Datasets:
Convert dataset to Parquet (part 00012-of-00013) (#13)
Browse files- Convert dataset to Parquet (part 00012-of-00013) (dc252bcb962c8dc58c6597f09ad1d2770e900001)
- Delete data file (0045d85342b97a7ec661eb3a705354bf806b1872)
- Delete loading script (d294d5094378796a96b783cabfea9d750cb4a155)
- Delete data file (bf45b902a59a310dbf506da7285aca276458766a)
- Delete data file (7c75ed38353b3f257039f0615f7c76ae018811db)
- Delete data file (ef01da989e0c21edf8208a9cdd8a705ec9b993a3)
- Delete data file (911de9f0125451fc728903f9785acdf101d3fd03)
- Delete data file (166ff92eba74f44b7c2eed81cfea3a53a1dce9f3)
- Delete data file (5ac961f10ae3d11c3f8c83df6bca5ccfe1dfab60)
- Delete data file (1907567df343ba959518200bbacc0204719398ac)
- Delete data file (294123ebe5c727daefe2f90d00cb80a6d9ebaca6)
- Delete data file (92efd5db870ea60d20dde333615632f4a47fb685)
- Delete data file (2b28ac7344c8ba8dfcf3a3b3d9f2d336f07c1b7e)
- Delete data file (95b8cc7126733821989649237c4a34d5e0bff7d4)
- Delete data file (36ee5a8d81fa3bf7ecb014b84bdf7b860ba7945d)
- Delete data file (d0de213e47d116ac1c5b36cb72643e29252f54fc)
- Delete data file (5e533e883abe9893cd758f2d0ccf816b2c8eeb08)
- Delete data file (f28370f023b3840126e79e177ff52e6282b05b08)
- Delete data file (bd25139eead066537897e3ae29ba66c37c6f5927)
- Delete data file (844ebd7b3406ba1f2ccab3cf643e4891595ee83b)
- Delete data file (5c65a6cbddfb2a6f8748a6f181b1cd2852413a2a)
- Delete data file (ca93077f3540e9f86c2bc43410b56186a5bf0d84)
- Delete data file (851c6f74db45e48184a010474bdff841d29231bb)
- Delete data file (060c5737e6e53aa916d659cce1bdea820fb73091)
- Delete data file (aa8f94630ecc13b967ed04e33a381eb44f319be2)
- Delete data file (3ca772834c6012ba5661eb0813bce7fd21b59e78)
- Delete data file (67d712cb6ce0050b6f13f7701051fb3dc0ae6df4)
- Delete data file (f991db3371f52f295e6b0f24e64d7ad070a3118d)
- Delete data file (c35c530d013db82fd266b42a6e9f3a1c92f02bf5)
- Delete data file (4dfe966d9c72a6c1cbc9c9de05491d074e2df198)
- Delete data file (8c03a722f3141095cf044f4cb8cf063848ccee28)
- Delete data file (bfb81d1db7c4ac561b0e33ec391f4a77f64a54da)
- Delete data file (9d38e029a3737ae98907a604cb750688d53b5fe1)
- Delete data file (d08fc0a285c5c5d64ae0e80b39fe75e3af2f556b)
- infeasible/ACOPF/meta.h5.gz → 89_pegase/test-00115-of-00122.parquet +2 -2
- case.json.gz → 89_pegase/test-00116-of-00122.parquet +2 -2
- infeasible/DCOPF/meta.h5.gz → 89_pegase/test-00117-of-00122.parquet +2 -2
- infeasible/DCOPF/dual.h5.gz → 89_pegase/test-00118-of-00122.parquet +2 -2
- 89_pegase/test-00119-of-00122.parquet +3 -0
- 89_pegase/test-00120-of-00122.parquet +3 -0
- 89_pegase/test-00121-of-00122.parquet +3 -0
- PGLearn-Small-89_pegase.py +0 -397
- README.md +12 -4
- config.toml +0 -42
- infeasible/ACOPF/dual.h5.gz +0 -3
- infeasible/ACOPF/primal.h5.gz +0 -3
- infeasible/DCOPF/primal.h5.gz +0 -3
- infeasible/SOCOPF/dual.h5.gz +0 -3
