Datasets:

Modalities:
Image
Text
Size:
< 1K
Libraries:
Datasets
Thinh Huynh Nguyen Truong commited on
Commit
ee7b758
·
1 Parent(s): c370114
Files changed (4) hide show
  1. .gitignore +1 -0
  2. data/train.zip +3 -0
  3. requirements.txt +1 -0
  4. test.py +184 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ env
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bc049f7336b92c842c080007d5a6da9625d74807bf318d4d8c80e1b950bc512
3
+ size 1459611
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ datasets
test.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @InProceedings{huggingface:dataset,
29
+ title = {A great new dataset},
30
+ author={huggingface, Inc.
31
+ },
32
+ year={2020}
33
+ }
34
+ """
35
+
36
+ # TODO: Add description of the dataset here
37
+ # You can copy an official description
38
+ _DESCRIPTION = """\
39
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
40
+ """
41
+
42
+ # TODO: Add a link to an official homepage for the dataset here
43
+ _HOMEPAGE = ""
44
+
45
+ # TODO: Add the licence for the dataset here if you can find it
46
+ _LICENSE = ""
47
+
48
+ # TODO: Add link to the official dataset URLs here
49
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
+ _URLS = {
52
+ "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
53
+ "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
54
+ }
55
+
56
+
57
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
58
+ class NewDataset(datasets.GeneratorBasedBuilder):
59
+ """TODO: Short description of my dataset."""
60
+
61
+ VERSION = datasets.Version("1.1.0")
62
+
63
+ # This is an example of a dataset with multiple configurations.
64
+ # If you don't want/need to define several sub-sets in your dataset,
65
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
66
+
67
+ # If you need to make complex sub-parts in the datasets with configurable options
68
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
69
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
70
+
71
+ # You will be able to load one or the other configurations in the following list with
72
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
73
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
74
+ BUILDER_CONFIGS = [
75
+ datasets.BuilderConfig(
76
+ name="first_domain",
77
+ version=VERSION,
78
+ description="This part of my dataset covers a first domain",
79
+ ),
80
+ datasets.BuilderConfig(
81
+ name="second_domain",
82
+ version=VERSION,
83
+ description="This part of my dataset covers a second domain",
84
+ ),
85
+ ]
86
+
87
+ DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
88
+
89
+ def _info(self):
90
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
91
+ if (
92
+ self.config.name == "first_domain"
93
+ ): # This is the name of the configuration selected in BUILDER_CONFIGS above
94
+ features = datasets.Features(
95
+ {
96
+ "sentence": datasets.Value("string"),
97
+ "option1": datasets.Value("string"),
98
+ "answer": datasets.Value("string")
99
+ # These are the features of your dataset like images, labels ...
100
+ }
101
+ )
102
+ else: # This is an example to show how to have different features for "first_domain" and "second_domain"
103
+ features = datasets.Features(
104
+ {
105
+ "sentence": datasets.Value("string"),
106
+ "option2": datasets.Value("string"),
107
+ "second_domain_answer": datasets.Value("string")
108
+ # These are the features of your dataset like images, labels ...
109
+ }
110
+ )
111
+ return datasets.DatasetInfo(
112
+ # This is the description that will appear on the datasets page.
113
+ description=_DESCRIPTION,
114
+ # This defines the different columns of the dataset and their types
115
+ features=features, # Here we define them above because they are different between the two configurations
116
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
117
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
118
+ # supervised_keys=("sentence", "label"),
119
+ # Homepage of the dataset for documentation
120
+ homepage=_HOMEPAGE,
121
+ # License for the dataset if available
122
+ license=_LICENSE,
123
+ # Citation for the dataset
124
+ citation=_CITATION,
125
+ )
126
+
127
+ def _split_generators(self, dl_manager):
128
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
129
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
130
+
131
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
132
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
133
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
134
+ urls = _URLS[self.config.name]
135
+ data_dir = dl_manager.download_and_extract(urls)
136
+ return [
137
+ datasets.SplitGenerator(
138
+ name=datasets.Split.TRAIN,
139
+ # These kwargs will be passed to _generate_examples
140
+ gen_kwargs={
141
+ "filepath": os.path.join(data_dir, "train.jsonl"),
142
+ "split": "train",
143
+ },
144
+ ),
145
+ datasets.SplitGenerator(
146
+ name=datasets.Split.VALIDATION,
147
+ # These kwargs will be passed to _generate_examples
148
+ gen_kwargs={
149
+ "filepath": os.path.join(data_dir, "dev.jsonl"),
150
+ "split": "dev",
151
+ },
152
+ ),
153
+ datasets.SplitGenerator(
154
+ name=datasets.Split.TEST,
155
+ # These kwargs will be passed to _generate_examples
156
+ gen_kwargs={
157
+ "filepath": os.path.join(data_dir, "test.jsonl"),
158
+ "split": "test",
159
+ },
160
+ ),
161
+ ]
162
+
163
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
164
+ def _generate_examples(self, filepath, split):
165
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
166
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
167
+ with open(filepath, encoding="utf-8") as f:
168
+ for key, row in enumerate(f):
169
+ data = json.loads(row)
170
+ if self.config.name == "first_domain":
171
+ # Yields examples as (key, example) tuples
172
+ yield key, {
173
+ "sentence": data["sentence"],
174
+ "option1": data["option1"],
175
+ "answer": "" if split == "test" else data["answer"],
176
+ }
177
+ else:
178
+ yield key, {
179
+ "sentence": data["sentence"],
180
+ "option2": data["option2"],
181
+ "second_domain_answer": ""
182
+ if split == "test"
183
+ else data["second_domain_answer"],
184
+ }