File size: 2,472 Bytes
135c27e
70eff4f
 
 
 
 
 
 
 
 
 
 
 
 
135c27e
70eff4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
language:
- en
- pcm  # Nigerian Pidgin
task_categories:
- automatic-speech-recognition
- text-generation
tags:
- whisper
- nigerian-pidgin
- speech-recognition
- text
size_categories:
- 1K<n<10K
---

# Nigerian Pidgin Audio + Text Dataset for Whisper Fine-tuning

Nigerian Pidgin speech dataset for Whisper fine-tuning

## Dataset Summary

This dataset contains audio recordings and transcriptions in Nigerian Pidgin English, designed for fine-tuning speech recognition models, particularly OpenAI's Whisper.

## Dataset Structure

- **Train Split**: 65 samples
- **Test Split**: 8 samples
- **Total Duration**: 0.0 hours (estimated)
- **Average Duration**: 2.4 seconds per sample
- **Sample Rate**: 16kHz
- **Audio Format**: WAV

## Sample Data

Here are some example transcriptions from the dataset:

```
- ♪ EVERYDAY NA BILLING ♪
- ♪ SHE CALL ME SANTA ♪
- ♪ SEYCHELLES, ADDIS ABABA ♪
- ♪ I FOR DON TURN VISITOR ♪
- ♪ SHE NO WAN TURN TO OROBOKIBO ♪
```

## Usage

### Loading the Dataset

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("Rexe/nigerian-pidgin-speech")

# Access train and test splits
train_data = dataset["train"]
test_data = dataset["test"]
```

### Training with Transformers

```python
from transformers import WhisperForConditionalGeneration, WhisperProcessor

# Load model and processor
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
processor = WhisperProcessor.from_pretrained("openai/whisper-small")

# Your training code here...
```

## Google Colab Training

Use this dataset directly in Google Colab for training:

```python
# Install requirements
!pip install datasets transformers torch torchaudio

# Load dataset
from datasets import load_dataset
dataset = load_dataset("Rexe/nigerian-pidgin-speech")

# Start training...
```

## Languages

- **English** (en): Base language
- **Nigerian Pidgin** (pcm): Target language for fine-tuning

## Common Pidgin Phrases

- "How you dey?" - How are you?
- "I dey fine o" - I am fine
- "Wetin dey happen?" - What's happening?
- "Make we go" - Let's go
- "Abeg help me" - Please help me


## Citation

If you use this dataset, please cite:

```bibtex
@dataset{nigerian_pidgin_speech,
  title={Nigerian Pidgin Audio + Text Dataset},
  author={Your Name},
  year={2024},
  url={https://huggingface.co/datasets/Rexe/nigerian-pidgin-speech}
}
```

## License

This dataset is released under the MIT License.