File size: 3,314 Bytes
dd9816c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453a749
 
 
 
 
 
 
dd9816c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
language:
- fr
license: mit
task_categories:
- translation
tags:
- pictograms
- AAC
pretty_name: Propicto-polylexical
---

# Propicto-polylexical

## 📝 Dataset Description

Propicto-polylexical is a dataset of aligned text and pictograms (the pictograms correspond to the identifiers associated with ARASAAC pictograms) in French.
This dataset was manually created to specifically provide a resource containing texts with polylexical expressions translated into pictograms.

The dataset contains is a single file of 1,462 utterances.

## ⚒️ Dataset Structure

The dataset is structured as follows:
```csv
id : the unique identifier of the utterance
text : the sentence in French
pictos : the sequence of pictogram IDs from ARASAAC
tokens : the sequence of tokens, each of which is a keyword associated with an ARASAAC pictogram ID
```

## 💡 Dataset example

For the given sample :
```csv
id : 43
text : le collier du chien est trop serré il faut l'ajuster
pictos : [8476, 6987, 36480, 25708, 5380, 15523, 8476, 8516]
tokens : le collier_du_chien être trop serrer devoir le adapter
```

- `pictos` is the sequence of pictogram IDs, each of them can be retrieved from here : 15523 = https://static.arasaac.org/pictograms/15523/15523_2500.png<br />
- `tokens` are retrieved from a specific lexicon and can be used to train translation models.

![Example](example.png)

## 💻 Uses

Propicto-polylexical is intended to be used to train Text-to-Pictograms translation models. 
This dataset can also be used to fine-tune large language models to perform translation into pictograms. 

## ⚙️ Dataset Creation

The dataset is created by applying a specific formalism that converts french transcriptions into a corresponding sequence of pictograms.<br />
The formalism includes a set of grammatical rules to handle specific phenomenon (negation, name entities, pronominal form, plural, ...) to the French language, as well as a dictionary which associates each ARASAAC ID pictogram with a set of keywords (tokens).<br />
This formalism was presented at [LREC](https://aclanthology.org/2024.lrec-main.76/).

## ⁉️ Limitations

The translation can be partially incorrect, due to incorrect or missing words translated into pictograms.

## 💡 Information

- **Curated by:** Cécile MACAIRE
- **Funded by :** [PROPICTO ANR-20-CE93-0005](https://anr.fr/Projet-ANR-20-CE93-0005)
- **Language(s) (NLP):** French
- **License:** CC-BY-NC-SA-4.0

## 📌 Citation

```bibtex
@inproceedings{macaire-etal-2024-multimodal,
    title = "A Multimodal {F}rench Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation",
    author = "Macaire, C{\'e}cile  and
      Dion, Chlo{\'e}  and
      Arrigo, Jordan  and
      Lemaire, Claire  and
      Esperan{\c{c}}a-Rodier, Emmanuelle  and
      Lecouteux, Benjamin  and
      Schwab, Didier",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    year = "2024",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.76",
    pages = "839--849",
}
```

## 👩‍🏫 Dataset Card Authors

**Cécile MACAIRE, Chloé DION, Emmanuelle ESPÉRANÇA-RODIER, Benjamin LECOUTEUX, Didier SCHWAB**