|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, Tasks) |
|
|
|
_DATASETNAME = "nusax_mt" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["ind", "ace", "ban", "bjn", "bbc", "bug", "jav", "mad", "min", "nij", "sun", "eng"] |
|
_LOCAL = False |
|
|
|
_CITATION = """\ |
|
@misc{winata2022nusax, |
|
title={NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages}, |
|
author={Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya, |
|
Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony, |
|
Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo, |
|
Radityo Eko and Fung, Pascale and Baldwin, Timothy and Lau, |
|
Jey Han and Sennrich, Rico and Ruder, Sebastian}, |
|
year={2022}, |
|
eprint={2205.15960}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
NusaX is a high-quality multilingual parallel corpus that covers 12 languages, Indonesian, English, and 10 Indonesian local languages, namely Acehnese, Balinese, Banjarese, Buginese, Madurese, Minangkabau, Javanese, Ngaju, Sundanese, and Toba Batak. |
|
|
|
NusaX-MT is a parallel corpus for training and benchmarking machine translation models across 10 Indonesian local languages + Indonesian and English. The data is presented in csv format with 12 columns, one column for each language. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/IndoNLP/nusax/tree/main/datasets/mt" |
|
|
|
_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International" |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/mt/train.csv", |
|
"validation": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/mt/valid.csv", |
|
"test": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/mt/test.csv", |
|
} |
|
|
|
|
|
def seacrowd_config_constructor(lang_source, lang_target, schema, version): |
|
"""Construct SEACrowdConfig with nusax_mt_{lang_source}_{lang_target}_{schema} as the name format""" |
|
if schema != "source" and schema != "seacrowd_t2t": |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
if lang_source == "" and lang_target == "": |
|
return SEACrowdConfig( |
|
name="nusax_mt_{schema}".format(schema=schema), |
|
version=datasets.Version(version), |
|
description="nusax_mt with {schema} schema for all 132 language pairs".format(schema=schema), |
|
schema=schema, |
|
subset_id="nusax_mt", |
|
) |
|
else: |
|
return SEACrowdConfig( |
|
name="nusax_mt_{lang_source}_{lang_target}_{schema}".format(lang_source=lang_source, lang_target=lang_target, schema=schema), |
|
version=datasets.Version(version), |
|
description="nusax_mt with {schema} schema for {lang_source} source language and {lang_target} target language".format(lang_source=lang_source, lang_target=lang_target, schema=schema), |
|
schema=schema, |
|
subset_id="nusax_mt", |
|
) |
|
|
|
|
|
LANGUAGES_MAP = { |
|
"ace": "acehnese", |
|
"ban": "balinese", |
|
"bjn": "banjarese", |
|
"bug": "buginese", |
|
"eng": "english", |
|
"ind": "indonesian", |
|
"jav": "javanese", |
|
"mad": "madurese", |
|
"min": "minangkabau", |
|
"nij": "ngaju", |
|
"sun": "sundanese", |
|
"bbc": "toba_batak", |
|
} |
|
|
|
|
|
class NusaXMT(datasets.GeneratorBasedBuilder): |
|
"""NusaX-MT is a parallel corpus for training and benchmarking machine translation models across 10 Indonesian local languages + Indonesian and English. The data is presented in csv format with 12 columns, one column for each language.""" |
|
|
|
BUILDER_CONFIGS = ( |
|
[seacrowd_config_constructor(lang1, lang2, "source", _SOURCE_VERSION) for lang1 in LANGUAGES_MAP for lang2 in LANGUAGES_MAP if lang1 != lang2] |
|
+ [seacrowd_config_constructor(lang1, lang2, "seacrowd_t2t", _SEACROWD_VERSION) for lang1 in LANGUAGES_MAP for lang2 in LANGUAGES_MAP if lang1 != lang2] |
|
+ [seacrowd_config_constructor("", "", "source", _SOURCE_VERSION), seacrowd_config_constructor("", "", "seacrowd_t2t", _SEACROWD_VERSION)] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "nusax_senti_ind_eng_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source" or self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
else: |
|
raise ValueError(f"Invalid config schema: {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"])) |
|
validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"])) |
|
test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": train_csv_path}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": validation_csv_path}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": test_csv_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
if self.config.schema != "source" and self.config.schema != "seacrowd_t2t": |
|
raise ValueError(f"Invalid config schema: {self.config.schema}") |
|
|
|
df = pd.read_csv(filepath).reset_index() |
|
if self.config.name == "nusax_mt_source" or self.config.name == "nusax_mt_seacrowd_t2t": |
|
|
|
id_count = -1 |
|
for lang_source in LANGUAGES_MAP: |
|
for lang_target in LANGUAGES_MAP: |
|
if lang_source == lang_target: |
|
continue |
|
|
|
for _, row in df.iterrows(): |
|
id_count += 1 |
|
ex = { |
|
"id": str(id_count), |
|
"text_1": row[LANGUAGES_MAP[lang_source]], |
|
"text_2": row[LANGUAGES_MAP[lang_target]], |
|
"text_1_name": lang_source, |
|
"text_2_name": lang_target, |
|
} |
|
yield id_count, ex |
|
|
|
else: |
|
df = pd.read_csv(filepath).reset_index() |
|
lang_source = self.config.name[9:12] |
|
lang_target = self.config.name[13:16] |
|
|
|
for index, row in df.iterrows(): |
|
ex = { |
|
"id": str(index), |
|
"text_1": row[LANGUAGES_MAP[lang_source]], |
|
"text_2": row[LANGUAGES_MAP[lang_target]], |
|
"text_1_name": lang_source, |
|
"text_2_name": lang_target, |
|
} |
|
yield str(index), ex |
|
|