- infeasible/SOCOPF/meta.h5.gz +0 -3
- infeasible/SOCOPF/primal.h5.gz +0 -3
- infeasible/input.h5.gz +0 -3
- test/ACOPF/dual.h5.gz +0 -3
- test/ACOPF/meta.h5.gz +0 -3
- test/ACOPF/primal.h5.gz +0 -3
- test/DCOPF/dual.h5.gz +0 -3
- test/DCOPF/meta.h5.gz +0 -3
- test/DCOPF/primal.h5.gz +0 -3
- test/SOCOPF/dual.h5.gz +0 -3
- test/SOCOPF/meta.h5.gz +0 -3
- test/SOCOPF/primal.h5.gz +0 -3
- test/input.h5.gz +0 -3
- train/ACOPF/dual.h5.gz +0 -3
- train/ACOPF/meta.h5.gz +0 -3
- train/ACOPF/primal.h5.gz +0 -3
- train/DCOPF/dual.h5.gz +0 -3
- train/DCOPF/meta.h5.gz +0 -3
- train/DCOPF/primal.h5.gz +0 -3
- train/SOCOPF/dual.h5.gz +0 -3
- train/SOCOPF/meta.h5.gz +0 -3
- train/SOCOPF/primal.h5.gz +0 -3
- train/input.h5.gz +0 -3
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80ff67d819659642903db6fa495cd3c323e275d7dceb51472facd399fd395e8d
|
3 |
+
size 82013792
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d45a7fca4fe4b468ecfa4c376d97070ff58e1c1c1aecb5d88d8f720a5c5ae37
|
3 |
+
size 81991107
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82fa2ca39ab65cf49333e0c0f4ca95fb78f783d3d2027888c0e9fe209ab821d7
|
3 |
+
size 81996045
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b586d51c9584d1e41f2683413038579089d277e369efb118ab906ca610b6c7c9
|
3 |
+
size 82000903
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a9e3ec87fac40ee258ea77aba7c6ceae331d60d175576031851ff32b4a6a26e
|
3 |
+
size 81999422
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69ee2e852b626c12844b450c9945f8fde0236d4743be92526fe56de1fa2003d6
|
3 |
+
size 82002732
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:145e355283ee7d4f8dc6ed3923c9a1ba36e36bbf67083a2c6599b6fb2fa8e797
|
3 |
+
size 82009183
|
@@ -1,397 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
from dataclasses import dataclass
|
3 |
-
from pathlib import Path
|
4 |
-
import json
|
5 |
-
import gzip
|
6 |
-
|
7 |
-
import datasets as hfd
|
8 |
-
import h5py
|
9 |
-
import pyarrow as pa
|
10 |
-
|
11 |
-
# ┌──────────────┐
|
12 |
-
# │ Metadata │
|
13 |
-
# └──────────────┘
|
14 |
-
|
15 |
-
@dataclass
|
16 |
-
class CaseSizes:
|
17 |
-
n_bus: int
|
18 |
-
n_load: int
|
19 |
-
n_gen: int
|
20 |
-
n_branch: int
|
21 |
-
|
22 |
-
CASENAME = "89_pegase"
|
23 |
-
SIZES = CaseSizes(n_bus=89, n_load=35, n_gen=12, n_branch=210)
|
24 |
-
NUM_TRAIN = 704792
|
25 |
-
NUM_TEST = 176198
|
26 |
-
NUM_INFEASIBLE = 119010
|
27 |
-
|
28 |
-
URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Small-89_pegase"
|
29 |
-
DESCRIPTION = """\
|
30 |
-
The 89_pegase PGLearn optimal power flow dataset, part of the PGLearn-Small collection. \
|
31 |
-
"""
|
32 |
-
VERSION = hfd.Version("1.0.0")
|
33 |
-
DEFAULT_CONFIG_DESCRIPTION="""\
|
34 |
-
This configuration contains feasible input, metadata, primal solution, and dual solution data \
|
35 |
-
for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system.
