processvenue commited on
Commit
6a37b6c
·
verified ·
1 Parent(s): 893844e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -131
README.md CHANGED
@@ -1,131 +1,131 @@
1
- ---
2
- license: mit
3
- task_categories:
4
- - image-classification
5
- tags: ['handwriting-recognition', 'OCR', 'Marathi', 'image-processing', 'deep-learning', 'computer-vision']
6
- pretty_name: Marathi Handwritten OCR
7
- size_categories:
8
- - 1K<n<10K
9
- language:
10
- - mr
11
- ---
12
-
13
- # Dataset Card for Marathi Handwritten OCR Dataset
14
-
15
- ### Dataset Description
16
-
17
- - **Repository:** processvenue/Marathi_Handwritten
18
- - **Total Examples:** 2520
19
- - **Splits:**
20
- - train: 2016 examples
21
- - validation: 504 examples
22
- - **Features:** image, id, filename, label, type
23
- - **Size:** 2520 images
24
- - **Language:** mr
25
- - **License:** mit
26
-
27
- ### Dataset Summary
28
-
29
- The Marathi Handwritten Text Dataset is a collection of handwritten text images in Marathi (देवनागरी लिपी),
30
- aimed at supporting the development of Optical Character Recognition (OCR) systems, handwriting analysis tools,
31
- and language research.The dataset was curated from native Marathi speakers to ensure a variety of handwriting styles and character variations.
32
- The dataset contains 2520 images with two categories:
33
- - बाराखडी (Barakhadi/syllables): 560 characters
34
- - शब्द (Words): 1949 words
35
- - Image Format: PNG
36
- - Label Format: Text file
37
- - Image Dimensions: 115x57 OR 114x58 pixels
38
- - Storage Format: Parquet (Hugging Face)
39
-
40
- Language Statistics:
41
- - Marathi is the third most spoken language in India
42
- - Approximately 83 million speakers (7% of India's population)
43
- - Official language of Maharashtra
44
- - One of the 22 scheduled languages of India
45
-
46
- Applications
47
- 1. OCR Development
48
- - Handwriting recognition systems
49
- - Document digitization
50
- - Text extraction tools
51
-
52
- 2. Educational Tools
53
- - Language learning applications
54
- - Writing practice systems
55
- - Digital literacy programs
56
-
57
- 3. Research Applications
58
- - Script analysis
59
- - Language processing
60
- - Pattern recognition studies
61
-
62
-
63
- ### Data Fields
64
-
65
- - `image`: Image feature (PIL Image)
66
- - `id`: Feature field
67
- - `filename`: Feature field
68
- - `label`: Feature field
69
- - `type`: Feature field
70
-
71
- ### Dataset Creation
72
-
73
- The dataset was created through careful curation of handwritten samples from native Marathi speakers.
74
- The dataset includes both character-level (syllables) and word-level annotations.
75
- Contributors were provided with pre-written text designed to capture:
76
- - Common character variations
77
- - Diverse writing styles
78
- - Standard word formations
79
- - Typical punctuation usage
80
-
81
- The images were carefully processed and stored in PNG format, while metadata and labels were structured
82
- in a Parquet file format.
83
-
84
-
85
- ### Usage Example
86
-
87
- ```python
88
- from datasets import load_dataset
89
- import matplotlib.pyplot as plt
90
-
91
- # Load the dataset
92
- dataset = load_dataset("processvenue/Marathi_Handwritten")
93
-
94
- # Get an example from train split
95
- example = dataset['train'][0]
96
-
97
- # Display the image
98
- plt.figure(figsize=(5, 5))
99
- plt.imshow(example['image'])
100
- plt.title(f"Sample Image")
101
- plt.axis('off')
102
- plt.show()
103
- ```
104
-
105
- ### Citation
106
-
107
- If you use this dataset in your research, please cite:
108
-
109
- ```
110
- @dataset{language_identification_2024,
111
- author = {ML Technology Team},
112
- title = {Multilingual Headlines Language Identification Dataset},
113
- year = {2024},
114
- publisher = {Hugging Face},
115
- url = {https://huggingface.co/datasets/MLTechnology/language-identification}
116
- }
117
- ```
118
-
119
-
120
- ### References
121
-
122
- ```
123
- @misc{Sarode_Marathi_Handwritten_Text,
124
- author = {Hrushikesh Sarode},
125
- title = {Marathi Handwritten Text Dataset},
126
- year = {n.d.},
127
- url = {https://www.kaggle.com/datasets/hrushikeshsarode/marathi-handwritten-text-dataset},
128
- note = {Accessed: February 12, 2025}
129
- }
130
- ```
131
-
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - image-classification
5
+ tags: ['handwriting-recognition', 'OCR', 'Marathi', 'image-processing', 'deep-learning', 'computer-vision']
6
+ pretty_name: Marathi Handwritten OCR
7
+ size_categories:
8
+ - 1K<n<10K
9
+ language:
10
+ - mr
11
+ ---
12
+
13
+ # Dataset Card for Marathi Handwritten OCR Dataset
14
+
15
+ ### Dataset Description
16
+
17
+ - **Repository:** processvenue/Marathi_Handwritten
18
+ - **Total Examples:** 2520
19
+ - **Splits:**
20
+ - train: 2016 examples
21
+ - validation: 504 examples
22
+ - **Features:** image, id, filename, label, type
23
+ - **Size:** 2520 images
24
+ - **Language:** mr
25
+ - **License:** mit
26
+
27
+ ### Dataset Summary
28
+
29
+ The Marathi Handwritten Text Dataset is a collection of handwritten text images in Marathi (देवनागरी लिपी),
30
+ aimed at supporting the development of Optical Character Recognition (OCR) systems, handwriting analysis tools,
31
+ and language research.The dataset was curated from native Marathi speakers to ensure a variety of handwriting styles and character variations.
