!pip install PyPDF2 google google-genai requests python-dotenv datasets huggingface_hub """# Libraries""" import os import requests import json from bs4 import BeautifulSoup import PyPDF2 from google import genai from google.genai import types from dotenv import load_dotenv import pandas as pd from datasets import Dataset from huggingface_hub import login """# Configure apikey""" # TODO: Add your own apikey load_dotenv() GEMINI_API_KEY = "" HF_TOKEN= "" HF_DATASET_NAME="" """# Get files""" # Main page URL main_url = 'https://www.sspa.juntadeandalucia.es/servicioandaluzdesalud/profesionales/ofertas-de-empleo/oferta-de-empleo-publico-puestos-base/oep-extraordinaria-decreto-ley-122022-centros-sas/cuadro-de-evolucion-concurso-oposicion-centros-sas' # Main folder where exams will be saved exams_folder = "exams" os.makedirs(exams_folder, exist_ok=True) # Perform an HTTP GET request to the main page main_response = requests.get(main_url) if main_response.status_code == 200: main_soup = BeautifulSoup(main_response.content, 'html.parser') # Find all tables on the main page tables = main_soup.find_all('table') for table in tables: links = table.find_all('a', href=True) for link in links: secondary_url = link['href'] if secondary_url.startswith('/'): secondary_url = 'https://www.sspa.juntadeandalucia.es' + secondary_url folder_name = link.text.strip().replace("/", "-") # Replace invalid characters folder_path = os.path.join(exams_folder, folder_name) os.makedirs(folder_path, exist_ok=True) secondary_response = requests.get(secondary_url) if secondary_response.status_code == 200: secondary_soup = BeautifulSoup(secondary_response.content, 'html.parser') secondary_tables = secondary_soup.find_all('table') for secondary_table in secondary_tables: exam_booklet_links = secondary_table.find_all('a', title='Cuadernillo de Examen', href=True) answer_sheet_links = secondary_table.find_all('a', title='Plantilla de respuestas', href=True) for exam_booklet_link in exam_booklet_links: pdf_url = exam_booklet_link['href'] if pdf_url.startswith('/'): pdf_url = 'https://www.sspa.juntadeandalucia.es' + pdf_url pdf_response = requests.get(pdf_url) if pdf_response.status_code == 200: file_path = os.path.join(folder_path, 'Exam_Booklet.pdf') with open(file_path, 'wb') as pdf_file: pdf_file.write(pdf_response.content) print(f'Exam Booklet saved at: {file_path}') for answer_sheet_link in answer_sheet_links: pdf_url = answer_sheet_link['href'] if pdf_url.startswith('/'): pdf_url = 'https://www.sspa.juntadeandalucia.es' + pdf_url pdf_response = requests.get(pdf_url) if pdf_response.status_code == 200: file_path = os.path.join(folder_path, 'Answer_Sheet.pdf') with open(file_path, 'wb') as pdf_file: pdf_file.write(pdf_response.content) print(f'Answer Sheet saved at: {file_path}') else: print(f'Error accessing the main page: {main_response.status_code}') """# PDF processing ## Extract text """ def extract_text_from_pdf(pdf_path: str) -> str: with open(pdf_path, "rb") as file: reader = PyPDF2.PdfReader(file) text = "" for page in reader.pages: text += page.extract_text() return text """## Number of questions""" import base64 import os from google import genai from google.genai import types def generate_number_questions(text): client = genai.Client( api_key=GEMINI_API_KEY, ) model = "gemini-2.0-flash" contents = [ types.Content( role="user", parts=[ types.Part.from_text(text=f"""tell me how many questions you have in format {{"number": "numberofquestionsinteger"}} in the following text: {text}"""), ], ), ] generate_content_config = types.GenerateContentConfig( temperature=1, top_p=0.95, top_k=40, max_output_tokens=8192, response_mime_type="application/json", ) response = client.models.generate_content( model=model, contents=contents, config=generate_content_config, ) return response.candidates[0].content.parts[0].text """## Process with llm""" import json import os from google import genai from google.genai import types def process_with_gemini(text: str, start: int, end: int): client = genai.Client( api_key=GEMINI_API_KEY ) model = "gemini-2.0-flash" contents = [ types.Content( role="user", parts=[ types.Part.from_text(text=f""" Given the following text of an exam with questions and answers, extract each question and its possible answers. Format the output as a list of JSON with the following format, I want you to extract questions from {start} to {end}: {{{{"question number in integer format": {{"statement": "question text", "answers": ["option A", "option B", ...]