|
36 |
-
"""
|
37 |
-
USE_ML4OPF_WARNING = """
|
38 |
-
================================================================================================
|
39 |
-
Loading PGLearn-Small-89_pegase through the `datasets.load_dataset` function may be slow.
|
40 |
-
|
41 |
-
Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see:
|
42 |
-
https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data
|
43 |
-
|
44 |
-
Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see:
|
45 |
-
https://huggingface.co/datasets/PGLearn/PGLearn-Small-89_pegase#downloading-individual-files
|
46 |
-
================================================================================================
|
47 |
-
"""
|
48 |
-
CITATION = """\
|
49 |
-
@article{klamkinpglearn,
|
50 |
-
title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}},
|
51 |
-
author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal},
|
52 |
-
year={2025},
|
53 |
-
}\
|
54 |
-
"""
|
55 |
-
|
56 |
-
IS_COMPRESSED = True
|
57 |
-
|
58 |
-
# ┌──────────────────┐
|
59 |
-
# │ Formulations │
|
60 |
-
# └──────────────────┘
|
61 |
-
|
62 |
-
def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
|
63 |
-
features = {}
|
64 |
-
if primal: features.update(acopf_primal_features(sizes))
|
65 |
-
if dual: features.update(acopf_dual_features(sizes))
|
66 |
-
if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()})
|
67 |
-
return features
|
68 |
-
|
69 |
-
def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
|
70 |
-
features = {}
|
71 |
-
if primal: features.update(dcopf_primal_features(sizes))
|
72 |
-
if dual: features.update(dcopf_dual_features(sizes))
|
73 |
-
if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()})
|
74 |
-
return features
|
75 |
-
|
76 |
-
def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
|
77 |
-
features = {}
|
78 |
-
if primal: features.update(socopf_primal_features(sizes))
|
79 |
-
if dual: features.update(socopf_dual_features(sizes))
|
80 |
-
if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()})
|
81 |
-
return features
|
82 |
-
|
83 |
-
FORMULATIONS_TO_FEATURES = {
|
84 |
-
"ACOPF": acopf_features,
|
85 |
-
"DCOPF": dcopf_features,
|
86 |
-
"SOCOPF": socopf_features,
|
87 |
-
}
|
88 |
-
|
89 |
-
# ┌───────────────────┐
|
90 |
-
# │ BuilderConfig │
|
91 |
-
# └───────────────────┘
|
92 |
-
|
93 |
-
class PGLearnSmall89_pegaseConfig(hfd.BuilderConfig):
|
94 |
-
"""BuilderConfig for PGLearn-Small-89_pegase.
|
95 |
-
By default, primal solution data, metadata, input, casejson, are included for the train and test splits.
|
96 |
-
|
97 |
-
To modify the default configuration, pass attributes of this class to `datasets.load_dataset`:
|
98 |
-
|
99 |
-
Attributes:
|
100 |
-
formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"]
|
101 |
-
primal (bool, optional): Include primal solution data. Defaults to True.
|
102 |
-
dual (bool, optional): Include dual solution data. Defaults to False.
|
103 |
-
meta (bool, optional): Include metadata. Defaults to True.
|
104 |
-
input (bool, optional): Include input data. Defaults to True.
|
105 |
-
casejson (bool, optional): Include case.json data. Defaults to True.
|
106 |
-
train (bool, optional): Include training samples. Defaults to True.
|
107 |
-
test (bool, optional): Include testing samples. Defaults to True.
