Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
ArXiv:
Tags:
multimodal
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,103 +1,188 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
dataset_info:
|
4 |
-
features:
|
5 |
-
- name: data_path
|
6 |
-
sequence: string
|
7 |
-
- name: generator
|
8 |
-
dtype: string
|
9 |
-
- name: question
|
10 |
-
dtype: string
|
11 |
-
- name: answer
|
12 |
-
dtype: string
|
13 |
-
- name: options
|
14 |
-
sequence: string
|
15 |
-
- name: metadata
|
16 |
-
dtype: string
|
17 |
-
splits:
|
18 |
-
- name: dcs_sa
|
19 |
-
num_bytes: 1192380951
|
20 |
-
num_examples: 2294572
|
21 |
-
- name: dcs_mc
|
22 |
-
num_bytes: 1313184418
|
23 |
-
num_examples: 2294572
|
24 |
-
- name: dcm_sa_2_img
|
25 |
-
num_bytes: 858402949
|
26 |
-
num_examples: 1400000
|
27 |
-
- name: dcm_mc_2_img
|
28 |
-
num_bytes: 931128693
|
29 |
-
num_examples: 1400000
|
30 |
-
- name: dcm_sa_3_img
|
31 |
-
num_bytes: 1167523949
|
32 |
-
num_examples: 1400000
|
33 |
-
- name: dcm_mc_3_img
|
34 |
-
num_bytes: 1297530106
|
35 |
-
num_examples: 1400000
|
36 |
-
- name: dcm_sa_4_img
|
37 |
-
num_bytes: 1435043372
|
38 |
-
num_examples: 1400000
|
39 |
-
- name: dcm_mc_4_img
|
40 |
-
num_bytes: 1596677323
|
41 |
-
num_examples: 1400000
|
42 |
-
- name: vgs_sa
|
43 |
-
num_bytes: 595577425
|
44 |
-
num_examples: 1537630
|
45 |
-
- name: vgs_mc
|
46 |
-
num_bytes: 671343503
|
47 |
-
num_examples: 1537630
|
48 |
-
- name: vgm_sa_2_img
|
49 |
-
num_bytes: 536078137
|
50 |
-
num_examples: 1400000
|
51 |
-
- name: vgm_mc_2_img
|
52 |
-
num_bytes: 612895409
|
53 |
-
num_examples: 1400000
|
54 |
-
- name: vgm_sa_3_img
|
55 |
-
num_bytes: 693450488
|
56 |
-
num_examples: 1400000
|
57 |
-
- name: vgm_mc_3_img
|
58 |
-
num_bytes: 830159021
|
59 |
-
num_examples: 1400000
|
60 |
-
- name: vgm_sa_4_img
|
61 |
-
num_bytes: 802710456
|
62 |
-
num_examples: 1400000
|
63 |
-
- name: vgm_mc_4_img
|
64 |
-
num_bytes: 972149375
|
65 |
-
num_examples: 1400000
|
66 |
-
download_size: 5904415104
|
67 |
-
dataset_size: 15506235575
|
68 |
-
configs:
|
69 |
-
- config_name: default
|
70 |
-
data_files:
|
71 |
-
- split: dcs_sa
|
72 |
-
path: data/dcs_sa-*
|
73 |
-
- split: dcs_mc
|
74 |
-
path: data/dcs_mc-*
|
75 |
-
- split: dcm_sa_2_img
|
76 |
-
path: data/dcm_sa_2_img-*
|
77 |
-
- split: dcm_mc_2_img
|
78 |
-
path: data/dcm_mc_2_img-*
|
79 |
-
- split: dcm_sa_3_img
|
80 |
-
path: data/dcm_sa_3_img-*
|
81 |
-
- split: dcm_mc_3_img
|
82 |
-
path: data/dcm_mc_3_img-*
|
83 |
-
- split: dcm_sa_4_img
|
84 |
-
path: data/dcm_sa_4_img-*
|
85 |
-
- split: dcm_mc_4_img
|
86 |
-
path: data/dcm_mc_4_img-*
|
87 |
-
- split: vgs_sa
|
88 |
-
path: data/vgs_sa-*
|
89 |
-
- split: vgs_mc
|
90 |
-
path: data/vgs_mc-*
|
91 |
-
- split: vgm_sa_2_img
|
92 |
-
path: data/vgm_sa_2_img-*
|
93 |
-
- split: vgm_mc_2_img
|
94 |
-
path: data/vgm_mc_2_img-*
|
95 |
-
- split: vgm_sa_3_img
|
96 |
-
path: data/vgm_sa_3_img-*
|
97 |
-
- split: vgm_mc_3_img
|
98 |
-
path: data/vgm_mc_3_img-*
|
99 |
-
- split: vgm_sa_4_img
|
100 |
-
path: data/vgm_sa_4_img-*
|
101 |
-
- split: vgm_mc_4_img
|
102 |
-
path: data/vgm_mc_4_img-*
|
103 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
dataset_info:
|
4 |
