Thinh Huynh Nguyen Truong
commited on
Commit
·
6651025
1
Parent(s):
dd95e30
Init
Browse files- .gitignore +3 -0
- HOW_TO_RUN.md +7 -0
- generate_metadata.py +57 -0
- requirements.txt +3 -0
- rgbdsod_datasets.py +180 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
env
|
2 |
+
load_data
|
3 |
+
__pycache__
|
HOW_TO_RUN.md
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# How to run
|
2 |
+
|
3 |
+
## Test
|
4 |
+
|
5 |
+
~~~bash
|
6 |
+
datasets-cli test test.py --save_info --all_configs
|
7 |
+
~~~
|
generate_metadata.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
from typing import Dict, List
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
"""
|
8 |
+
Generate Metadata for this dataset
|
9 |
+
{
|
10 |
+
"data": [
|
11 |
+
{
|
12 |
+
"depth": "depths/COME_Train_1.png",
|
13 |
+
"rgb": "RGB/COME_Train_1.jpg",
|
14 |
+
"gt": "GT/COME_Train_1.png"
|
15 |
+
},
|
16 |
+
...
|
17 |
+
]
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
depths = glob.glob("depths/*")
|
22 |
+
gts = glob.glob("GT/*")
|
23 |
+
rgbs = glob.glob("RGB/*")
|
24 |
+
|
25 |
+
metadata: List[Dict[str, str]] = []
|
26 |
+
|
27 |
+
for depth in tqdm(depths):
|
28 |
+
name = os.path.basename(depth).split(".")[0]
|
29 |
+
|
30 |
+
gts = glob.glob(f"GT/{name}.*")
|
31 |
+
if len(gts) != 1:
|
32 |
+
raise Exception(f"Inconsitent corresponding GT of name {name}, gts = ", gts)
|
33 |
+
gt = gts[0]
|
34 |
+
|
35 |
+
rgbs = glob.glob(f"RGB/{name}.*")
|
36 |
+
if len(rgbs) != 1:
|
37 |
+
raise Exception(f"Inconsitent corresponding RGB of name {name}, rgbs = ", rgbs)
|
38 |
+
rgb = rgbs[0]
|
39 |
+
|
40 |
+
metadata.append(
|
41 |
+
{
|
42 |
+
"depth": depth,
|
43 |
+
"gt": gt,
|
44 |
+
"rgb": rgb,
|
45 |
+
"name": name,
|
46 |
+
}
|
47 |
+
)
|
48 |
+
|
49 |
+
# Serializing json
|
50 |
+
json_object = json.dumps(dict(metadata=metadata), indent=4)
|
51 |
+
|
52 |
+
# Writing to sample.json
|
53 |
+
with open("metadata.json", "w") as outfile:
|
54 |
+
outfile.write(json_object)
|
55 |
+
|
56 |
+
os.system('zip -r train.zip depths GT RGB metadata.json generate_metadata.py')
|
57 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Python 3.10.6
|
2 |
+
datasets
|
3 |
+
Pillow
|
rgbdsod_datasets.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
from typing import Dict, List
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
from datasets import DownloadManager
|
26 |
+
|
27 |
+
# TODO: Add BibTeX citation
|
28 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
29 |
+
_CITATION = """\
|
30 |
+
@InProceedings{huggingface:dataset,
|
31 |
+
title = {A great new dataset},
|
32 |
+
author={huggingface, Inc.
|
33 |
+
},
|
34 |
+
year={2020}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
# TODO: Add description of the dataset here
|
39 |
+
# You can copy an official description
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
42 |
+
"""
|
43 |
+
|
44 |
+
# TODO: Add a link to an official homepage for the dataset here
|
45 |
+
_HOMEPAGE = ""
|
46 |
+
|
47 |
+
# TODO: Add the licence for the dataset here if you can find it
|
48 |
+
_LICENSE = ""
|
49 |
+
|
50 |
+
# TODO: Add link to the official dataset URLs here
|
51 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
52 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
53 |
+
_URLS = {
|
54 |
+
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
55 |
+
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
56 |
+
}
|
57 |
+
|
58 |
+
_BASE_URL = ""
|
59 |
+
|
60 |
+
|
61 |
+
def get_download_url(config_name: str, partition: str) -> str:
|
62 |
+
"""Get download URL based on config name and parition (train/dev/test)
|
63 |
+
|
64 |
+
Args:
|
65 |
+
config_name (str): can be "v1", "v2",...