|
108 |
-
infeasible (bool, optional): Include infeasible samples. Defaults to False.
|
109 |
-
"""
|
110 |
-
def __init__(self,
|
111 |
-
formulations: list[str],
|
112 |
-
primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True,
|
113 |
-
train: bool=True, test: bool=True, infeasible: bool=False,
|
114 |
-
compressed: bool=IS_COMPRESSED, **kwargs
|
115 |
-
):
|
116 |
-
super(PGLearnSmall89_pegaseConfig, self).__init__(version=VERSION, **kwargs)
|
117 |
-
|
118 |
-
self.case = CASENAME
|
119 |
-
self.formulations = formulations
|
120 |
-
|
121 |
-
self.primal = primal
|
122 |
-
self.dual = dual
|
123 |
-
self.meta = meta
|
124 |
-
self.input = input
|
125 |
-
self.casejson = casejson
|
126 |
-
|
127 |
-
self.train = train
|
128 |
-
self.test = test
|
129 |
-
self.infeasible = infeasible
|
130 |
-
|
131 |
-
self.gz_ext = ".gz" if compressed else ""
|
132 |
-
|
133 |
-
@property
|
134 |
-
def size(self):
|
135 |
-
return SIZES
|
136 |
-
|
137 |
-
@property
|
138 |
-
def features(self):
|
139 |
-
features = {}
|
140 |
-
if self.casejson: features.update(case_features())
|
141 |
-
if self.input: features.update(input_features(SIZES))
|
142 |
-
for formulation in self.formulations:
|
143 |
-
features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta))
|
144 |
-
return hfd.Features(features)
|
145 |
-
|
146 |
-
@property
|
147 |
-
def splits(self):
|
148 |
-
splits: dict[hfd.Split, dict[str, str | int]] = {}
|
149 |
-
if self.train:
|
150 |
-
splits[hfd.Split.TRAIN] = {
|
151 |
-
"name": "train",
|
152 |
-
"num_examples": NUM_TRAIN
|
153 |
-
}
|
154 |
-
if self.test:
|
155 |
-
splits[hfd.Split.TEST] = {
|
156 |
-
"name": "test",
|
157 |
-
"num_examples": NUM_TEST
|
158 |
-
}
|
159 |
-
if self.infeasible:
|
160 |
-
splits[hfd.Split("infeasible")] = {
|
161 |
-
"name": "infeasible",
|
162 |
-
"num_examples": NUM_INFEASIBLE
|
163 |
-
}
|
164 |
-
return splits
|
165 |
-
|
166 |
-
@property
|
167 |
-
def urls(self):
|
168 |
-
urls: dict[str, None | str | list] = {
|
169 |
-
"case": None, "train": [], "test": [], "infeasible": [],
|
170 |
-
}
|
171 |
-
|
172 |
-
if self.casejson: urls["case"] = f"case.json" + self.gz_ext
|
173 |
-
|
174 |
-
split_names = []
|
175 |
-
if self.train: split_names.append("train")
|
176 |
-
if self.test: split_names.append("test")
|
177 |
-
if self.infeasible: split_names.append("infeasible")
|
178 |
-
|
179 |
-
for split in split_names:
|
180 |
-
if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext)
|
181 |
-
for formulation in self.formulations:
|
182 |
-
if self.primal: urls[split].append(f"{split}/{formulation}/primal.h5" + self.gz_ext)
|
183 |
-
if self.dual: urls[split].append(f"{split}/{formulation}/dual.h5" + self.gz_ext)
|
184 |
-
if self.meta: urls[split].append(f"{split}/{formulation}/meta.h5" + self.gz_ext)
|
185 |
-
return urls
|
186 |
-
|
187 |
-
# ┌────────────────────┐
|
188 |
-
# │ DatasetBuilder │
|
189 |
-
# └────────────────────┘
|
190 |
-
|
191 |
-
class PGLearnSmall89_pegase(hfd.ArrowBasedBuilder):
|
192 |
-
"""DatasetBuilder for PGLearn-Small-89_pegase.
