Datasets:

Languages:
Thai
ArXiv:
License:
File size: 5,543 Bytes
06faf30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This dataset collects all 353 books from the Thai National Historical Corpus 2 (TNHC2) corpus. The dataset has been cleaned to use text for pretraining models and NLP tasks. The TNHC2 corpus is a Thai old books corpus and all books are copyright expired according to Thai law (50 years after the author's death). More information on this corpus can be found here: https://www.arts.chula.ac.th/chulaseal/tnhc2/.
"""
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks, Licenses

_CITATION = """\
@dataset{phatthiyaphaibun_2024_10783421,
  author       = {Phatthiyaphaibun, Wannaphong},
  title        = {Thai TNHC2 Books},
  month        = mar,
  year         = 2024,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.10783421},
  url          = {https://doi.org/10.5281/zenodo.10783421}
}
"""

_DATASETNAME = "thai_tnhc2_books"

_DESCRIPTION = """\
This dataset collects all 353 books from the Thai National Historical Corpus 2 (TNHC2) corpus. The dataset has been cleaned to use text for pretraining models and NLP tasks. The TNHC2 corpus is a Thai old books corpus and all books are copyright expired according to Thai law (50 years after the author's death). More information on this corpus can be found here: https://www.arts.chula.ac.th/chulaseal/tnhc2/.
"""

_HOMEPAGE = "https://www.arts.chula.ac.th/chulaseal/tnhc2/"

_LANGUAGES = ["tha"]

_LICENSE = Licenses.CC0_1_0.value

_LOCAL = False

_URLS = "https://huggingface.co/datasets/pythainlp/thai-tnhc2-books/resolve/main/data/train-00000-of-00001.parquet?download=true"

_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"

class ThaiTnhc2BooksDataset(datasets.GeneratorBasedBuilder):
    """This dataset collects all 353 books from the Thai National Historical Corpus 2 (TNHC2) corpus. The dataset has been cleaned to use text for pretraining models and NLP tasks. The TNHC2 corpus is a Thai old books corpus and all books are copyright expired according to Thai law (50 years after the author's death). More information on this corpus can be found here: https://www.arts.chula.ac.th/chulaseal/tnhc2/."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_ssp",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema="seacrowd_ssp",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features({
                "id": datasets.Value("string"),
                "book": datasets.Value("string"),
                "author": datasets.Value("string"),
                "text": datasets.Value("string"),
            })

        elif self.config.schema == "seacrowd_ssp":
            features = schemas.ssp_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir,
                },
            ),
        ]

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        df = pd.read_parquet(filepath)

        # Handle multiple books with the same id
        df["id"] = df["id"] + "_" + df.groupby("id").cumcount().astype(str)

        if self.config.schema == "source":
            for i, row in df.iterrows():
                yield i, {
                    "id": row["id"],
                    "book": row["book"],
                    "author": row["author"],
                    "text": row["text"],
                }

        elif self.config.schema == "seacrowd_ssp":
            for i, row in df.iterrows():
                yield i, {
                    "id": row["id"],
                    "text": row["text"],
                }