| from pathlib import Path | |
| from typing import Dict, List, Tuple | |
| import datasets | |
| import pandas as pd | |
| from datasets.download.download_manager import DownloadManager | |
| from seacrowd.utils import schemas | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import Licenses, Tasks | |
| _CITATION = """ | |
| @article{SUTOYO2022108554, | |
| title = {PRDECT-ID: Indonesian product reviews dataset for emotions classification tasks}, | |
| journal = {Data in Brief}, | |
| volume = {44}, | |
| pages = {108554}, | |
| year = {2022}, | |
| issn = {2352-3409}, | |
| doi = {https://doi.org/10.1016/j.dib.2022.108554}, | |
| url = {https://www.sciencedirect.com/science/article/pii/S2352340922007612}, | |
| author = {Rhio Sutoyo and Said Achmad and Andry Chowanda and Esther Widhi Andangsari and Sani M. Isa}, | |
| keywords = {Natural language processing, Text processing, Text mining, Emotions classification, Sentiment analysis}, | |
| abstract = {Recognizing emotions is vital in communication. Emotions convey | |
| additional meanings to the communication process. Nowadays, people can | |
| communicate their emotions on many platforms; one is the product review. Product | |
| reviews in the online platform are an important element that affects customers’ | |
| buying decisions. Hence, it is essential to recognize emotions from the product | |
| reviews. Emotions recognition from the product reviews can be done automatically | |
| using a machine or deep learning algorithm. Dataset can be considered as the | |
| fuel to model the recognizer. However, only a limited dataset exists in | |
| recognizing emotions from the product reviews, particularly in a local language. | |
| This research contributes to the dataset collection of 5400 product reviews in | |
| Indonesian. It was carefully curated from various (29) product categories, | |
| annotated with five emotions, and verified by an expert in clinical psychology. | |
| The dataset supports an innovative process to build automatic emotion | |
| classification on product reviews.} | |
| } | |
| """ | |
| _LOCAL = False | |
| _LANGUAGES = ["ind"] | |
| _DATASETNAME = "prdect_id" | |
| _DESCRIPTION = """ | |
| PRDECT-ID Dataset is a collection of Indonesian product review data annotated | |
| with emotion and sentiment labels. The data were collected from one of the giant | |
| e-commerce in Indonesia named Tokopedia. The dataset contains product reviews | |
| from 29 product categories on Tokopedia that use the Indonesian language. Each | |
| product review is annotated with a single emotion, i.e., love, happiness, anger, | |
| fear, or sadness. The group of annotators does the annotation process to provide | |
| emotion labels by following the emotions annotation criteria created by an | |
| expert in clinical psychology. Other attributes related to the product review | |
| are also extracted, such as Location, Price, Overall Rating, Number Sold, Total | |
| Review, and Customer Rating, to support further research. | |
| """ | |
| _HOMEPAGE = "https://data.mendeley.com/datasets/574v66hf2v/1" | |
| _LICENSE = Licenses.CC_BY_4_0.value | |
| _URL = "https://data.mendeley.com/public-files/datasets/574v66hf2v/files/f258d159-c678-42f1-9634-edf091a0b1f3/file_downloaded" | |
| _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.EMOTION_CLASSIFICATION] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| class PrdectIDDataset(datasets.GeneratorBasedBuilder): | |
| """PRDECT-ID Dataset""" | |
| SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
| SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
| SEACROWD_SCHEMA_NAME = "text" | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_emotion_source", | |
| version=SOURCE_VERSION, | |
| description=f"{_DATASETNAME} source schema", | |
| schema="source", | |
| subset_id=f"{_DATASETNAME}_emotion", | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_sentiment_source", | |
| version=SOURCE_VERSION, | |
| description=f"{_DATASETNAME} source schema", | |
| schema="source", | |
| subset_id=f"{_DATASETNAME}_sentiment", | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_emotion_seacrowd_{SEACROWD_SCHEMA_NAME}", | |
| version=SEACROWD_VERSION, | |
| description=f"{_DATASETNAME} SEACrowd schema for emotion classification", | |
| schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | |
| subset_id=f"{_DATASETNAME}_emotion", | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_sentiment_seacrowd_{SEACROWD_SCHEMA_NAME}", | |
| version=SEACROWD_VERSION, | |
| description=f"{_DATASETNAME} SEACrowd schema for sentiment analysis", | |
| schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | |
| subset_id=f"{_DATASETNAME}_sentiment", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | |
| CLASS_LABELS_EMOTION = ["Happy", "Sadness", "Anger", "Love", "Fear"] | |
| CLASS_LABELS_SENTIMENT = ["Positive", "Negative"] | |
| def _info(self) -> datasets.DatasetInfo: | |
| if self.config.schema == "source": | |
| features = datasets.Features( | |
| { | |
| "Category": datasets.Value("string"), | |
| "Product Name": datasets.Value("string"), | |
| "Location": datasets.Value("string"), | |
| "Price": datasets.Value("int32"), | |
| "Overall Rating": datasets.Value("float32"), | |
| "Number Sold": datasets.Value("int32"), | |
| "Total Review": datasets.Value("int32"), | |
| "Customer Rating": datasets.Value("int32"), | |
| "Customer Review": datasets.Value("string"), | |
| "Sentiment": datasets.ClassLabel(names=self.CLASS_LABELS_SENTIMENT), | |
| "Emotion": datasets.ClassLabel(names=self.CLASS_LABELS_EMOTION), | |
| } | |
| ) | |
| elif self.config.schema == "seacrowd_text": | |
| if self.config.subset_id == f"{_DATASETNAME}_emotion": | |
| features = schemas.text_features(label_names=self.CLASS_LABELS_EMOTION) | |
| elif self.config.subset_id == f"{_DATASETNAME}_sentiment": | |
| features = schemas.text_features(label_names=self.CLASS_LABELS_SENTIMENT) | |
| else: | |
| raise ValueError(f"Invalid subset: {self.config.subset_id}") | |
| else: | |
| raise ValueError(f"Schema '{self.config.schema}' is not defined.") | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: | |
| """Returns SplitGenerators.""" | |
| data_file = Path(dl_manager.download(_URL)) | |
| return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})] | |
| def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: | |
| """Yield examples as (key, example) tuples""" | |
| df = pd.read_csv(filepath, encoding="utf-8") | |
| for idx, row in df.iterrows(): | |
| if self.config.schema == "source": | |
| yield idx, dict(row) | |
| elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | |
| if self.config.subset_id == f"{_DATASETNAME}_emotion": | |
| yield idx, {"id": idx, "text": row["Customer Review"], "label": row["Emotion"]} | |
| elif self.config.subset_id == f"{_DATASETNAME}_sentiment": | |
| yield idx, {"id": idx, "text": row["Customer Review"], "label": row["Sentiment"]} | |
| else: | |
| raise ValueError(f"Invalid subset: {self.config.subset_id}") | |