|
193 |
-
The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g.
|
194 |
-
|
195 |
-
```python
|
196 |
-
from datasets import load_dataset
|
197 |
-
ds = load_dataset("PGLearn/PGLearn-Small-89_pegase", trust_remote_code=True,
|
198 |
-
# modify the default configuration by passing kwargs
|
199 |
-
formulations=["DCOPF"],
|
200 |
-
dual=False,
|
201 |
-
meta=False,
|
202 |
-
)
|
203 |
-
```
|
204 |
-
"""
|
205 |
-
|
206 |
-
DEFAULT_WRITER_BATCH_SIZE = 10000
|
207 |
-
BUILDER_CONFIG_CLASS = PGLearnSmall89_pegaseConfig
|
208 |
-
DEFAULT_CONFIG_NAME=CASENAME
|
209 |
-
BUILDER_CONFIGS = [
|
210 |
-
PGLearnSmall89_pegaseConfig(
|
211 |
-
name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME),
|
212 |
-
formulations=list(FORMULATIONS_TO_FEATURES.keys()),
|
213 |
-
primal=True, dual=True, meta=True, input=True, casejson=True,
|
214 |
-
train=True, test=True, infeasible=False,
|
215 |
-
)
|
216 |
-
]
|
217 |
-
|
218 |
-
def _info(self):
|
219 |
-
return hfd.DatasetInfo(
|
220 |
-
features=self.config.features, splits=self.config.splits,
|
221 |
-
description=DESCRIPTION + self.config.description,
|
222 |
-
homepage=URL, citation=CITATION,
|
223 |
-
)
|
224 |
-
|
225 |
-
def _split_generators(self, dl_manager: hfd.DownloadManager):
|
226 |
-
hfd.logging.get_logger().warning(USE_ML4OPF_WARNING)
|
227 |
-
|
228 |
-
filepaths = dl_manager.download_and_extract(self.config.urls)
|
229 |
-
|
230 |
-
splits: list[hfd.SplitGenerator] = []
|
231 |
-
if self.config.train:
|
232 |
-
splits.append(hfd.SplitGenerator(
|
233 |
-
name=hfd.Split.TRAIN,
|
234 |
-
gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["train"]), n_samples=NUM_TRAIN),
|
235 |
-
))
|
236 |
-
if self.config.test:
|
237 |
-
splits.append(hfd.SplitGenerator(
|
238 |
-
name=hfd.Split.TEST,
|
239 |
-
gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["test"]), n_samples=NUM_TEST),
|
240 |
-
))
|
241 |
-
if self.config.infeasible:
|
242 |
-
splits.append(hfd.SplitGenerator(
|
243 |
-
name=hfd.Split("infeasible"),
|
244 |
-
gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["infeasible"]), n_samples=NUM_INFEASIBLE),
|
245 |
-
))
|
246 |
-
return splits
|
247 |
-
|
248 |
-
def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str], n_samples: int):
|
249 |
-
case_data: str | None = json.dumps(json.load(open_maybe_gzip(case_file))) if case_file is not None else None
|
250 |
-
|
251 |
-
opened_files = [open_maybe_gzip(file) for file in data_files]
|
252 |
-
data = {'/'.join(Path(df.get_origin()).parts[-2:]).split('.')[0]: h5py.File(of) for of, df in zip(opened_files, data_files)}
|
253 |
-
for k in list(data.keys()):
|
254 |
-
if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k)
|
255 |
-
|
256 |
-
batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
|
257 |
-
for i in range(0, n_samples, batch_size):
|
258 |
-
effective_batch_size = min(batch_size, n_samples - i)
|
259 |
-
|
260 |
-
sample_data = {
|
261 |
-
f"{dk}/{k}":
|
262 |
-
hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...])
