File size: 16,349 Bytes
d441462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python3
"""

Benchmark complet pour dataset QA avec toutes les métriques standard

Métriques : EM, ROUGE-1/2/L, BLEU-1/4, Perplexité, Diversité, Robustesse

"""

import json
import numpy as np
import math
from collections import Counter, defaultdict
import re
from typing import List, Dict, Tuple, Set
import hashlib
from difflib import SequenceMatcher
import time

ECHANTILLIONS = 175000

class CompleteBenchmark:
    def __init__(self, dataset_path: str):
        self.dataset_path = dataset_path
        self.data = self.load_data()
        self.vocab = self.build_vocab()
        print(f"📊 Dataset chargé : {len(self.data)} échantillons")
    
    def load_data(self) -> List[Dict]:
        """Charge le dataset JSONL avec validation"""
        data = []
        with open(self.dataset_path, 'r', encoding='utf-8') as f:
            for i, line in enumerate(f):
                try:
                    item = json.loads(line.strip())
                    if "question" in item and "answer" in item:
                        data.append(item)
                    else:
                        print(f"⚠️  Ligne {i+1} : clés manquantes")
                except json.JSONDecodeError:
                    print(f"⚠️  Ligne {i+1} : JSON invalide")
        return data
    
    def build_vocab(self) -> Set[str]:
        """Construit le vocabulaire pour calcul de perplexité"""
        vocab = set()
        for item in self.data:
            vocab.update(self.tokenize(item["question"]))
            vocab.update(self.tokenize(item["answer"]))
        return vocab
    
    def tokenize(self, text: str) -> List[str]:
        """Tokenisation robuste"""
        return re.findall(r'\w+', text.lower())
    
    def calculate_exact_match(self, reference: str, candidate: str) -> float:
        """Exact Match : 1.0 si identique, 0.0 sinon"""
        return 1.0 if reference.strip() == candidate.strip() else 0.0
    
    def calculate_bleu(self, reference: str, candidate: str, n: int = 4) -> Dict[str, float]:
        """BLEU-1 à BLEU-n avec optimisations"""
        ref_tokens = self.tokenize(reference)
        cand_tokens = self.tokenize(candidate)
        
        if len(cand_tokens) == 0:
            return {f"bleu_{i}": 0.0 for i in range(1, n+1)}
        
        # Brevity penalty
        bp = min(1.0, len(cand_tokens) / max(1, len(ref_tokens)))
        
        results = {}
        for i in range(1, n + 1):
            ref_ngrams = [tuple(ref_tokens[j:j+i]) for j in range(max(1, len(ref_tokens) - i + 1))]
            cand_ngrams = [tuple(cand_tokens[j:j+i]) for j in range(max(1, len(cand_tokens) - i + 1))]
            
            if len(cand_ngrams) == 0:
                results[f"bleu_{i}"] = 0.0
                continue
            
            ref_counter = Counter(ref_ngrams)
            cand_counter = Counter(cand_ngrams)
            
            matches = sum(min(ref_counter[ng], cand_counter[ng]) for ng in cand_counter)
            precision = matches / len(cand_ngrams)
            
            results[f"bleu_{i}"] = bp * precision if precision > 0 else 0.0
        
        return results
    
    def calculate_rouge_metrics(self, reference: str, candidate: str) -> Dict[str, Dict[str, float]]:
        """ROUGE-1, ROUGE-2, ROUGE-L en une fois"""
        ref_tokens = self.tokenize(reference)
        cand_tokens = self.tokenize(candidate)
        
        results = {}
        
        # ROUGE-1 (unigrammes)
        results["rouge_1"] = self._rouge_n(ref_tokens, cand_tokens, 1)
        
        # ROUGE-2 (bigrammes)
        results["rouge_2"] = self._rouge_n(ref_tokens, cand_tokens, 2)
        
        # ROUGE-L (LCS)
        results["rouge_l"] = self._rouge_lcs(ref_tokens, cand_tokens)
        
        return results
    
    def _rouge_n(self, ref_tokens: List[str], cand_tokens: List[str], n: int) -> Dict[str, float]:
        """ROUGE-N générique"""
        if len(ref_tokens) < n or len(cand_tokens) < n:
            return {"precision": 0.0, "recall": 0.0, "f1": 0.0}
        
