--- dataset_info: features: - name: video_id dtype: string - name: video_link dtype: string - name: channel dtype: string - name: channel_id dtype: string - name: date dtype: string - name: license dtype: string - name: original_language dtype: string - name: title dtype: string - name: description dtype: string - name: language dtype: string - name: confidence dtype: float64 splits: - name: train num_bytes: 3684421635 num_examples: 3030568 download_size: 2229560856 dataset_size: 3684421635 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 language: - en - fr - es - pt - de - ru - nl - tr - it pretty_name: YouTube Commons Descriptions --- # YouTube Commons Descriptions and Language Detection This dataset adds titles, descriptions and language detection to [YouTube Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons), a valuable open dataset: > YouTube-Commons is a collection of audio transcripts of 2,063,066 videos shared on YouTube under a CC BY 4.0 license. > > **Content** > > The collection comprises 22,709,724 original and automatically translated transcripts from 3,156,703 videos (721,136 individual channels). Unfortunately I have found that the detection of the original language, at least for Dutch, has room for improvement. Others have observed ([1](https://huggingface.co/datasets/PleIAs/YouTube-Commons/discussions/9), [2](https://huggingface.co/datasets/PleIAs/YouTube-Commons/discussions/12)) similar issues. Therefore this dataset adds the video **title** and **description** to YouTube Commons and performs **language detection** on those. # YouTube Commons There are [problems](https://huggingface.co/datasets/PleIAs/YouTube-Commons/discussions/10) with loading YouTube Commons with Hugging Face Datasets. To alleviate those, I also took the source parquet-files and reuploaded a fixed version to HuggingFace: [Rijgersberg/YouTube-Commons](https://huggingface.co/datasets/Rijgersberg/YouTube-Commons). ## Acquisition The titles and descriptions are downloaded from YouTube with the help of [yt-dlp](https://github.com/yt-dlp/yt-dlp). Some videos are missing compared to YouTube Commons, for one of the following reasons: - Some videos are no longer available on YouTube, either taken down by the uploader or by YouTube. - Some videos are only visible to logged in users. - (rarely) Anti-bot measures by YouTube prevented download. The download took about two weeks.
Code: ```python import json from concurrent.futures import ProcessPoolExecutor, as_completed from pathlib import Path from datasets import load_dataset from tqdm import tqdm from yt_dlp import YoutubeDL output_dir = Path('/path/to/output/dir/') def get_info(video_id, output_dir): write_folder = output_dir / video_id[:2] write_filepath = write_folder / f'{video_id}.json' if write_filepath.exists(): return video_id, True with YoutubeDL({'quiet': True, 'skip_download': True}) as ydl: try: info = ydl.extract_info(f'https://www.youtube.com/watch?v={video_id}', download=False) title = info.get('title', '') description = info.get('description', '') # Write the title and description to a text file write_folder.mkdir(exist_ok=True, parents=True) with open(write_filepath, 'w', encoding='utf-8') as f: json.dump({'id': video_id, 'title': title, 'description': description}, f) except Exception as e: print(video_id, e) return video_id, False return video_id, True def main(): video_ids = [] for filepath in tqdm(sorted(Path('/path/to/YouTubeCommons/files').rglob('*.parquet'))): try: # I was having trouble loading the original dataset, so this lets me get what I can dataset = load_dataset("parquet", data_files={'train': str(filepath)}) video_ids.extend(dataset['train']['video_id']) except Exception as e: print(filepath, e) continue video_ids = set(video_ids) with ProcessPoolExecutor(max_workers=10) as executor: futures = {executor.submit(get_info, video_id, output_dir): video_id for video_id in video_ids} for future in tqdm(as_completed(futures), total=len(futures), desc="Downloading video info"): video_id = futures[future] try: _, success = future.result() if not success: print(f"Failed to process: {video_id}") except Exception as e: print(f"Error occurred for {video_id}: {e}") if __name__ == "__main__": main() ```
## Language detection The `language` and `confidence` columns were added by running [LangID](https://github.com/saffsd/langid.py) on the title and description. So note: the detection was _not_ performed on the audio of the video. The equivalent detection code: ```python from langid.langid import LanguageIdentifier, model lang_id = LanguageIdentifier.from_modelstring(model, norm_probs=True) lang, conf = lang_id.classify(title + '\n\n' + description) ``` For Dutch, here is the agreement table between the `original_language` column from YouTube Commons and the newly detected `language` column. | | `original_language` nl | `original_language` !nl | |----------------|------------------------|-------------------------| | `language` nl | 7010 | 4698 | | `language` !nl | 21452 | 2997408 |