|
263 |
-
for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features
|
264 |
-
}
|
265 |
-
|
266 |
-
if case_data is not None:
|
267 |
-
sample_data["case/json"] = pa.array([case_data] * effective_batch_size)
|
268 |
-
|
269 |
-
yield i, pa.Table.from_pydict(sample_data)
|
270 |
-
|
271 |
-
for f in opened_files:
|
272 |
-
f.close()
|
273 |
-
|
274 |
-
# ┌──────────────┐
|
275 |
-
# │ Features │
|
276 |
-
# └──────────────┘
|
277 |
-
|
278 |
-
FLOAT_TYPE = "float32"
|
279 |
-
INT_TYPE = "int64"
|
280 |
-
BOOL_TYPE = "bool"
|
281 |
-
STRING_TYPE = "string"
|
282 |
-
|
283 |
-
def case_features():
|
284 |
-
# FIXME: better way to share schema of case data -- need to treat jagged arrays
|
285 |
-
return {
|
286 |
-
"case/json": hfd.Value(STRING_TYPE),
|
287 |
-
}
|
288 |
-
|
289 |
-
META_FEATURES = {
|
290 |
-
"meta/seed": hfd.Value(dtype=INT_TYPE),
|
291 |
-
"meta/formulation": hfd.Value(dtype=STRING_TYPE),
|
292 |
-
"meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE),
|
293 |
-
"meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE),
|
294 |
-
"meta/primal_status": hfd.Value(dtype=STRING_TYPE),
|
295 |
-
"meta/dual_status": hfd.Value(dtype=STRING_TYPE),
|
296 |
-
"meta/termination_status": hfd.Value(dtype=STRING_TYPE),
|
297 |
-
"meta/build_time": hfd.Value(dtype=FLOAT_TYPE),
|
298 |
-
"meta/extract_time": hfd.Value(dtype=FLOAT_TYPE),
|
299 |
-
"meta/solve_time": hfd.Value(dtype=FLOAT_TYPE),
|
300 |
-
}
|
301 |
-
|
302 |
-
def input_features(sizes: CaseSizes):
|
303 |
-
return {
|
304 |
-
"input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
305 |
-
"input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
306 |
-
"input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)),
|
307 |
-
"input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)),
|
308 |
-
"input/seed": hfd.Value(dtype=INT_TYPE),
|
309 |
-
}
|
310 |
-
|
311 |
-
def acopf_primal_features(sizes: CaseSizes):
|
312 |
-
return {
|
313 |
-
"ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
314 |
-
"ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
315 |
-
"ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
316 |
-
"ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
317 |
-
"ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
318 |
-
"ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
319 |
-
"ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
320 |
-
"ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
321 |
-
}
|
322 |
-
def acopf_dual_features(sizes: CaseSizes):
|
323 |
-
return {
|
324 |
-
"ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
325 |
-
"ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
326 |
-
"ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
327 |
-
"ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
328 |
-
"ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
329 |
-
"ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
330 |
-
"ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
331 |
-
"ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
332 |
-
"ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
333 |
-
"ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
334 |
-
"ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
335 |
-
"ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
336 |
-
"ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
337 |
-
"ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
338 |
-
"ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
339 |
-
"ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
340 |
-
"ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
|
341 |
-
}
|
342 |
-
def dcopf_primal_features(sizes: CaseSizes):
|
343 |
-
return {
|
344 |
-
"DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
345 |
-
"DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
346 |
-
"DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
347 |
-
}
|
348 |
-