+
features:
|
5 |
+
- name: data_path
|
6 |
+
sequence: string
|
7 |
+
- name: generator
|
8 |
+
dtype: string
|
9 |
+
- name: question
|
10 |
+
dtype: string
|
11 |
+
- name: answer
|
12 |
+
dtype: string
|
13 |
+
- name: options
|
14 |
+
sequence: string
|
15 |
+
- name: metadata
|
16 |
+
dtype: string
|
17 |
+
splits:
|
18 |
+
- name: dcs_sa
|
19 |
+
num_bytes: 1192380951
|
20 |
+
num_examples: 2294572
|
21 |
+
- name: dcs_mc
|
22 |
+
num_bytes: 1313184418
|
23 |
+
num_examples: 2294572
|
24 |
+
- name: dcm_sa_2_img
|
25 |
+
num_bytes: 858402949
|
26 |
+
num_examples: 1400000
|
27 |
+
- name: dcm_mc_2_img
|
28 |
+
num_bytes: 931128693
|
29 |
+
num_examples: 1400000
|
30 |
+
- name: dcm_sa_3_img
|
31 |
+
num_bytes: 1167523949
|
32 |
+
num_examples: 1400000
|
33 |
+
- name: dcm_mc_3_img
|
34 |
+
num_bytes: 1297530106
|
35 |
+
num_examples: 1400000
|
36 |
+
- name: dcm_sa_4_img
|
37 |
+
num_bytes: 1435043372
|
38 |
+
num_examples: 1400000
|
39 |
+
- name: dcm_mc_4_img
|
40 |
+
num_bytes: 1596677323
|
41 |
+
num_examples: 1400000
|
42 |
+
- name: vgs_sa
|
43 |
+
num_bytes: 595577425
|
44 |
+
num_examples: 1537630
|
45 |
+
- name: vgs_mc
|
46 |
+
num_bytes: 671343503
|
47 |
+
num_examples: 1537630
|
48 |
+
- name: vgm_sa_2_img
|
49 |
+
num_bytes: 536078137
|
50 |
+
num_examples: 1400000
|
51 |
+
- name: vgm_mc_2_img
|
52 |
+
num_bytes: 612895409
|
53 |
+
num_examples: 1400000
|
54 |
+
- name: vgm_sa_3_img
|
55 |
+
num_bytes: 693450488
|
56 |
+
num_examples: 1400000
|
57 |
+
- name: vgm_mc_3_img
|
58 |
+
num_bytes: 830159021
|
59 |
+
num_examples: 1400000
|
60 |
+
- name: vgm_sa_4_img
|
61 |
+
num_bytes: 802710456
|
62 |
+
num_examples: 1400000
|
63 |
+
- name: vgm_mc_4_img
|
64 |
+
num_bytes: 972149375
|
65 |
+
num_examples: 1400000
|
66 |
+
download_size: 5904415104
|
67 |
+
dataset_size: 15506235575
|
68 |
+
configs:
|
69 |
+
- config_name: default
|
70 |
+
data_files:
|
71 |
+
- split: dcs_sa
|
72 |
+
path: data/dcs_sa-*
|
73 |
+
- split: dcs_mc
|
74 |
+
path: data/dcs_mc-*
|
75 |
+
- split: dcm_sa_2_img
|
76 |
+
path: data/dcm_sa_2_img-*
|
77 |
+
- split: dcm_mc_2_img
|
78 |
+
path: data/dcm_mc_2_img-*
|
79 |
+
- split: dcm_sa_3_img
|
80 |
+
path: data/dcm_sa_3_img-*
|
81 |
+
- split: dcm_mc_3_img
|
82 |
+
path: data/dcm_mc_3_img-*
|
83 |
+
- split: dcm_sa_4_img
|
84 |
+
path: data/dcm_sa_4_img-*
|
85 |
+
- split: dcm_mc_4_img
|
86 |
+
path: data/dcm_mc_4_img-*
|
87 |
+
- split: vgs_sa
|
88 |
+
path: data/vgs_sa-*
|
89 |
+
- split: vgs_mc
|
90 |
+
path: data/vgs_mc-*
|
91 |
+
- split: vgm_sa_2_img
|
92 |
+
path: data/vgm_sa_2_img-*
|
93 |
+
- split: vgm_mc_2_img
|
94 |
+
path: data/vgm_mc_2_img-*
|
95 |
+
- split: vgm_sa_3_img
|
96 |
+
path: data/vgm_sa_3_img-*
|
97 |
+
- split: vgm_mc_3_img
|
98 |
+
path: data/vgm_mc_3_img-*
|
99 |
+
- split: vgm_sa_4_img
|
100 |
+
path: data/vgm_sa_4_img-*
|
101 |
+
- split: vgm_mc_4_img
|
102 |
+
path: data/vgm_mc_4_img-*
|
103 |
+
---
|
104 |
+
|
105 |
+
|
106 |
+
<h1 align="center">
|
107 |
+
ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models
|
108 |
+
</h1>
|
109 |
+
|
110 |
+
ProVision is an extendable data generation engine which produces instruction data for large multimodal language models (MLMs).
