Upload wisesight_thai_sentiment.py with huggingface_hub
Browse files- wisesight_thai_sentiment.py +177 -0
wisesight_thai_sentiment.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
from seacrowd.utils import schemas
|
22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
23 |
+
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
|
24 |
+
DEFAULT_SOURCE_VIEW_NAME, Licenses,
|
25 |
+
Tasks)
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
@software{bact_2019_3457447,
|
29 |
+
author = {Suriyawongkul, Arthit and
|
30 |
+
Chuangsuwanich, Ekapol and
|
31 |
+
Chormai, Pattarawat and
|
32 |
+
Polpanumas, Charin},
|
33 |
+
title = {PyThaiNLP/wisesight-sentiment: First release},
|
34 |
+
month = sep,
|
35 |
+
year = 2019,
|
36 |
+
publisher = {Zenodo},
|
37 |
+
version = {v1.0},
|
38 |
+
doi = {10.5281/zenodo.3457447},
|
39 |
+
url = {https://doi.org/10.5281/zenodo.3457447}
|
40 |
+
}
|
41 |
+
"""
|
42 |
+
|
43 |
+
|
44 |
+
_DATASETNAME = "wisesight_thai_sentiment"
|
45 |
+
|
46 |
+
|
47 |
+
_DESCRIPTION = """\
|
48 |
+
Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment category (positive, neutral, negative, question)
|
49 |
+
* Released to public domain under Creative Commons Zero v1.0 Universal license.
|
50 |
+
* Category (Labels): {"pos": 0, "neu": 1, "neg": 2, "q": 3}
|
51 |
+
* Size: 26,737 messages
|
52 |
+
* Language: Central Thai
|
53 |
+
* Style: Informal and conversational. With some news headlines and advertisement.
|
54 |
+
* Time period: Around 2016 to early 2019. With small amount from other period.
|
55 |
+
* Domains: Mixed. Majority are consumer products and services (restaurants, cosmetics, drinks, car, hotels), with some current affairs.
|
56 |
+
* Privacy:
|
57 |
+
* Only messages that made available to the public on the internet (websites, blogs, social network sites).
|
58 |
+
* For Facebook, this means the public comments (everyone can see) that made on a public page.
|
59 |
+
* Private/protected messages and messages in groups, chat, and inbox are not included.
|
60 |
+
* Alternations and modifications:
|
61 |
+
* Keep in mind that this corpus does not statistically represent anything in the language register.
|
62 |
+
* Large amount of messages are not in their original form. Personal data are removed or masked.
|
63 |
+
* Duplicated, leading, and trailing whitespaces are removed. Other punctuations, symbols, and emojis are kept intact.
|
64 |
+
(Mis)spellings are kept intact.
|
65 |
+
* Messages longer than 2,000 characters are removed.
|
66 |
+
* Long non-Thai messages are removed. Duplicated message (exact match) are removed.
|
67 |
+
* More characteristics of the data can be explore: https://github.com/PyThaiNLP/wisesight-sentiment/blob/master/exploration.ipynb
|
68 |
+
"""
|
69 |
+
|
70 |
+
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
71 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
72 |
+
|
73 |
+
_HOMEPAGE = "https://github.com/PyThaiNLP/wisesight-sentiment"
|
74 |
+
|
75 |
+
_LANGUAGES = ["tha"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
76 |
+
|
77 |
+
|
78 |
+
_LICENSE = Licenses.CC0_1_0.value
|
79 |
+
|
80 |
+
|
81 |
+
_LOCAL = False
|
82 |
+
|
83 |
+
|
84 |
+
_URLS = {
|
85 |
+
_DATASETNAME: "https://github.com/PyThaiNLP/wisesight-sentiment/raw/master/huggingface/data.zip",
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
