:param summary: The target tip data (Y) shape[seq_length x batch_length]
:return: None | https://github.com/harpribot/deep-summarization/blob/9b3bb1daae11a1db2386dbe4a71848714e6127f8/models/simple.py#L225-L239 | import tensorflow as tf
from models.sequenceNet import NeuralNet
from abc import abstractmethod, ABCMeta
import cPickle as Pickle
import numpy as np
import random
from helpers.data2tensor import Mapper
class Simple(NeuralNet):
__metaclass__ = ABCMeta
def __init__(self, review_summary_file, checkpointer, attention=False):
self.test_review = None
self.predicted_test_summary = None
self.true_summary = None
self.train_size = None
self.test_size = None
self.X = None
self.Y = None
self.prev_mem = None
self.cell = None
self.dec_outputs = None
self.dec_memory = None
self.labels = None
self.loss = None
self.weights = None
self.optimizer = None
self.train_op = None
self.mapper_dict = None
self.seq_length = None
self.vocab_size = None
self.momentum = None
self.attention = attention
self.review_summary_file = review_summary_file
self.checkpointer = checkpointer
self.enc_inp = None
self.dec_inp = None
self._load_data()
super(Simple, self).__init__()
@abstractmethod
def get_cell(self):
pass
def _split_train_tst(self):
num_samples = self.Y.shape[0]
mapper_file = self.checkpointer.get_mapper_file_location()
if not self.checkpointer.is_mapper_checkpointed():
print 'No mapper checkpoint found. Fresh loading in progress ...'
sample_id = range(num_samples)
random.shuffle(sample_id)
print 'Dumping the mapper shuffle for reuse.'
Pickle.dump(sample_id, open(mapper_file, 'wb'))
print 'Dump complete. Moving Forward...'
else:
print 'Mapper Checkpoint found... Reading from mapper dump'
sample_id = Pickle.load(open(mapper_file, 'rb'))
print 'Mapping unpickling complete.. Moving forward...'
self.X = self.X[sample_id]
self.Y = self.Y[sample_id]
test_fraction = 0.01
self.test_size = int(test_fraction * num_samples)
self.train_size = num_samples - self.test_size
self.X_trn = self.X[0:self.train_size]
self.X_tst = self.X[self.train_size:num_samples]
self.Y_trn = self.Y[0:self.train_size]
self.Y_tst = self.Y[self.train_size:num_samples]
def _load_data(self):
self.mapper = Mapper()
self.mapper.generate_vocabulary(self.review_summary_file)
self.X, self.Y = self.mapper.get_tensor()
self.mapper_dict = dict()
self.mapper_dict['seq_length'] = self.mapper.get_seq_length()
self.mapper_dict['vocab_size'] = self.mapper.get_vocabulary_size()
self.mapper_dict['rev_map'] = self.mapper.get_reverse_map()
self._split_train_tst()
def _load_data_graph(self):
with tf.variable_scope("train_test", reuse=True):
self.enc_inp = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
for t in range(self.seq_length)]
self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
for t in range(self.seq_length)]
self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
for labels_t in self.labels]
self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
def _load_model(self):
self.prev_mem = tf.zeros((self.train_batch_size, self.memory_dim))
with tf.variable_scope("train_test", reuse=True):
self.cell = self.get_cell()
if not self.attention:
with tf.variable_scope("train_test"):
self.dec_outputs, self.dec_memory = tf.nn.seq2seq.embedding_rnn_seq2seq(
self.enc_inp, self.dec_inp, self.cell,
self.vocab_size, self.vocab_size, self.seq_length)
with tf.variable_scope("train_test", reuse=True):
self.dec_outputs_tst, _ = tf.nn.seq2seq.embedding_rnn_seq2seq(
self.enc_inp, self.dec_inp, self.cell,
self.vocab_size, self.vocab_size, self.seq_length, feed_previous=True)
else:
with tf.variable_scope("train_test"):
self.dec_outputs, self.dec_memory = tf.nn.seq2seq.embedding_attention_seq2seq(
self.enc_inp, self.dec_inp, self.cell,
self.vocab_size, self.vocab_size, self.seq_length)
with tf.variable_scope("train_test", reuse=True):
self.dec_outputs_tst, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
self.enc_inp, self.dec_inp, self.cell,
self.vocab_size, self.vocab_size, self.seq_length, feed_previous=True)
def _load_optimizer(self):
self.loss = tf.nn.seq2seq.sequence_loss(self.dec_outputs, self.labels, self.weights, self.vocab_size)
self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
self.train_op = self.optimizer.minimize(self.loss)
def fit(self):
step_file = self.checkpointer.get_step_file()
start_step = Pickle.load(open(step_file, 'rb'))
for step in xrange(start_step, self.train_size // self.train_batch_size):
print 'Step No.:', step
if step % self.checkpointer.get_checkpoint_steps() == 0:
print 'Checkpointing: Saving Tensorflow variables'
self.saver.save(self.sess, self.checkpointer.get_save_address())
Pickle.dump(step + 1, open(step_file, 'wb'))
print 'Checkpointing Complete. Deleting historical checkpoints....'
