|
!pip install PyPDF2 google google-genai requests python-dotenv datasets huggingface_hub |
|
|
|
"""# Libraries""" |
|
|
|
import os |
|
import requests |
|
import json |
|
from bs4 import BeautifulSoup |
|
import PyPDF2 |
|
from google import genai |
|
from google.genai import types |
|
from dotenv import load_dotenv |
|
import pandas as pd |
|
from datasets import Dataset |
|
from huggingface_hub import login |
|
|
|
"""# Configure apikey""" |
|
|
|
load_dotenv() |
|
GEMINI_API_KEY = "" |
|
HF_TOKEN= "" |
|
HF_DATASET_NAME="" |
|
|
|
"""# Get files""" |
|
|
|
|
|
main_url = 'https://www.sspa.juntadeandalucia.es/servicioandaluzdesalud/profesionales/ofertas-de-empleo/oferta-de-empleo-publico-puestos-base/oep-extraordinaria-decreto-ley-122022-centros-sas/cuadro-de-evolucion-concurso-oposicion-centros-sas' |
|
|
|
|
|
exams_folder = "exams" |
|
os.makedirs(exams_folder, exist_ok=True) |
|
|
|
|
|
main_response = requests.get(main_url) |
|
|
|
if main_response.status_code == 200: |
|
main_soup = BeautifulSoup(main_response.content, 'html.parser') |
|
|
|
|
|
tables = main_soup.find_all('table') |
|
|
|
for table in tables: |
|
links = table.find_all('a', href=True) |
|
for link in links: |
|
secondary_url = link['href'] |
|
if secondary_url.startswith('/'): |
|
secondary_url = 'https://www.sspa.juntadeandalucia.es' + secondary_url |
|
|
|
folder_name = link.text.strip().replace("/", "-") |
|
folder_path = os.path.join(exams_folder, folder_name) |
|
os.makedirs(folder_path, exist_ok=True) |
|
|
|
secondary_response = requests.get(secondary_url) |
|
if secondary_response.status_code == 200: |
|
secondary_soup = BeautifulSoup(secondary_response.content, 'html.parser') |
|
secondary_tables = secondary_soup.find_all('table') |
|
|
|
for secondary_table in secondary_tables: |
|
exam_booklet_links = secondary_table.find_all('a', title='Cuadernillo de Examen', href=True) |
|
answer_sheet_links = secondary_table.find_all('a', title='Plantilla de respuestas', href=True) |
|
|
|
for exam_booklet_link in exam_booklet_links: |
|
pdf_url = exam_booklet_link['href'] |
|
if pdf_url.startswith('/'): |
|
pdf_url = 'https://www.sspa.juntadeandalucia.es' + pdf_url |
|
pdf_response = requests.get(pdf_url) |
|
if pdf_response.status_code == 200: |
|
file_path = os.path.join(folder_path, 'Exam_Booklet.pdf') |
|
with open(file_path, 'wb') as pdf_file: |
|
pdf_file.write(pdf_response.content) |
|
print(f'Exam Booklet saved at: {file_path}') |
|
|
|
for answer_sheet_link in answer_sheet_links: |
|
pdf_url = answer_sheet_link['href'] |
|
if pdf_url.startswith('/'): |
|
pdf_url = 'https://www.sspa.juntadeandalucia.es' + pdf_url |
|
pdf_response = requests.get(pdf_url) |
|
if pdf_response.status_code == 200: |
|
file_path = os.path.join(folder_path, 'Answer_Sheet.pdf') |
|
with open(file_path, 'wb') as pdf_file: |
|
pdf_file.write(pdf_response.content) |
|
print(f'Answer Sheet saved at: {file_path}') |
|
|
|
else: |
|
print(f'Error accessing the main page: {main_response.status_code}') |
|
|
|
"""# PDF processing |
|
|
|
## Extract text |
|
""" |
|
|
|
def extract_text_from_pdf(pdf_path: str) -> str: |
|
with open(pdf_path, "rb") as file: |
|
reader = PyPDF2.PdfReader(file) |
|
text = "" |
|
for page in reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
"""## Number of questions""" |
|
|
|
import base64 |
|
import os |
|
from google import genai |
|
from google.genai import types |
|
|
|
|
|
def generate_number_questions(text): |
|
client = genai.Client( |
|
api_key=GEMINI_API_KEY, |
|
) |
|
|
|
model = "gemini-2.0-flash" |
|
contents = [ |
|
types.Content( |
|
role="user", |
|
parts=[ |
|
types.Part.from_text(text=f"""tell me how many questions you have in format {{"number": "numberofquestionsinteger"}} in the following text: {text}"""), |
|
], |
|
), |
|
] |
|
generate_content_config = types.GenerateContentConfig( |
|
temperature=1, |
|
top_p=0.95, |
|
top_k=40, |
|
max_output_tokens=8192, |
|
response_mime_type="application/json", |
|
) |
|
response = client.models.generate_content( |
|
model=model, |
|
contents=contents, |
|
config=generate_content_config, |
|
) |
|
|
|
return response.candidates[0].content.parts[0].text |
|
|
|
"""## Process with llm""" |
|
|
|
import json |
|
import os |
|
from google import genai |
|
from google.genai import types |
|
|
|
def process_with_gemini(text: str, start: int, end: int): |
|
client = genai.Client( |
|
api_key=GEMINI_API_KEY |
|
) |
|
|
|
model = "gemini-2.0-flash" |
|
contents = [ |
|
types.Content( |
|
role="user", |
|
parts=[ |
|
types.Part.from_text(text=f""" |
|
Given the following text of an exam with questions and answers, extract each question and its possible answers. |
|
Format the output as a list of JSON with the following format, I want you to extract questions from {start} to {end}: |
|
|
|
|
|
