brando commited on
Commit
8042131
·
verified ·
1 Parent(s): 687fee1

Update README with information about variations data

Browse files
Files changed (1) hide show
  1. README.md +40 -29
README.md CHANGED
@@ -1,6 +1,8 @@
1
  ---
2
  dataset_info:
3
  features:
 
 
4
  - name: id
5
  dtype: string
6
  - name: problem
@@ -17,34 +19,27 @@ dataset_info:
17
  dtype: string
18
  - name: original_solution
19
  dtype: string
20
- - name: year
21
- dtype: string
22
  - name: variation
23
  dtype: int64
24
  splits:
 
 
25
  - name: originals_for_generating_vars
26
- num_bytes: 134464
27
- num_examples: 100
28
  - name: variations
29
- num_bytes: 687636
30
- num_examples: 500
31
- download_size: 246620
32
- dataset_size: 822100
33
  configs:
34
  - config_name: default
35
- data_files:
36
- - split: originals_for_generating_vars
37
- path: data/originals_for_generating_vars-*
38
- - split: variations
39
- path: data/variations-*
40
  extra_gated_prompt: 'By requesting access to this dataset, you agree to cite the following
41
  works in any publications or projects that utilize this data:
42
 
43
  - Putnam-AXIOM dataset: @article{putnam_axiom2025, title={Putnam-AXIOM: A Functional
44
  and Static Benchmark for Measuring Higher Level Mathematical Reasoning}, author={Aryan
45
  Gulati and Brando Miranda and Eric Chen and Emily Xia and Kai Fronsdal and Bruno
46
- de Moraes Dumont and Sanmi Koyejo}, journal={39th International Conference on Machine
47
- Learning (ICML 2025)}, year={2025}, note={Preprint available at: https://openreview.net/pdf?id=YXnwlZe0yf}} '
48
  ---
49
 
50
  # Putnam AXIOM Dataset (ICML 2025 Version)
@@ -55,10 +50,10 @@ extra_gated_prompt: 'By requesting access to this dataset, you agree to cite the
55
 
56
  The [**Putnam AXIOM**](https://openreview.net/pdf?id=YXnwlZe0yf) dataset is designed for evaluating large language models (LLMs) on advanced mathematical reasoning skills. It is based on challenging problems from the Putnam Mathematical Competition. This version contains 522 original problems prepared for the ICML 2025 submission.
57
 
58
- This dataset includes:
59
- - **Full Evaluation Set (522 problems)**: Complete set of problems
60
- - **Test Set (372 problems)**: Set used for testing
61
- - **Validation Set (150 problems)**: Set used for validation/development
62
 
63
  Each problem includes:
64
  - Problem statement
@@ -67,6 +62,12 @@ Each problem includes:
67
  - Answer type (e.g., numerical, proof)
68
  - Source and type of problem (e.g., Algebra, Calculus, Geometry)
69
  - Year (extracted from problem ID)
 
 
 
 
 
 
70
 
71
  ## Supported Tasks and Leaderboards
72
 
@@ -90,15 +91,19 @@ The dataset is presented in **English**.
90
  - **type**: A description of the problem's mathematical topic (e.g., "Algebra Geometry").
91
  - **original_problem**: Original form of the problem, where applicable.
92
  - **original_solution**: Original solution to the problem, where applicable.
93
- - **variation**: Flag for variations (0 for all problems in this dataset as these are not variations).
94
 
95
  ### Splits
96
 
97
- | Split | Description | Number of Problems |
98
- |---------------|----------------------------------------|--------------------|
99
- | `full_eval` | Complete set of 522 problems | 522 |
100
- | `test` | Test split | 372 |
101
- | `validation` | Validation/development split | 150 |
 
 
 
 
102
 
103
  ## Dataset Usage
104
 
@@ -109,11 +114,17 @@ from datasets import load_dataset
109
  dataset = load_dataset("Putnam-AXIOM/putnam-axiom-dataset-ICML-2025-522")
110
 
111
  # Access each split
112
- full_eval = dataset["full_eval"]
113
- test = dataset["test"]
114
- validation = dataset["validation"]
 
 
 
 
 