        ref_ngrams = Counter([tuple(ref_tokens[i:i+n]) for i in range(len(ref_tokens) - n + 1)])
        cand_ngrams = Counter([tuple(cand_tokens[i:i+n]) for i in range(len(cand_tokens) - n + 1)])
        
        matches = sum(min(ref_ngrams[ng], cand_ngrams[ng]) for ng in cand_ngrams)
        
        precision = matches / sum(cand_ngrams.values()) if sum(cand_ngrams.values()) > 0 else 0.0
        recall = matches / sum(ref_ngrams.values()) if sum(ref_ngrams.values()) > 0 else 0.0
        f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
        
        return {"precision": precision, "recall": recall, "f1": f1}
    
    def _rouge_lcs(self, ref_tokens: List[str], cand_tokens: List[str]) -> Dict[str, float]:
        """ROUGE-L avec LCS optimisé"""
        if len(ref_tokens) == 0 or len(cand_tokens) == 0:
            return {"precision": 0.0, "recall": 0.0, "f1": 0.0}
        
        # LCS avec matrice DP
        lcs_matrix = [[0] * (len(cand_tokens) + 1) for _ in range(len(ref_tokens) + 1)]
        
        for i in range(1, len(ref_tokens) + 1):
            for j in range(1, len(cand_tokens) + 1):
                if ref_tokens[i-1] == cand_tokens[j-1]:
                    lcs_matrix[i][j] = lcs_matrix[i-1][j-1] + 1
                else:
                    lcs_matrix[i][j] = max(lcs_matrix[i-1][j], lcs_matrix[i][j-1])
        
        lcs_length = lcs_matrix[len(ref_tokens)][len(cand_tokens)]
        
        precision = lcs_length / len(cand_tokens)
        recall = lcs_length / len(ref_tokens)
        f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
        
        return {"precision": precision, "recall": recall, "f1": f1}
    
    def calculate_perplexity(self, text_list: List[str]) -> float:
        """Perplexité approximative basée sur fréquence des mots"""
        if not text_list:
            return float('inf')
        
        # Compte des mots dans le corpus
        word_counts = Counter()
        total_words = 0
        
        for text in text_list:
            tokens = self.tokenize(text)
            word_counts.update(tokens)
            total_words += len(tokens)
        
        if total_words == 0:
            return float('inf')
        
        # Calcul de la perplexité
        log_prob_sum = 0.0
        for text in text_list:
            tokens = self.tokenize(text)
            for token in tokens:
                prob = word_counts[token] / total_words
                log_prob_sum += math.log(prob) if prob > 0 else -10  # Lissage
        
        avg_log_prob = log_prob_sum / total_words
        return math.exp(-avg_log_prob)
    
    def analyze_diversity(self) -> Dict:
        """Analyse de diversité du dataset"""
        questions = [item["question"] for item in self.data]
        answers = [item["answer"] for item in self.data]
        
        # Longueurs
        q_lengths = [len(self.tokenize(q)) for q in questions]
        a_lengths = [len(self.tokenize(a)) for a in answers]
        
        # Vocabulaire unique
        q_vocab = set()
        a_vocab = set()
        for q, a in zip(questions, answers):
            q_vocab.update(self.tokenize(q))
            a_vocab.update(self.tokenize(a))
        