def dcopf_dual_features(sizes: CaseSizes):
|
349 |
-
return {
|
350 |
-
"DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
351 |
-
"DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
352 |
-
"DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
353 |
-
"DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
354 |
-
"DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
355 |
-
"DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
|
356 |
-
}
|
357 |
-
def socopf_primal_features(sizes: CaseSizes):
|
358 |
-
return {
|
359 |
-
"SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
360 |
-
"SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
361 |
-
"SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
362 |
-
"SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
363 |
-
"SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
364 |
-
"SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
365 |
-
"SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
366 |
-
"SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
367 |
-
"SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
368 |
-
}
|
369 |
-
def socopf_dual_features(sizes: CaseSizes):
|
370 |
-
return {
|
371 |
-
"SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
372 |
-
"SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
373 |
-
"SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
374 |
-
"SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
375 |
-
"SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
376 |
-
"SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
377 |
-
"SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
378 |
-
"SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
379 |
-
"SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
380 |
-
"SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE),
|
381 |
-
"SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
|
382 |
-
"SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
|
383 |
-
"SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
384 |
-
"SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
385 |
-
"SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
386 |
-
"SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
387 |
-
"SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
388 |
-
"SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
389 |
-
"SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
390 |
-
}
|
391 |
-
|
392 |
-
# ┌───────────────┐
|
393 |
-
# │ Utilities │
|
394 |
-
# └───────────────┘
|
395 |
-
|
396 |
-
def open_maybe_gzip(path):
|
397 |
-
return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -285,11 +285,19 @@ dataset_info:
|
|
285 |
dtype: float32
|
286 |
splits:
|
287 |
- name: train
|
288 |
-
num_bytes:
|
289 |
num_examples: 704792
|
290 |
- name: test
|
291 |
-
num_bytes:
|
292 |
num_examples: 176198
|
293 |
-
download_size:
|
294 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
---
|
|
|
285 |
dtype: float32
|
286 |
splits:
|
287 |
- name: train
|
288 |
+
num_bytes: 242326342926
|
289 |
num_examples: 704792
|
290 |
- name: test
|
291 |
+
num_bytes: 60581585731
|
292 |
num_examples: 176198
|
293 |
+
download_size: 50015169304
|
294 |
+
dataset_size: 302907928657
|
295 |
+
configs:
|
296 |
+
- config_name: 89_pegase
|
297 |
+
data_files:
|
298 |
+
- split: train
|
299 |
+
path: 89_pegase/train-*
|
300 |
+
- split: test
|
301 |
+
path: 89_pegase/test-*
|
302 |
+
default: true
|
303 |
---
|
@@ -1,42 +0,0 @@
|
|
1 |
-
# Name of the reference PGLib case. Must be a valid PGLib case name.
|
2 |
-
pglib_case = "pglib_opf_case89_pegase"
|
3 |
-
floating_point_type = "Float32"
|
4 |
-
|
5 |
-
[sampler]
|
6 |
-
# data sampler options
|
7 |
-
[sampler.load]
|
8 |
-
noise_type = "ScaledUniform"
|
9 |
-
l = 0.6 # Lower bound of base load factor
|
10 |
-
u = 1.0 # Upper bound of base load factor
|
11 |
-
sigma = 0.20 # Relative (multiplicative) noise level.