{{{{"question number in integer format": {{"statement": "question text", "answers": ["option A", "option B", ...]}}}}}} |
|
|
|
Exam text: |
|
{text} |
|
"""), |
|
], |
|
), |
|
] |
|
|
|
generate_content_config = types.GenerateContentConfig( |
|
temperature=1, |
|
top_p=0.95, |
|
top_k=40, |
|
max_output_tokens=32768, |
|
response_mime_type="application/json", |
|
) |
|
|
|
|
|
response = client.models.generate_content( |
|
model=model, |
|
contents=contents, |
|
config=generate_content_config, |
|
) |
|
|
|
return response.text |
|
|
|
"""# Collect the questions""" |
|
|
|
import json |
|
import os |
|
from google import genai |
|
from google.genai import types |
|
|
|
def process_answers_with_gemini(text: str): |
|
client = genai.Client( |
|
api_key=GEMINI_API_KEY |
|
) |
|
|
|
model = "gemini-2.0-flash" |
|
contents = [ |
|
types.Content( |
|
role="user", |
|
parts=[ |
|
types.Part.from_text(text=f""" |
|
Please return the question number and the correct answers in format ['question number': 'answer letter','question number': 'answer letter'] from the following text |
|
{text} |
|
"""), |
|
], |
|
), |
|
] |
|
|
|
generate_content_config = types.GenerateContentConfig( |
|
temperature=1, |
|
top_p=0.95, |
|
top_k=40, |
|
max_output_tokens=32768, |
|
response_mime_type="application/json", |
|
) |
|
|
|
|
|
response = client.models.generate_content( |
|
model=model, |
|
contents=contents, |
|
config=generate_content_config, |
|
) |
|
|
|
return response.text |
|
|
|
def process_pdf_file(pdf_path: str, answers_pdf_path: str, theme: str) -> pd.DataFrame: |
|
pdf_text = extract_text_from_pdf(pdf_path) |
|
result = generate_number_questions(pdf_text) |
|
question_text = extract_text_from_pdf(answers_pdf_path) |
|
|
|
|
|
try: |
|
result_dict = json.loads(result) |
|
except json.JSONDecodeError: |
|
print("Error: The question count response is not valid JSON.") |
|
return pd.DataFrame() |
|
|
|
question_count = result_dict.get("number", "unknown") |
|
print(f"The exam {pdf_path} contains {question_count} questions.") |
|
|
|
try: |
|
question_count = int(result_dict.get("number", 0)) |
|
except ValueError: |
|
print(f"Error: Could not convert question count '{question_count}' to integer.") |
|
return pd.DataFrame() |
|
|
|
|
|
questions = [] |
|
batch_size = 50 |
|
for start in range(1, question_count + 1, batch_size): |
|
end = min(start + batch_size - 1, question_count) |
|
print(f"Processing questions from {pdf_path} {start}-{end}...") |
|
questions_subset = process_with_gemini(pdf_text, start, end) |
|
questions.append(questions_subset) |
|
|
|
|
|
|
|
all_questions = [] |
|
for question_set in questions: |
|
try: |
|
question_list = json.loads(question_set) |
|
all_questions.extend(question_list) |
|
except json.JSONDecodeError: |
|
print(f"Error: A question batch response is not valid JSON.") |
|
continue |
|
|
|
|
|
if not all_questions: |
|
print("Error: No valid questions were processed.") |
|
return pd.DataFrame() |
|
|
|
|
|
questions_answer = process_answers_with_gemini(question_text) |
|
try: |
|
json_questions_answers = json.loads(questions_answer) |
|
except json.JSONDecodeError: |
|
print("Error: The response is not a valid JSON.") |
|
|
|
|
|
processed_data = [] |
|
for item in all_questions: |
|
for key, value in item.items(): |
|
try: |
|
correct_answer = json_questions_answers[0].get(str(key), "Not available") |
|
processed_data.append({ |
|
'id': key, |
|
'statement': value['statement'], |
|
'answers': value['answers'], |
|
'correct_answer': correct_answer, |
|
'theme': theme |
|
}) |
|
except KeyError as e: |
|
print(f"Error: Missing key in question data: {e}") |
|
|
|
continue |
|
|
|
|
|
df = pd.DataFrame(processed_data) |
|
if not df.empty: |
|
df.set_index('id', inplace=True) |
|
|
|
return df |
|
|
|
|
|
all_df_array = [] |
|
|
|
if os.path.exists(exams_folder): |
|
for folder_name in os.listdir(exams_folder): |
|
folder_path = os.path.join(exams_folder, folder_name) |
|
|
|
|
|
if os.path.isdir(folder_path): |
|
print(f"Processing: {folder_name}") |
|
|
|
files = os.listdir(folder_path) |
|
|
|
|
|
questions_path = None |
|
answers_path = None |
|
|
|
|
|
for file in files: |
|
if file.startswith('Exam_Booklet') and not questions_path: |
|
questions_path = os.path.join(folder_path, file) |
|
elif file.startswith('Answer_Sheet') and not answers_path: |
|
answers_path = os.path.join(folder_path, file) |
|
exam_df = process_pdf_file(questions_path, answers_path, folder_name) |
|
if not exam_df.empty: |
|
all_df_array.append(exam_df) |
|
|
|
if all_df_array: |
|
df = pd.concat(all_df_array, ignore_index=True) |
|
print(f"Final DataFrame with all questions and answers:\n{df}") |
|
else: |
|
print("No valid DataFrames were generated.") |
|
|
|
"""# Upload to huggingface""" |
|
|
|
login(HF_TOKEN) |
|
Dataset.from_pandas(df).push_to_hub(HF_DATASET_NAME) |