}}}}}} Exam text: {text} """), ], ), ] generate_content_config = types.GenerateContentConfig( temperature=1, top_p=0.95, top_k=40, max_output_tokens=32768, response_mime_type="application/json", ) # Use generate_content() instead of streaming response = client.models.generate_content( model=model, contents=contents, config=generate_content_config, ) return response.text # Return the response instead of printing it """# Collect the questions""" import json import os from google import genai from google.genai import types def process_answers_with_gemini(text: str): client = genai.Client( api_key=GEMINI_API_KEY ) model = "gemini-2.0-flash" contents = [ types.Content( role="user", parts=[ types.Part.from_text(text=f""" Please return the question number and the correct answers in format ['question number': 'answer letter','question number': 'answer letter'] from the following text {text} """), ], ), ] generate_content_config = types.GenerateContentConfig( temperature=1, top_p=0.95, top_k=40, max_output_tokens=32768, response_mime_type="application/json", ) # Use generate_content() instead of streaming response = client.models.generate_content( model=model, contents=contents, config=generate_content_config, ) return response.text # Return the response instead of printing it def process_pdf_file(pdf_path: str, answers_pdf_path: str, theme: str) -> pd.DataFrame: pdf_text = extract_text_from_pdf(pdf_path) result = generate_number_questions(pdf_text) question_text = extract_text_from_pdf(answers_pdf_path) # Process number of questions try: result_dict = json.loads(result) except json.JSONDecodeError: print("Error: The question count response is not valid JSON.") return pd.DataFrame() question_count = result_dict.get("number", "unknown") print(f"The exam {pdf_path} contains {question_count} questions.") try: question_count = int(result_dict.get("number", 0)) except ValueError: print(f"Error: Could not convert question count '{question_count}' to integer.") return pd.DataFrame() # Process questions in batches questions = [] batch_size = 50 for start in range(1, question_count + 1, batch_size): end = min(start + batch_size - 1, question_count) print(f"Processing questions from {pdf_path} {start}-{end}...") questions_subset = process_with_gemini(pdf_text, start, end) questions.append(questions_subset) # Combine all processed question batches all_questions = [] for question_set in questions: try: question_list = json.loads(question_set) all_questions.extend(question_list) except json.JSONDecodeError: print(f"Error: A question batch response is not valid JSON.") continue # If no valid questions were processed, return empty DataFrame if not all_questions: print("Error: No valid questions were processed.") return pd.DataFrame() # Process questions answers questions_answer = process_answers_with_gemini(question_text) try: json_questions_answers = json.loads(questions_answer) except json.JSONDecodeError: print("Error: The response is not a valid JSON.") # Format the data for the DataFrame processed_data = [] for item in all_questions: for key, value in item.items(): try: correct_answer = json_questions_answers[0].get(str(key), "Not available") processed_data.append({ 'id': key, 'statement': value['statement'], 'answers': value['answers'], 'correct_answer': correct_answer, 'theme': theme }) except KeyError as e: print(f"Error: Missing key in question data: {e}") # Skip this question but continue with others continue # Create DataFrame from dictionary list df = pd.DataFrame(processed_data) if not df.empty: df.set_index('id', inplace=True) return df all_df_array = [] # Verify that the folder exists if os.path.exists(exams_folder): for folder_name in os.listdir(exams_folder): folder_path = os.path.join(exams_folder, folder_name) # Verify that it's a folder if os.path.isdir(folder_path): print(f"Processing: {folder_name}") files = os.listdir(folder_path) # Initialize question and answer paths questions_path = None answers_path = None # Look for files that start with the desired prefixes for file in files: if file.startswith('Exam_Booklet') and not questions_path: questions_path = os.path.join(folder_path, file) elif file.startswith('Answer_Sheet') and not answers_path: answers_path = os.path.join(folder_path, file) exam_df = process_pdf_file(questions_path, answers_path, folder_name) if not exam_df.empty: all_df_array.append(exam_df) if all_df_array: df = pd.concat(all_df_array, ignore_index=True) # `ignore_index=True` to avoid duplicates in the index print(f"Final DataFrame with all questions and answers:\n{df}") else: print("No valid DataFrames were generated.") """# Upload to huggingface""" login(HF_TOKEN) Dataset.from_pandas(df).push_to_hub(HF_DATASET_NAME)