32
+ The dataset contains 2520 images with two categories:
33
+ - बाराखडी (Barakhadi/syllables): 560 characters
34
+ - शब्द (Words): 1949 words
35
+ - Image Format: PNG
36
+ - Label Format: Text file
37
+ - Image Dimensions: 115x57 OR 114x58 pixels
38
+ - Storage Format: Parquet (Hugging Face)
39
+
40
+ Language Statistics:
41
+ - Marathi is the third most spoken language in India
42
+ - Approximately 83 million speakers (7% of India's population)
43
+ - Official language of Maharashtra
44
+ - One of the 22 scheduled languages of India
45
+
46
+ Applications
47
+ 1. OCR Development
48
+ - Handwriting recognition systems
49
+ - Document digitization
50
+ - Text extraction tools
51
+
52
+ 2. Educational Tools
53
+ - Language learning applications
54
+ - Writing practice systems
55
+ - Digital literacy programs
56
+
57
+ 3. Research Applications
58
+ - Script analysis
59
+ - Language processing
60
+ - Pattern recognition studies
61
+
62
+
63
+ ### Data Fields
64
+
65
+ - `image`: Image feature (PIL Image)
66
+ - `id`: Feature field
67
+ - `filename`: Feature field
68
+ - `label`: Feature field
69
+ - `type`: Feature field
70
+
71
+ ### Dataset Creation
72
+
73
+ The dataset was created through careful curation of handwritten samples from native Marathi speakers.
74
+ The dataset includes both character-level (syllables) and word-level annotations.
75
+ Contributors were provided with pre-written text designed to capture:
76
+ - Common character variations
77
+ - Diverse writing styles
78
+ - Standard word formations
79
+ - Typical punctuation usage
80
+
81
+ The images were carefully processed and stored in PNG format, while metadata and labels were structured
82
+ in a Parquet file format.
83
+
84
+
85
+ ### Usage Example
86
+
87
+ ```python
88
+ from datasets import load_dataset
89
+ import matplotlib.pyplot as plt
90
+
91
+ # Load the dataset
92
+ dataset = load_dataset("processvenue/Marathi_Handwritten")
93
+
94
+ # Get an example from train split
95
+ example = dataset['train'][0]
96
+
97
+ # Display the image
98
+ plt.figure(figsize=(5, 5))
99
+ plt.imshow(example['image'])
100
+ plt.title(f"Sample Image")
101
+ plt.axis('off')
102
+ plt.show()
103
+ ```
104
+
105
+ ### Citation
106
+
107
+ If you use this dataset in your research, please cite:
108
+
109
+ ```
110
+ @dataset{language_identification_2024,
111
+ author = {ML Technology Team},
112
+ title = {Multilingual Headlines Language Identification Dataset},
113
+ year = {2024},
114
+ publisher = {Hugging Face},
115
+ url = {https://huggingface.co/datasets/processvenue/Marathi_Handwritten}
116
+ }
117
+ ```
118
+
119
+
120
+ ### References
121
+
122
+ ```
123
+ @misc{Sarode_Marathi_Handwritten_Text,
124
+ author = {Hrushikesh Sarode},
125
+ title = {Marathi Handwritten Text Dataset},
126
+ year = {n.d.},
127
+ url = {https://www.kaggle.com/datasets/hrushikeshsarode/marathi-handwritten-text-dataset},
128
+ note = {Accessed: February 12, 2025}
129
+ }
130
+ ```
131
+