--- license: cc task_categories: - translation - text-generation - text2text-generation language: - en - si tags: - translation - transliteration - Sinhala - English - Singlish - NLP - dataset - low-resource pretty_name: Sinhala–English–Singlish Translation Dataset size_categories: - 10K A parallel corpus of Sinhala sentences, their English translations, and romanized Sinhala (“Singlish”) transliterations. --- ## 📋 Table of Contents 1. [Dataset Overview](#dataset-overview) 2. [Installation](#installation) 3. [Quick Start](#quick-start) 4. [Dataset Structure](#dataset-structure) 5. [Usage Examples](#usage-examples) 6. [Citation](#citation) 7. [License](#license) 8. [Credits](#credits) --- ## Dataset Overview - **Description**: 34,500 aligned triplets of - Sinhala (native script) - English (human translation) - Singlish (romanized Sinhala) - **Source**: - 📊 Kaggle dataset: `programmerrdai/sinhala-english-singlish-translation-dataset` - 🛠️ Collection pipeline: GitHub [Sinenglish-LLM-Data-Collection](https://github.com/Programmer-RD-AI-Archive/Sinenglish-LLM-Data-Collection) - **DOI**: 10.57967/hf/5605 - **Released**: 2025 (Revision `c6560ff`) - **License**: MIT --- ## Installation ```bash pip install datasets ```` --- ## Quick Start ```python from datasets import load_dataset ds = load_dataset( "Programmer-RD-AI/sinhala-english-singlish-translation", split="train" ) print(ds[0]) # { # "sinhala": "මෙය මගේ ප්‍රධාන අයිතියයි", # "english": "This is my headright.", # "singlish": "meya mage pradhana ayithiyayi" # } ``` --- ## Dataset Structure | Column | Type | Description | | ---------- | -------- | -------------------------------------- | | `sinhala` | `string` | Original sentence in Sinhala script | | `english` | `string` | Corresponding English translation | | `singlish` | `string` | Romanized (“Singlish”) transliteration | * **Rows**: 34,500 * **Format**: CSV (viewed as Parquet on HF) --- ## Usage Examples ### Load into Pandas ```python import pandas as pd from datasets import load_dataset df = load_dataset( "Programmer-RD-AI/sinhala-english-singlish-translation", split="train" ).to_pandas() print(df.head()) ``` ### Fine-tuning a Translation Model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments # 1. Tokenizer & model tokenizer = AutoTokenizer.from_pretrained("t5-small") model = AutoModelForSeq2SeqLM.from_pretrained("t5-small") # 2. Preprocess def preprocess(ex): inputs = "translate Sinhala to English: " + ex["sinhala"] targets = ex["english"] tokenized = tokenizer(inputs, text_target=targets, truncation=True) return tokenized train_dataset = ds.map(preprocess, remove_columns=ds.column_names) # 3. Training args = TrainingArguments( output_dir="outputs", num_train_epochs=3, per_device_train_batch_size=16, ) trainer = Trainer( model=model, args=args, train_dataset=train_dataset, tokenizer=tokenizer ) trainer.train() ``` --- ## Citation ```bibtex @misc{ranuga_disansa_gamage_2025, author = { Ranuga Disansa Gamage and Sasvidu Abesinghe and Sheneli Fernando and Thulana Vithanage }, title = { sinhala-english-singlish-translation (Revision b6bde25) }, year = 2025, url = { https://huggingface.co/datasets/Programmer-RD-AI/sinhala-english-singlish-translation }, doi = { 10.57967/hf/5626 }, publisher = { Hugging Face } } ``` --- ## License This dataset is released under the **CC License**. See the [LICENSE](LICENSE) file for details.