Datasets:
QCRI
/

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Firoj commited on
Commit
f2ee67b
·
verified ·
1 Parent(s): 6321ab0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +155 -52
README.md CHANGED
@@ -1,57 +1,160 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
 
 
 
 
 
 
 
 
 
 
3
  dataset_info:
4
- features:
5
- - name: image_id
6
- dtype: string
7
- - name: event_name
8
- dtype: string
9
- - name: image_path
10
- dtype: string
11
- - name: damage_severity
12
- dtype:
13
- class_label:
14
- names:
15
- '0': little_or_none
16
- '1': mild
17
- '2': severe
18
- - name: informative
19
- dtype:
20
- class_label:
21
- names:
22
- '0': informative
23
- '1': not_informative
24
- - name: humanitarian
25
- dtype:
26
- class_label:
27
- names:
28
- '0': affected_injured_or_dead_people
29
- '1': infrastructure_and_utility_damage
30
- '2': not_humanitarian
31
- '3': rescue_volunteering_or_donation_effort
32
- - name: disaster_types
33
- dtype:
34
- class_label:
35
- names:
36
- '0': earthquake
37
- '1': flood
38
- '2': hurricane
39
- '3': fire
40
- '4': landslide
41
- '5': not_disaster
42
- '6': other_disaster
43
- - name: image
44
- dtype: image
45
  splits:
46
- - name: train
47
- num_bytes: 5790001694.059
48
- num_examples: 49353
49
- - name: dev
50
- num_bytes: 1742338023.733
51
- num_examples: 6157
52
- - name: test
53
- num_bytes: 4929381972.12
54
- num_examples: 15688
55
- download_size: 10940045294
56
- dataset_size: 12461721689.911999
57
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
+ task_categories:
4
+ - image-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - Disaster
9
+ - Crisis Informatics
10
+ pretty_name: 'MEDIC: A Multi-Task Learning Dataset for Disaster Image Classification'
11
+ size_categories:
12
+ - 10K<n<100K
13
  dataset_info:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  splits:
15
+ - name: train
16
+ num_examples: 49353
17
+ - name: dev
18
+ num_examples: 6157
19
+ - name: test
20
+ num_examples: 15688
 
 
 
 
 
