|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@article{SUTOYO2022108554, |
|
title = {PRDECT-ID: Indonesian product reviews dataset for emotions classification tasks}, |
|
journal = {Data in Brief}, |
|
volume = {44}, |
|
pages = {108554}, |
|
year = {2022}, |
|
issn = {2352-3409}, |
|
doi = {https://doi.org/10.1016/j.dib.2022.108554}, |
|
url = {https://www.sciencedirect.com/science/article/pii/S2352340922007612}, |
|
author = {Rhio Sutoyo and Said Achmad and Andry Chowanda and Esther Widhi Andangsari and Sani M. Isa}, |
|
keywords = {Natural language processing, Text processing, Text mining, Emotions classification, Sentiment analysis}, |
|
abstract = {Recognizing emotions is vital in communication. Emotions convey |
|
additional meanings to the communication process. Nowadays, people can |
|
communicate their emotions on many platforms; one is the product review. Product |
|
reviews in the online platform are an important element that affects customers’ |
|
buying decisions. Hence, it is essential to recognize emotions from the product |
|
reviews. Emotions recognition from the product reviews can be done automatically |
|
using a machine or deep learning algorithm. Dataset can be considered as the |
|
fuel to model the recognizer. However, only a limited dataset exists in |
|
recognizing emotions from the product reviews, particularly in a local language. |
|
This research contributes to the dataset collection of 5400 product reviews in |
|
Indonesian. It was carefully curated from various (29) product categories, |
|
annotated with five emotions, and verified by an expert in clinical psychology. |
|
The dataset supports an innovative process to build automatic emotion |
|
classification on product reviews.} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "prdect_id" |
|
_DESCRIPTION = """ |
|
PRDECT-ID Dataset is a collection of Indonesian product review data annotated |
|
with emotion and sentiment labels. The data were collected from one of the giant |
|
e-commerce in Indonesia named Tokopedia. The dataset contains product reviews |
|
from 29 product categories on Tokopedia that use the Indonesian language. Each |
|
product review is annotated with a single emotion, i.e., love, happiness, anger, |
|
fear, or sadness. The group of annotators does the annotation process to provide |
|
emotion labels by following the emotions annotation criteria created by an |
|
expert in clinical psychology. Other attributes related to the product review |
|
are also extracted, such as Location, Price, Overall Rating, Number Sold, Total |
|
Review, and Customer Rating, to support further research. |
|
""" |
|
|
|
_HOMEPAGE = "https://data.mendeley.com/datasets/574v66hf2v/1" |
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
_URL = "https://data.mendeley.com/public-files/datasets/574v66hf2v/files/f258d159-c678-42f1-9634-edf091a0b1f3/file_downloaded" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.EMOTION_CLASSIFICATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class PrdectIDDataset(datasets.GeneratorBasedBuilder): |
|
"""PRDECT-ID Dataset""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_emotion_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_emotion", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_sentiment_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_sentiment", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_emotion_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema for emotion classification", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_emotion", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_sentiment_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema for sentiment analysis", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_sentiment", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
CLASS_LABELS_EMOTION = ["Happy", "Sadness", "Anger", "Love", "Fear"] |
|
CLASS_LABELS_SENTIMENT = ["Positive", "Negative"] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"Category": datasets.Value("string"), |
|
"Product Name": datasets.Value("string"), |
|
"Location": datasets.Value("string"), |
|
"Price": datasets.Value("int32"), |
|
"Overall Rating": datasets.Value("float32"), |
|
"Number Sold": datasets.Value("int32"), |
|
"Total Review": datasets.Value("int32"), |
|
"Customer Rating": datasets.Value("int32"), |
|
"Customer Review": datasets.Value("string"), |
|
"Sentiment": datasets.ClassLabel(names=self.CLASS_LABELS_SENTIMENT), |
|
"Emotion": datasets.ClassLabel(names=self.CLASS_LABELS_EMOTION), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
if self.config.subset_id == f"{_DATASETNAME}_emotion": |
|
features = schemas.text_features(label_names=self.CLASS_LABELS_EMOTION) |
|
elif self.config.subset_id == f"{_DATASETNAME}_sentiment": |
|
features = schemas.text_features(label_names=self.CLASS_LABELS_SENTIMENT) |
|
else: |
|
raise ValueError(f"Invalid subset: {self.config.subset_id}") |
|
else: |
|
raise ValueError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_file = Path(dl_manager.download(_URL)) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
df = pd.read_csv(filepath, encoding="utf-8") |
|
for idx, row in df.iterrows(): |
|
if self.config.schema == "source": |
|
yield idx, dict(row) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
if self.config.subset_id == f"{_DATASETNAME}_emotion": |
|
yield idx, {"id": idx, "text": row["Customer Review"], "label": row["Emotion"]} |
|
elif self.config.subset_id == f"{_DATASETNAME}_sentiment": |
|
yield idx, {"id": idx, "text": row["Customer Review"], "label": row["Sentiment"]} |
|
else: |
|
raise ValueError(f"Invalid subset: {self.config.subset_id}") |
|
|