|
66 |
+
partition (str): can be "train", "dev" or "test"
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
str: URL to download file
|
70 |
+
"""
|
71 |
+
return f"https://huggingface.co/datasets/RGBD-SOD/test/resolve/main/data/{config_name}/{partition}.zip"
|
72 |
+
|
73 |
+
|
74 |
+
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
75 |
+
class Test(datasets.GeneratorBasedBuilder):
|
76 |
+
"""TODO: Short description of my dataset."""
|
77 |
+
|
78 |
+
VERSION = datasets.Version("1.1.0")
|
79 |
+
|
80 |
+
# This is an example of a dataset with multiple configurations.
|
81 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
82 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
83 |
+
|
84 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
85 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
86 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
87 |
+
|
88 |
+
# You will be able to load one or the other configurations in the following list with
|
89 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
90 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
91 |
+
BUILDER_CONFIGS = [
|
92 |
+
datasets.BuilderConfig(
|
93 |
+
name="v1",
|
94 |
+
version=VERSION,
|
95 |
+
description="RGB-D SOD Set 1",
|
96 |
+
),
|
97 |
+
# datasets.BuilderConfig(
|
98 |
+
# name="v2",
|
99 |
+
# version=VERSION,
|
100 |
+
# description="RGB-D SOD Set 2",
|
101 |
+
# ),
|
102 |
+
]
|
103 |
+
|
104 |
+
DEFAULT_CONFIG_NAME = "v1" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
105 |
+
|
106 |
+
def _info(self):
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
# This is the description that will appear on the datasets page.
|
109 |
+
description=_DESCRIPTION,
|
110 |
+
# This defines the different columns of the dataset and their types
|
111 |
+
features=datasets.Features(
|
112 |
+
{
|
113 |
+
"depth": datasets.Image(),
|
114 |
+
"rgb": datasets.Image(),
|
115 |
+
"gt": datasets.Image(),
|
116 |
+
"name": datasets.Value("string"),
|
117 |
+
# These are the features of your dataset like images, labels ...
|
118 |
+
}
|
119 |
+
), # Here we define them above because they are different between the two configurations
|
120 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
121 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
122 |
+
# supervised_keys=("sentence", "label"),
|
123 |
+
# Homepage of the dataset for documentation
|
124 |
+
homepage=_HOMEPAGE,
|
125 |
+
# License for the dataset if available
|
126 |
+
license=_LICENSE,
|
127 |
+
# Citation for the dataset
|
128 |
+
citation=_CITATION,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
132 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
133 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
134 |
+
|
135 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
136 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
137 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
138 |
+
train_dir = dl_manager.download_and_extract(
|
139 |
+
get_download_url(self.config.name, "train")
|
140 |
+
)
|
141 |
+
dev_dir = dl_manager.download_and_extract(
|
142 |
+
get_download_url(self.config.name, "dev")
|
143 |
+
)
|
144 |
+
# test_dir = dl_manager.download_and_extract(
|
145 |
+
# get_download_url(self.config.name, "test")
|
146 |
+
# )
|
147 |
+
return [
|
148 |
+
datasets.SplitGenerator(
|
149 |
+
name=datasets.Split.TRAIN,
|
150 |
+
# These kwargs will be passed to _generate_examples
|
151 |
+
gen_kwargs={"dir_path": train_dir},
|
152 |
+
),
|
153 |
+
datasets.SplitGenerator(
|
154 |
+
name=datasets.Split.VALIDATION,
|
155 |
+
# These kwargs will be passed to _generate_examples
|
156 |
+
gen_kwargs={"dir_path": dev_dir},
|
157 |
+
),
|
158 |
+
# datasets.SplitGenerator(
|
159 |
+
# name=datasets.Split.TEST,
|
160 |
+
# # These kwargs will be passed to _generate_examples
|
161 |
+
# gen_kwargs={"dir_path": test_dir},
|
162 |
+
# ),
|
163 |
+
]
|
164 |
+
|
165 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
166 |
+
def _generate_examples(self, dir_path: str):
|
167 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
168 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
169 |
+
with open(os.path.join(dir_path, "metadata.json"), "r") as f:
|
170 |
+
json_object = json.load(f)
|
171 |
+
|
172 |
+
metadata: List[Dict[str, str]] = json_object["metadata"]
|
173 |
+
|
174 |
+
for key, row in enumerate(metadata):
|
175 |
+
yield key, {
|
176 |
+
"name": row["name"],
|
177 |
+
"rgb": Image.open(os.path.join(dir_path, row["rgb"])).convert("RGB"),
|
178 |
+
"gt": Image.open(os.path.join(dir_path, row["gt"])).convert("L"),
|
179 |
+
"depth": Image.open(os.path.join(dir_path, row["depth"])).convert("L"),
|
180 |
+
}
|