self.checkpointer.delete_previous_checkpoints(num_previous=2)
print 'Deleted.. Moving forward...'
offset = (step * self.train_batch_size) % self.train_size
batch_data = self.X_trn[offset:(offset + self.train_batch_size), :].T
batch_labels = self.Y_trn[offset:(offset + self.train_batch_size), :].T
loss_t = self._train_batch(batch_data, batch_labels)
print "Present Loss:", loss_t
print 'Train Data Validation\n'
self._visual_validate(self.X_trn[301, :], self.Y_trn[301, :])
print
print
print 'Test Data Validation\n'
self._visual_validate(self.X_tst[56, :], self.Y_tst[56, :])
print
print
'''
if(step % self.checkpointer.get_prediction_checkpoint_steps() == 0):
self.predict()
self.store_test_predictions('_' + str(step))
''' | MIT License |
cartus/dcgcn | sockeye/config.py | Config.__add_frozen | python | def __add_frozen(self):
setattr(self, "_frozen", False)
for attr, val in self.__dict__.items():
if isinstance(val, Config):
val.__add_frozen() | Adds _frozen attribute to this instance and all its child configurations. | https://github.com/cartus/dcgcn/blob/af91fc787e0aed3ef20e143c2deba70c3c5f309a/sockeye/config.py#L90-L97 | import copy
import inspect
import yaml
class TaggedYamlObjectMetaclass(yaml.YAMLObjectMetaclass):
def __init__(cls, name, bases, kwds):
cls.yaml_tag = "!" + name
new_kwds = {}
new_kwds.update(kwds)
new_kwds['yaml_tag'] = "!" + name
super().__init__(name, bases, new_kwds)
class Config(yaml.YAMLObject, metaclass=TaggedYamlObjectMetaclass):
def __init__(self):
self.__add_frozen()
def __setattr__(self, key, value):
if hasattr(self, '_frozen') and getattr(self, '_frozen'):
raise AttributeError("Cannot set '%s' in frozen config" % key)
if value == self:
raise AttributeError("Cannot set self as attribute")
object.__setattr__(self, key, value)
def __setstate__(self, state):
self.__dict__.update(state)
init_signature = inspect.signature(self.__init__)
for param_name, param in init_signature.parameters.items():
if param.default is not param.empty:
if not hasattr(self, param_name):
object.__setattr__(self, param_name, param.default)
def freeze(self):
if getattr(self, '_frozen'):
return
object.__setattr__(self, "_frozen", True)
for k, v in self.__dict__.items():
if isinstance(v, Config) and k != "self":
v.freeze()
def __repr__(self):
return "Config[%s]" % ", ".join("%s=%s" % (str(k), str(v)) for k, v in sorted(self.__dict__.items()))
def __eq__(self, other):
if type(other) is not type(self):
return False
for k, v in self.__dict__.items():
if k != "self":
if k not in other.__dict__:
return False
if self.__dict__[k] != other.__dict__[k]:
return False
return True
def __del_frozen(self):
self.__delattr__('_frozen')
for attr, val in self.__dict__.items():
if isinstance(val, Config) and hasattr(val, '_frozen'):
val.__del_frozen() | MIT License |
tcalmant/ipopo | pelix/http/basic.py | _RequestHandler.log_request | python | def log_request(self, code="-", size="-"):
self._service.log(logging.DEBUG, '"%s" %s', self.requestline, code) | Logs a request to the server | https://github.com/tcalmant/ipopo/blob/1d4b81207e67890dfccc8f562336c7104f194c17/pelix/http/basic.py#L322-L326 | import logging
import socket
import threading
import traceback
try:
from http.server import HTTPServer
from http.server import BaseHTTPRequestHandler
from socketserver import ThreadingMixIn, TCPServer
except ImportError:
from BaseHTTPServer import HTTPServer
from BaseHTTPServer import BaseHTTPRequestHandler
from SocketServer import ThreadingMixIn, TCPServer
from pelix.ipopo.decorators import (
ComponentFactory,
Provides,
Requires,
Validate,
Invalidate,
Property,
HiddenProperty,
BindField,
UpdateField,
UnbindField,
)
import pelix.ipopo.constants as constants
import pelix.ipv6utils
import pelix.utilities as utilities
import pelix.misc.ssl_wrap as ssl_wrap
import pelix.remote
import pelix.http as http
__version_info__ = (1, 0, 1)
__version__ = ".".join(str(x) for x in __version_info__)
__docformat__ = "restructuredtext en"
HTTP_SERVICE_EXTRA = "http.extra"
DEFAULT_BIND_ADDRESS = "0.0.0.0"
LOCALHOST_ADDRESS = "127.0.0.1"
class _HTTPServletRequest(http.AbstractHTTPServletRequest):