        # Domaines approximatifs (mots-clés)
        domain_keywords = {
            "science": ["science", "physique", "chimie", "biologie", "mathématiques"],
            "histoire": ["histoire", "guerre", "année", "siècle", "ancien"],
            "géographie": ["pays", "ville", "continent", "montagne", "rivière"],
            "culture": ["livre", "film", "musique", "art", "littérature"],
            "sport": ["sport", "football", "match", "équipe", "joueur"],
            "technologie": ["ordinateur", "internet", "logiciel", "données", "algorithme"]
        }
        
        domain_counts = defaultdict(int)
        for item in self.data:
            text = (item["question"] + " " + item["answer"]).lower()
            for domain, keywords in domain_keywords.items():
                if any(kw in text for kw in keywords):
                    domain_counts[domain] += 1
                    break
            else:
                domain_counts["autre"] += 1
        
        return {
            "total_samples": len(self.data),
            "avg_question_length": np.mean(q_lengths),
            "avg_answer_length": np.mean(a_lengths),
            "question_vocab_size": len(q_vocab),
            "answer_vocab_size": len(a_vocab),
            "total_vocab_size": len(q_vocab | a_vocab),
            "domain_distribution": dict(domain_counts)
        }
    
    def analyze_robustness(self) -> Dict:
        """Analyse de robustesse : doublons, ambiguïté"""
        questions = [item["question"] for item in self.data]
        answers = [item["answer"] for item in self.data]
        
        # Détection de doublons (hash MD5)
        q_hashes = [hashlib.md5(q.encode()).hexdigest() for q in questions]
        a_hashes = [hashlib.md5(a.encode()).hexdigest() for a in answers]
        
        duplicate_questions = len(q_hashes) - len(set(q_hashes))
        duplicate_answers = len(a_hashes) - len(set(a_hashes))
        
        # Réponses ambiguës
        ambiguous_words = ["peut-être", "dépend", "probablement", "possible", "incertain", "environ"]
        ambiguous_count = sum(1 for a in answers if any(word in a.lower() for word in ambiguous_words))
        
        # Similarité élevée (>90%)
        similar_pairs = 0
        sample_size = min(1000, len(questions))  # Échantillon pour performance
        for i in range(sample_size):
            for j in range(i+1, sample_size):
                similarity = SequenceMatcher(None, questions[i], questions[j]).ratio()
                if similarity > 0.9:
                    similar_pairs += 1
        
        return {
            "duplicate_questions": duplicate_questions,
            "duplicate_answers": duplicate_answers,
            "duplicate_rate": (duplicate_questions + duplicate_answers) / (2 * len(self.data)),
            "ambiguous_answers": ambiguous_count,
            "ambiguous_rate": ambiguous_count / len(self.data),
            "similar_pairs_sample": similar_pairs,
            "estimated_similarity_rate": similar_pairs / (sample_size * (sample_size-1) / 2)
        }
    
    def benchmark_model(self, model_answers: List[str], subset_size: int = None) -> Dict:
        """Benchmark complet avec toutes les métriques"""
        start_time = time.time()
        
        # Validation des données
        if subset_size:
            data_subset = self.data[:subset_size]
            if len(model_answers) != subset_size:
                raise ValueError(f"Taille incohérente : {len(model_answers)} réponses != {subset_size} échantillons")
        else:
            data_subset = self.data
            if len(model_answers) != len(self.data):
                raise ValueError(f"Taille incohérente : {len(model_answers)} réponses != {len(self.data)} échantillons")
        
        print(f"🔄 Benchmark en cours sur {len(data_subset)} échantillons...")
        
        # Initialisation des scores
        em_scores = []
        bleu_scores = defaultdict(list)
        rouge_scores = defaultdict(lambda: defaultdict(list))
        
        # Calcul des métriques
        for i, (item, pred_answer) in enumerate(zip(data_subset, model_answers)):
            if i % 10000 == 0 and i > 0:
                print(f"   Progression : {i}/{len(data_subset)} ({i/len(data_subset)*100:.1f}%)")
            
            true_answer = item["answer"]
            
            # Exact Match
            em_scores.append(self.calculate_exact_match(true_answer, pred_answer))
            
            # BLEU
            bleu_results = self.calculate_bleu(true_answer, pred_answer)
            for key, value in bleu_results.items():
                bleu_scores[key].append(value)
            