90 |
+
|
91 |
+
|
92 |
+
_SOURCE_VERSION = "1.0.0"
|
93 |
+
|
94 |
+
_SEACROWD_VERSION = "2024.06.20"
|
95 |
+
|
96 |
+
|
97 |
+
class WisesightSentimentDataset(datasets.GeneratorBasedBuilder):
|
98 |
+
"""Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment category (positive, neutral, negative, question)"""
|
99 |
+
|
100 |
+
_DOWNLOAD_URL = _URLS[_DATASETNAME]
|
101 |
+
_TRAIN_FILE = "train.jsonl"
|
102 |
+
_VAL_FILE = "valid.jsonl"
|
103 |
+
_TEST_FILE = "test.jsonl"
|
104 |
+
|
105 |
+
BUILDER_CONFIGS = [
|
106 |
+
SEACrowdConfig(
|
107 |
+
name="wisesight_thai_sentiment_source",
|
108 |
+
version=datasets.Version(_SOURCE_VERSION),
|
109 |
+
description="Wisesight Sentiment Corpus Source version (positive, neutral, negative, question)",
|
110 |
+
schema="source",
|
111 |
+
subset_id="wisesight_thai_sentiment",
|
112 |
+
),
|
113 |
+
SEACrowdConfig(
|
114 |
+
name="wisesight_thai_sentiment_seacrowd_text",
|
115 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
116 |
+
description="Wisesight Sentiment Corpus Seacrowd version (positive, neutral, negative, question)",
|
117 |
+
schema="seacrowd_text",
|
118 |
+
subset_id="wisesight_thai_sentiment",
|
119 |
+
),
|
120 |
+
]
|
121 |
+
|
122 |
+
DEFAULT_CONFIG_NAME = "wisesight_thai_sentiment_source"
|
123 |
+
|
124 |
+
def _info(self):
|
125 |
+
if self.config.schema == "source":
|
126 |
+
features = datasets.Features(
|
127 |
+
{
|
128 |
+
"texts": datasets.Value("string"),
|
129 |
+
"category": datasets.features.ClassLabel(names=["pos", "neu", "neg", "q"]),
|
130 |
+
}
|
131 |
+
)
|
132 |
+
elif self.config.schema == "seacrowd_text":
|
133 |
+
features = schemas.text_features(["pos", "neu", "neg", "q"])
|
134 |
+
|
135 |
+
return datasets.DatasetInfo(
|
136 |
+
description=_DESCRIPTION,
|
137 |
+
features=features,
|
138 |
+
homepage=_HOMEPAGE,
|
139 |
+
license=_LICENSE,
|
140 |
+
citation=_CITATION,
|
141 |
+
)
|
142 |
+
|
143 |
+
def _split_generators(self, dl_manager):
|
144 |
+
arch_path = dl_manager.download_and_extract(self._DOWNLOAD_URL)
|
145 |
+
data_dir = os.path.join(arch_path, "data")
|
146 |
+
return [
|
147 |
+
datasets.SplitGenerator(
|
148 |
+
name=datasets.Split.TRAIN,
|
149 |
+
gen_kwargs={"filepath": os.path.join(data_dir, self._TRAIN_FILE)},
|
150 |
+
),
|
151 |
+
datasets.SplitGenerator(
|
152 |
+
name=datasets.Split.VALIDATION,
|
153 |
+
gen_kwargs={"filepath": os.path.join(data_dir, self._VAL_FILE)},
|
154 |
+
),
|
155 |
+
datasets.SplitGenerator(
|
156 |
+
name=datasets.Split.TEST,
|
157 |
+
gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FILE)},
|
158 |
+
),
|
159 |
+
]
|
160 |
+
|
161 |
+
def _generate_examples(self, filepath):
|
162 |
+
"""Generate WisesightSentiment examples."""
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
if self.config.schema == "source":
|
165 |
+
for id_, row in enumerate(f):
|
166 |
+
data = json.loads(row)
|
167 |
+
texts = data["texts"]
|
168 |
+
category = data["category"]
|
169 |
+
yield id_, {"texts": texts, "category": category}
|
170 |
+
|
171 |
+
elif self.config.schema == "seacrowd_text":
|
172 |
+
for id_, row in enumerate(f):
|
173 |
+
data = json.loads(row)
|
174 |
+
texts = data["texts"]
|
175 |
+
category = data["category"]
|
176 |
+
ex = {"id": str(id_), "text": texts, "label": category}
|
177 |
+
yield id_, ex
|