def __init__(self, request_handler, prefix):
self._handler = request_handler
self._prefix = prefix
self._sub_path = self._handler.path[len(prefix) :]
if not self._sub_path.startswith("/"):
self._sub_path = "/{0}".format(self._sub_path)
while "//" in self._sub_path:
self._sub_path = self._sub_path.replace("//", "/")
def get_command(self):
return self._handler.command
def get_client_address(self):
return self._handler.client_address
def get_header(self, name, default=None):
return self._handler.headers.get(name, default)
def get_headers(self):
return self._handler.headers
def get_path(self):
return self._handler.path
def get_prefix_path(self):
return self._prefix
def get_sub_path(self):
return self._sub_path
def get_rfile(self):
return self._handler.rfile
class _HTTPServletResponse(http.AbstractHTTPServletResponse):
def __init__(self, request_handler):
self._handler = request_handler
self._headers = {}
def set_response(self, code, message=None):
self._handler.send_response(code, message)
def set_header(self, name, value):
self._headers[name.lower()] = value
def is_header_set(self, name):
return name.lower() in self._headers
def end_headers(self):
for name, value in self._headers.items():
self._handler.send_header(name, value)
self._handler.end_headers()
def get_wfile(self):
return self._handler.wfile
def write(self, data):
self._handler.wfile.write(data)
class _RequestHandler(BaseHTTPRequestHandler, object):
default_request_version = "HTTP/1.0"
def __init__(self, http_svc, *args, **kwargs):
self._service = http_svc
BaseHTTPRequestHandler.__init__(self, *args, **kwargs)
def __getattr__(self, name):
if not name.startswith("do_"):
return object.__getattribute__(self, name)
parsed_path = self.path.split("?", 1)[0].replace("//", "/")
found_servlet = self._service.get_servlet(parsed_path)
if found_servlet is not None:
servlet, _, prefix = found_servlet
if hasattr(servlet, name):
request = _HTTPServletRequest(self, prefix)
response = _HTTPServletResponse(self)
def wrapper():
try:
return getattr(servlet, name)(request, response)
except:
return self.send_exception(response)
return wrapper
return self.send_no_servlet_response
def log_error(self, message, *args, **kwargs):
self._service.log(logging.ERROR, message, *args, **kwargs) | Apache License 2.0 |
mrod5/pyturb | src/pyturb/combustion/combustion_thermodynamics.py | Combustion.reactants_dictionary | python | def reactants_dictionary(self):
return self._reactants_dictionary | Reactants dictionary [gas_species]: moles | https://github.com/mrod5/pyturb/blob/08b4016528fc50733fff58d967d1000bf1e634c9/src/pyturb/combustion/combustion_thermodynamics.py#L90-L94 | from pyturb.gas_models.thermo_properties import ThermoProperties
from pyturb.gas_models.perfect_ideal_gas import PerfectIdealGas
from pyturb.gas_models.semiperfect_ideal_gas import SemiperfectIdealGas
import numpy as np
import warnings
oxidizers = ['Air', 'O', 'O2', 'O3', 'O2(L)', 'O3(L)']
fuels = ['hydrocarbon', 'C8H18,isooctane',
'CH4', 'C2H6', 'C3H8', 'C4H10', 'C5H12', 'C6H14', 'C7H16', 'C8H18',
'CH4O', 'CH3OCH3',
'H2']
inert_gases = ['He', 'Ar', 'N2',
'CO2', 'CO']
class Combustion(object):
def __init__(self, fuel, oxidizer):
if not(isinstance(fuel, PerfectIdealGas) or isinstance(fuel, SemiperfectIdealGas) or isinstance(fuel, IdealLiquid)):
raise TypeError("Object must be PerfectIdealGas, SemiperfectIdealGas or PerfectLiquid. Instead received {}".format(fluid))
if not(isinstance(fuel, PerfectIdealGas) or isinstance(fuel, SemiperfectIdealGas) or isinstance(fuel, IdealLiquid)):
raise TypeError("Object must be PerfectIdealGas, SemiperfectIdealGas or PerfectLiquid. Instead received {}".format(fluid))
self.oxidizer_list = oxidizers
self.fuel_list = fuels
self.fuel = fuel
self.oxidizer = oxidizer
reactants_status = self._classify_reactants()
if not reactants_status:
raise ValueError("Unknown fuel and oxidizer")
else:
self._alpha = 0
self._beta = 0
self._gamma = 0
self._delta = 0
return
@property
def reactants(self):
return self._reactants
@property
def products(self):
return self._products
@property | MIT License |