            # ROUGE
            rouge_results = self.calculate_rouge_metrics(true_answer, pred_answer)
            for rouge_type, metrics in rouge_results.items():
                for metric, value in metrics.items():
                    rouge_scores[rouge_type][metric].append(value)
        
        # Perplexité
        perplexity = self.calculate_perplexity(model_answers)
        
        # Moyennes finales
        final_results = {
            "exact_match": np.mean(em_scores),
            "bleu": {key: np.mean(scores) for key, scores in bleu_scores.items()},
            "rouge": {rouge_type: {metric: np.mean(scores) for metric, scores in metrics.items()} 
                     for rouge_type, metrics in rouge_scores.items()},
            "perplexity": perplexity,
            "total_samples": len(data_subset),
            "processing_time": time.time() - start_time
        }
        
        return final_results
    
    def print_results(self, results: Dict, diversity: Dict = None, robustness: Dict = None):
        """Affichage formaté des résultats"""
        print(f"\n🎯 RÉSULTATS BENCHMARK ({results['total_samples']} échantillons)")
        print("=" * 60)
        
        # Métriques principales
        print(f"📊 EXACT MATCH    : {results['exact_match']:.4f}")
        print(f"📊 PERPLEXITÉ     : {results['perplexity']:.2f}")
        
        # BLEU
        print(f"\n📈 BLEU SCORES:")
        for key, value in results['bleu'].items():
            print(f"   {key.upper()}: {value:.4f}")
        
        # ROUGE
        print(f"\n📈 ROUGE SCORES:")
        for rouge_type, metrics in results['rouge'].items():
            print(f"   {rouge_type.upper()}:")
            for metric, value in metrics.items():
                print(f"      {metric}: {value:.4f}")
        
        # Diversité
        if diversity:
            print(f"\n🌈 DIVERSITÉ:")
            print(f"   Questions moy: {diversity['avg_question_length']:.1f} mots")
            print(f"   Réponses moy : {diversity['avg_answer_length']:.1f} mots")
            print(f"   Vocabulaire  : {diversity['total_vocab_size']} mots uniques")
            print(f"   Domaines principaux:")
            for domain, count in sorted(diversity['domain_distribution'].items(), key=lambda x: x[1], reverse=True)[:5]:
                print(f"      {domain}: {count} ({count/diversity['total_samples']*100:.1f}%)")
        
        # Robustesse
        if robustness:
            print(f"\n🛡️  ROBUSTESSE:")
            print(f"   Doublons     : {robustness['duplicate_rate']*100:.2f}%")
            print(f"   Ambiguïté    : {robustness['ambiguous_rate']*100:.2f}%")
            print(f"   Similarité   : {robustness['estimated_similarity_rate']*100:.2f}%")
        
        print(f"\n⏱️  Temps de traitement : {results['processing_time']:.1f}s")
        print("=" * 60)

# Exemple d'utilisation
if __name__ == "__main__":
    # Initialisation
    benchmark = CompleteBenchmark("output/qa_dataset.jsonl")
    
    # Analyse préliminaire
    print("🔍 Analyse de diversité...")
    diversity = benchmark.analyze_diversity()
    
    print("🔍 Analyse de robustesse...")
    robustness = benchmark.analyze_robustness()
    
    # Test avec réponses parfaites (100 échantillons)
    print("\n🧪 Test avec réponses parfaites...")
    perfect_answers = [item["answer"] for item in benchmark.data[:ECHANTILLIONS]]
    results = benchmark.benchmark_model(perfect_answers, subset_size=ECHANTILLIONS)
    benchmark.print_results(results, diversity, robustness)
    
    # Test avec réponses modifiées
    print("\n🧪 Test avec réponses modifiées...")
    modified_answers = [item["answer"] + " (test)" for item in benchmark.data[:ECHANTILLIONS]]
    results2 = benchmark.benchmark_model(modified_answers, subset_size=ECHANTILLIONS)
    benchmark.print_results(results2)
    
    print("\n✅ Benchmark terminé !")