# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.common_parser import load_conll_data from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @INPROCEEDINGS{9212879, author={Akmal, Muhammad and Romadhony, Ade}, booktitle={2020 International Conference on Data Science and Its Applications (ICoDSA)}, title={Corpus Development for Indonesian Product Named Entity Recognition Using Semi-supervised Approach}, year={2020}, volume={}, number={}, pages={1-5}, keywords={Feature extraction;Labeling;Buildings;Semisupervised learning;Training data;Text recognition;Manuals;proner;semi-supervised learning;crf}, doi={10.1109/ICoDSA50139.2020.9212879} } """ _DATASETNAME = "ind_proner" _DESCRIPTION = """\ Indonesian PRONER is a corpus for Indonesian product named entity recognition . It contains data was labeled manually and data that was labeled automatically through a semi-supervised learning approach of conditional random fields (CRF). """ _HOMEPAGE = "https://github.com/dziem/proner-labeled-text" _LANGUAGES = {"ind": "id"} _LANGUAGE_CODES = list(_LANGUAGES.values()) _LICENSE = Licenses.CC_BY_4_0.value _LOCAL = False _URLS = { "automatic": "https://raw.githubusercontent.com/dziem/proner-labeled-text/master/automatically_labeled.tsv", "manual": "https://raw.githubusercontent.com/dziem/proner-labeled-text/master/manually_labeled.tsv", } _ANNOTATION_TYPES = list(_URLS.keys()) _ANNOTATION_IDXS = {"l1": 0, "l2": 1} _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" logger = datasets.logging.get_logger(__name__) class IndPRONERDataset(datasets.GeneratorBasedBuilder): """ Indonesian PRONER is a product named entity recognition dataset from https://github.com/dziem/proner-labeled-text. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = ( [ SEACrowdConfig( name=f"{_DATASETNAME}_{annotation_type}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME}_{annotation_type} source schema", schema="source", subset_id=f"{_DATASETNAME}_{annotation_type}", ) for annotation_type in _ANNOTATION_TYPES ] + [ SEACrowdConfig( name=f"{_DATASETNAME}_{annotation_type}_l1_seacrowd_seq_label", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME}_{annotation_type}_l1 SEACrowd schema", schema="seacrowd_seq_label", subset_id=f"{_DATASETNAME}_{annotation_type}_l1", ) for annotation_type in _ANNOTATION_TYPES ] + [ SEACrowdConfig( name=f"{_DATASETNAME}_{annotation_type}_l2_seacrowd_seq_label", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME}_{annotation_type}_l2 SEACrowd schema", schema="seacrowd_seq_label", subset_id=f"{_DATASETNAME}_{annotation_type}_l2", ) for annotation_type in _ANNOTATION_TYPES ] ) label_classes = [ "B-PRO", "B-BRA", "B-TYP", "I-PRO", "I-BRA", "I-TYP", "O", ] def _extract_label(self, text: str, idx: int) -> str: split = text.split("|") if len(split) > 1 and idx != -1: return split[idx] else: return text def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence(datasets.Value("string")), } ) elif self.config.schema == "seacrowd_seq_label": features = schemas.seq_label_features(label_names=self.label_classes) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """ Returns SplitGenerators. """ annotation_type = self.config.subset_id.split("_")[2] path = dl_manager.download_and_extract(_URLS[annotation_type]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": path, "split": "train", }, ) ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """ Yields examples as (key, example) tuples. """ label_idx = -1 subset_id = self.config.subset_id.split("_") if len(subset_id) > 3: if subset_id[3] in _ANNOTATION_IDXS: label_idx = _ANNOTATION_IDXS[subset_id[3]] idx = 0 conll_dataset = load_conll_data(filepath) if self.config.schema == "source": for _, row in enumerate(conll_dataset): x = {"id": str(idx), "tokens": row["sentence"], "ner_tags": list(map(self._extract_label, row["label"], [label_idx] * len(row["label"])))} yield idx, x idx += 1 elif self.config.schema == "seacrowd_seq_label": for _, row in enumerate(conll_dataset): x = {"id": str(idx), "tokens": row["sentence"], "labels": list(map(self._extract_label, row["label"], [label_idx] * len(row["label"])))} yield idx, x idx += 1