21
  ---
22
+ # MEDIC: A Multi-Task Learning Dataset for Disaster Image Classification
23
+
24
+ ## Data
25
+
26
+ The MEDIC is the largest multi-task learning disaster-related dataset, an extended version of the crisis image benchmark dataset. It consists of data from several sources, including CrisisMMD, data from AIDR, and the Damage Multimodal Dataset (DMD). The dataset contains 71,198 images.
27
+
28
+ ## Table of Contents
29
+
30
+ - [Data format and directories](#data-format-and-directories)
31
+ - [Disaster response tasks](#disaster-response-tasks)
32
+ - [Downloads](#downloads)
33
+ - [Citation](#citation)
34
+ - [Terms of Use](#terms-of-use)
35
+
36
+ ## Data Format and Directories
37
+
38
+ ### Directories
39
+
40
+ - **data**: Main directory with the following subdirectories:
41
+ - **aidr_disaster_types/**: Contains images collected using AIDR system for disaster types task.
42
+ - **aidr_info/**: Contains images collected using AIDR system for informativeness task.
43
+ - **ASONAM17_Damage_Image_Dataset/**: Damage Assessment Dataset.
44
+ - **crisismmd/**: CrisisMMD dataset.
45
+ - **multimodal-deep-learning-disaster-response-mouzannar/**: Damage Multimodal Dataset (DMD).
46
+ - **MEDIC_train.tsv, MEDIC_dev.tsv, MEDIC_test.tsv**: Training, development, and testing files with specific file formats.
47
+ - **LICENSE_CC_BY_NC_SA_4.0.txt**: License information.
48
+ - **terms-of-use.txt**: Terms and conditions.
49
+
50
+ ### Format
51
+
52
+ - **image_id**: Corresponds to the tweet ID from Twitter or ID from the respective source.
53
+ - **event_name**: Name of the event or data source.
54
+ - **image_path**: Relative path of the image.
55
+ - **damage_severity**: Damage severity class label.
56
+ - **informative**: Informativeness class label.
57
+ - **humanitarian**: Humanitarian class label.
58
+ - **disaster_types**: Disaster types class label.
59
+
60
+ ## Disaster Response Tasks
61
+
62
+ 1. **Disaster Types**
63
+ - Earthquake
64
+ - Fire
65
+ - Flood
66
+ - Hurricane
67
+ - Landslide
68
+ - Not disaster
69
+ - Other disaster
70
+
71
+ 2. **Informativeness**
72
+ - Informative
73
+ - Not informative
74
+
75
+ 3. **Humanitarian Categories**
76
+ - Affected, injured, or dead people
77
+ - Infrastructure and utility damage
78
+ - Not humanitarian
79
+ - Rescue, volunteering, or donation effort
80
+
81
+ 4. **Damage Severity Assessment**
82
+ - Little or no damage
83
+ - Mild damage
84
+ - Severe damage
85
+
86
+ ## Downloads
87
+
88
+ - **MEDIC Dataset, version v1.0**: [Download](https://crisisnlp.qcri.org/data/medic/MEDIC.tar.gz) (11 GB)
89
+ - **Code**: [GitHub Repository](https://github.com/firojalam/medic)
90
+
91
+ ### License
92
+ The MEDIC dataset is published under CC BY-NC-SA 4.0 license, which means everyone can use this dataset for non-commercial research purpose: https://creativecommons.org/licenses/by-nc/4.0/.
93
+ See LICENSE_CC_BY_NC_SA_4.0.txt
94
+
95
+
96
+ ## Citation
97
+
98
+ Please cite the following papers if you use this dataset in your research:
99
+
100
+ 1. Firoj Alam, Tanvirul Alam, Md. Arid Hasan, Abul Hasnat, Muhammad Imran, Ferda Ofli. *MEDIC: A Multi-Task Learning Dataset for Disaster Image Classification.* Neural Computing and Applications, 35(3):2609–2632, 2023. [paper](https://link.springer.com/content/pdf/10.1007/s00521-022-07717-0.pdf) [Arxiv](https://arxiv.org/pdf/2108.12828)
101
+ 2. Firoj Alam, Ferda Ofli, Muhammad Imran, Tanvirul Alam, Umair Qazi. *Deep Learning Benchmarks and Datasets for Social Media Image Classification for Disaster Response.* In 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2020.
102
+ 3. Firoj Alam, Ferda Ofli, and Muhammad Imran. *CrisisMMD: Multimodal Twitter Datasets from Natural Disasters.* In Proceedings of the 12th International AAAI Conference on Web and Social Media (ICWSM), 2018, Stanford, California, USA.
103
+ 4. Hussein Mozannar, Yara Rizk, and Mariette Awad. *Damage Identification in Social Media Posts using Multimodal Deep Learning.* In Proc. of ISCRAM, May 2018, pp. 529–543.
104
+ 5. Dat Tien Nguyen, Ferda Ofli, Muhammad Imran, and Prasenjit Mitra. *Damage assessment from social media imagery data during disasters.* In Proc. of ASONAM, pages 1–8, Aug 2017.
105
+
106
+ ```
107
+ @article{alam2022medic,
108
+ title={{MEDIC}: A Multi-Task Learning Dataset for Disaster Image Classification},
109
+ author={Firoj Alam and Tanvirul Alam and Md. Arid Hasan and Abul Hasnat and Muhammad Imran and Ferda Ofli},
110
+ Keywords = {Multi-task Learning, Social media images, Image Classification, Natural disasters, Crisis Informatics, Deep learning, Dataset},
111
+ journal={Neural Computing and Applications},
112
+ volume={35},
113
+ issue={3},
114
+ pages={2609--2632},
115
+ year={2023},
116
+ publisher={Springer}
117
+ }
118
+
119
+ @InProceedings{crisismmd2018icwsm,
120
+ author = {Alam, Firoj and Ofli, Ferda and Imran, Muhammad},
121
+ title = {{CrisisMMD}: Multimodal Twitter Datasets from Natural Disasters},
122
+ booktitle = {Proceedings of the 12th International AAAI Conference on Web and Social Media (ICWSM)},
123
+ year = {2018},
124
+ month = {June},
125
+ date = {23-28},
126
+ location = {USA}
127
+ }
128
+
129
+ @inproceedings{10.1109/ASONAM49781.2020.9381294,
130
+ author = {Alam, Firoj and Ofli, Ferda and Imran, Muhammad and Alam, Tanvirul and Qazi, Umair},
131
+ title = {Deep learning benchmarks and datasets for social media image classification for disaster response},
132
+ year = {2021},
133
+ isbn = {9781728110561},
134
+ publisher = {IEEE Press},
135
+ url = {https://doi.org/10.1109/ASONAM49781.2020.9381294},
136
+ doi = {10.1109/ASONAM49781.2020.9381294},
137
+ booktitle = {Proceedings of the 12th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining},
138
+ pages = {151–158},
139
+ numpages = {8},
140
+ keywords = {benchmarking, crisis computing, deep learning, disaster image classification, natural disasters, social media},
141
+ location = {Virtual Event, Netherlands},
142
+ series = {ASONAM '20}
143
+ }
144
+
145
+ @inproceedings{mouzannar2018damage,
146
+ title={Damage Identification in Social Media Posts using Multimodal Deep Learning.},
147
+ author={Mouzannar, Hussein and Rizk, Yara and Awad, Mariette},
148
+ booktitle={ISCRAM},
149
+ year={2018},
150
+ organization={Rochester, NY, USA}
151
+ }
152
+
153
+ @inproceedings{nguyen2017damage,
154
+ title={Damage assessment from social media imagery data during disasters},
155
+ author={Nguyen, Dat T and Ofli, Ferda and Imran, Muhammad and Mitra, Prasenjit},
156
+ booktitle={Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017},
157
+ pages={569--576},
158
+ year={2017}
159
+ }
160
+ ```