 
115
 
116
- # Example usage: print the first problem from the full evaluation set
117
  print(full_eval[0])
118
  ```
119
 
 
1
  ---
2
  dataset_info:
3
  features:
4
+ - name: year
5
+ dtype: string
6
  - name: id
7
  dtype: string
8
  - name: problem
 
19
  dtype: string
20
  - name: original_solution
21
  dtype: string
 
 
22
  - name: variation
23
  dtype: int64
24
  splits:
25
+ - name: full_eval
26
+ num_examples: 522
27
  - name: originals_for_generating_vars
28
+ num_examples: 67
 
29
  - name: variations
30
+ num_examples: 459
31
+ download_size: 560892
32
+ dataset_size: 1184885
 
33
  configs:
34
  - config_name: default
 
 
 
 
 
35
  extra_gated_prompt: 'By requesting access to this dataset, you agree to cite the following
36
  works in any publications or projects that utilize this data:
37
 
38
  - Putnam-AXIOM dataset: @article{putnam_axiom2025, title={Putnam-AXIOM: A Functional
39
  and Static Benchmark for Measuring Higher Level Mathematical Reasoning}, author={Aryan
40
  Gulati and Brando Miranda and Eric Chen and Emily Xia and Kai Fronsdal and Bruno
41
+ de Moraes Dumont and Sanmi Koyejo}, journal={39th International Conference on Machine Learning (ICML 2025)}, year={2025},
42
+ note={Preprint available at: https://openreview.net/pdf?id=YXnwlZe0yf}} '
43
  ---
44
 
45
  # Putnam AXIOM Dataset (ICML 2025 Version)
 
50
 
51
  The [**Putnam AXIOM**](https://openreview.net/pdf?id=YXnwlZe0yf) dataset is designed for evaluating large language models (LLMs) on advanced mathematical reasoning skills. It is based on challenging problems from the Putnam Mathematical Competition. This version contains 522 original problems prepared for the ICML 2025 submission.
52
 
53
+ The dataset now includes:
54
+ - **Full Evaluation Set (522 problems)**: Complete set of original problems
55
+ - **Originals for Generating Variations (67 problems)**: A subset of problems used to create variations
56
+ - **Variations (459 problems)**: Variations generated from the original problems
57
 
58
  Each problem includes:
59
  - Problem statement
 
62
  - Answer type (e.g., numerical, proof)
63
  - Source and type of problem (e.g., Algebra, Calculus, Geometry)
64
  - Year (extracted from problem ID)
65
+ - Variation flag (0 for original problems, 1 for variations)
66
+
67
+ ## Note About Splits
68
+
69
+ For experiments with the Putnam AXIOM dataset in different research contexts, specialized splits are available in separate repositories:
70
+ - [ZIP-FIT experiments splits](https://huggingface.co/datasets/zipfit/Putnam-AXIOM-for-zip-fit-splits) - Contains validation/test splits used for ZIP-FIT methodology research
71
 
72
  ## Supported Tasks and Leaderboards
73
 
 
91
  - **type**: A description of the problem's mathematical topic (e.g., "Algebra Geometry").
92
  - **original_problem**: Original form of the problem, where applicable.
93
  - **original_solution**: Original solution to the problem, where applicable.
94
+ - **variation**: Flag for variations (0 for original problems, 1 for generated variations).
95
 
96
  ### Splits
97
 
98
+ | Split | Description | Number of Problems |
99
+ |------------------------------|------------------------------------------------|--------------------|
100
+ | `full_eval` | Complete set of 522 original problems | 522 |
101
+ | `originals_for_generating_vars` | Original problems used to create variations | 67 |
102
+ | `variations` | Generated variations of the original problems | 459 |
103
+
104
+ ### Variations
105
+
106
+ The `variations` split contains problems that were algorithmically generated as variations of problems in the `originals_for_generating_vars` split. These variations maintain the core mathematical concepts of the original problems but present them with different contexts, numbers, or phrasings. The variation field is set to 1 for these problems to distinguish them from the original problems.
107
 
108
  ## Dataset Usage
109
 
 
114
  dataset = load_dataset("Putnam-AXIOM/putnam-axiom-dataset-ICML-2025-522")
115
 
116
  # Access each split
117
+ full_eval = dataset["full_eval"] # Original problems
118
+ originals = dataset["originals_for_generating_vars"] # Original problems used for variations
119
+ variations = dataset["variations"] # Generated variations
120
+
121
+ # Filter for original problems only (variation = 0)
122
+ original_problems = [p for p in full_eval if p["variation"] == 0]
123
+
124
+ # Filter for variation problems (variation = 1)
125
+ variation_problems = [p for p in variations if p["variation"] == 1]
126
 
127
+ # Example usage: print the first original problem
128
  print(full_eval[0])
129
  ```
130