|
111 |
+
|
112 |
+
In particular, it synthesizes instruction data via data generators (Python programs) and scene graphs rather than proprietary models. It also includes a scene graph generation pipeline consisting of various state-of-the-art models (eg, object detection model). Thus, one can generate instruction data for any given image by first generating the scene graph and then apply data generators.
|
113 |
+
|
114 |
+
Provision supports generation of both single-image and multi-image instruction data. One can also extend the engine by adding new data generators.
|
115 |
+
|
116 |
+
**You are currently viewing the ProVision-10M dataset.**
|
117 |
+
|
118 |
+

|
119 |
+
|
120 |
+
## Dataset Details
|
121 |
+
|
122 |
+
### Dataset Sources
|
123 |
+
|
124 |
+
- **Repository**: https://github.com/JieyuZ2/ProVision
|
125 |
+
- **Paper:**
|
126 |
+
- **Blog:**
|
127 |
+
- **Source Data:** [Visual Genome](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html)/[GQA](https://cs.stanford.edu/people/dorarad/gqa/about.html) and [DataComp](https://www.datacomp.ai/dcclip/index.html#home)
|
128 |
+
|
129 |
+
## Uses
|
130 |
+
|
131 |
+
### Direct Use
|
132 |
+
|
133 |
+
<!-- This section describes suitable use cases for the dataset. -->
|
134 |
+
|
135 |
+
ProVision-10M is designed to facilitate research in training multimodal language models.
|
136 |
+
|
137 |
+
### Out-of-Scope Use
|
138 |
+
|
139 |
+
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
|
140 |
+
|
141 |
+
ProVision-10M was built to make research into large multimodal models more accessible. Using
|
142 |
+
the dataset to train models that ingest or generate personally identifying information (such
|
143 |
+
as images of people’s faces and other sensitive content) as well as military applications are all inappropriate use cases of ProVision-10M.
|
144 |
+
|
145 |
+
## Dataset Creation
|
146 |
+
|
147 |
+
### Curation Rationale
|
148 |
+
|
149 |
+
ProVision-10M was created to demonstrate the potential of programmatically synthesizing instruction data for training multimodal language models.
|
150 |
+
|
151 |
+
### Source Data
|
152 |
+
|
153 |
+
The dataset is built upon two data sources:
|
154 |
+
|
155 |
+
- we use 74,289 images and scene graphs from Visual Genome(the GQA version)
|
156 |
+
- we use 126,106 images from DataComp
|
157 |
+
|
158 |
+
### Dataset summary
|
159 |
+
|
160 |
+
**We do not release the images, please download the images from their original sources (GQA/DataComp)**
|
161 |
+
|
162 |
+
| Split | Size | Format | Description |
|
163 |
+
| :------------| :------ | :------ | :---- |
|
164 |
+
| vgs_sa | 1537630 | short answer | single-image instruction data based on Visual Genome |
|
165 |
+
| vgs_mc | 1537630 | multiple choice | single-image instruction data based on Visual Genome |
|
166 |
+
| vgm_sa_2_img | 1400000 | short answer | 2-image instruction data based on Visual Genome |
|
167 |
+
| vgm_mc_2_img | 1400000 | multiple choice | 2-image instruction data based on Visual Genome |
|
168 |
+
| vgm_sa_3_img | 1400000 | short answer | 3-image instruction data based on Visual Genome |
|
169 |
+
| vgm_mc_3_img | 1400000 | multiple choice | 3-image instruction data based on Visual Genome |
|
170 |
+
| vgm_sa_4_img | 1400000 | short answer | 4-image instruction data based on Visual Genome |
|
171 |
+
| vgm_mc_4_img | 1400000 | multiple choice | 4-image instruction data based on Visual Genome |
|
172 |
+
| dcs_sa | 2294572 | short answer | single-image instruction data based on DataComp images |
|
173 |
+
| dcs_mc | 2294572 | multiple choice | single-image instruction data based on DataComp images |
|
174 |
+
| dcm_sa_2_img | 1400000 | short answer | 2-image instruction data based on DataComp images |
|
175 |
+
| dcm_mc_2_img | 1400000 | multiple choice | 2-image instruction data based on DataComp images |
|
176 |
+
| dcm_sa_3_img | 1400000 | short answer | 3-image instruction data based on DataComp images |
|
177 |
+
| dcm_mc_3_img | 1400000 | multiple choice | 3-image instruction data based on DataComp images |
|
178 |
+
| dcm_sa_4_img | 1400000 | short answer | 4-image instruction data based on DataComp images |
|
179 |
+
| dcm_mc_4_img | 1400000 | multiple choice | 4-image instruction data based on DataComp images |
|
180 |
+
|
181 |
+
## License
|
182 |
+
We release ProVision-10M under a Apache License 2.0.
|
183 |
+
|
184 |
+
## Citation
|
185 |
+
|
186 |
+
```
|
187 |
+
|
188 |
+
```
|