|
12 |
-
|
13 |
-
|
14 |
-
[OPF]
|
15 |
-
|
16 |
-
[OPF.ACOPF]
|
17 |
-
type = "ACOPF"
|
18 |
-
solver.name = "Ipopt"
|
19 |
-
solver.attributes.tol = 1e-6
|
20 |
-
solver.attributes.linear_solver = "ma27"
|
21 |
-
|
22 |
-
[OPF.DCOPF]
|
23 |
-
# Formulation/solver options
|
24 |
-
type = "DCOPF"
|
25 |
-
solver.name = "HiGHS"
|
26 |
-
|
27 |
-
[OPF.SOCOPF]
|
28 |
-
type = "SOCOPF"
|
29 |
-
solver.name = "Clarabel"
|
30 |
-
# Tight tolerances
|
31 |
-
solver.attributes.tol_gap_abs = 1e-6
|
32 |
-
solver.attributes.tol_gap_rel = 1e-6
|
33 |
-
solver.attributes.tol_feas = 1e-6
|
34 |
-
solver.attributes.tol_infeas_rel = 1e-6
|
35 |
-
solver.attributes.tol_ktratio = 1e-6
|
36 |
-
# Reduced accuracy settings
|
37 |
-
solver.attributes.reduced_tol_gap_abs = 1e-6
|
38 |
-
solver.attributes.reduced_tol_gap_rel = 1e-6
|
39 |
-
solver.attributes.reduced_tol_feas = 1e-6
|
40 |
-
solver.attributes.reduced_tol_infeas_abs = 1e-6
|
41 |
-
solver.attributes.reduced_tol_infeas_rel = 1e-6
|
42 |
-
solver.attributes.reduced_tol_ktratio = 1e-6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9315626b439d0bd6c3a0e1a70a08674dbad909dd8dd7696a534d73178727eeaf
|
3 |
-
size 1159221440
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e5ae4365915ce098d840ff810e05a4f72f75ce725a7da7ff7d6871f97af53132
|
3 |
-
size 456800247
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:75197b1e0c87b8e8dc01ba409ade5fb7c04c5451207ff0c5d8065472ce1d8b93
|
3 |
-
size 10930864
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2ec101df4996daaf77ff9babacbfd0a5e085f185ea157f17b5fc5acdc660b9ea
|
3 |
-
size 2110230394
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6f062a8375fef20a50a97c21ba33187db81761708ef091581533c18c72fe7976
|
3 |
-
size 3837588
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cccb359d095f3bf99b23936aa43f657327e5d15b9deae0e086e574a09a00b7d1
|
3 |
-
size 51945166
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:19eeed98ff84f6dd14291e8634c593b46d60a1bc3ac08b6e589fd5320a74ac5a
|
3 |
-
size 30794460
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:60fff4416db3a3bbc74295e2cae81bf989d19f33d6e1e099adf55cbb953cb55f
|
3 |
-
size 1477772026
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d1fe9dab36dd9dea6056b7a1113fdd78a9bf5d989d578868f3c77f9df320440f
|
3 |
-
size 5932054
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fb9df973bc485e8174622e354a348c138a36fc248610a8b428b4d250c0a4077b
|
3 |
-
size 669938071
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:85b7d7b492ad2e623a2de252c2dd063c723b4ecac5c958086ada578e7f773ed2
|
3 |
-
size 10260830
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:13d2767483923825043fe263d32a2a1d6f8d6fd3c9e0e685a983e8a043b438c0
|
3 |
-
size 5728701
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:359f682c9979352141b9340baacf38e7473b1dd8598e7fba4f582c49a893f385
|
3 |
-
size 189842201
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:25a1525c37e346be7861b9d7539f7216a844ec0fbbb9da5eedbd0c9ff72cd631
|
3 |
-
size 2901491086
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6d52f2d80f016f94a42200100a572cacdd58323207fb25d28680559c6ff0de22
|
3 |
-
size 5966333
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e5bd2dc24cb60a2051d7589a49593682f2c430f9c6d6e3dbcfa175d338318f60
|
3 |
-
size 876099927
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:595fc873138448bf910955975bb43d7e7b4d00d2be86f19e4449317a75fa0ee4
|
3 |
-
size 45725305
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:383ca7cd2334043b97dd481840c857703d28e8a7f235b34d92a72e8b47afd922
|
3 |
-
size 5910998436
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fd88139db205afe1d7da28e15fc2be10886319030159671faf93e420634729be
|
3 |
-
size 23663752
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3aff623513c7c9a063a539e9c9f0fac7f084e7d59eaf542076792222c7698fb6
|
3 |
-
size 2679740981
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:864f3b5de9b7e65087a82dd06400cd0d3bfa2a875e976436335d1569baf22cae
|
3 |
-
size 40982747
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:876ea4595be151a3e140afb8f8829f99bf9518b61db24f1b3c37f0fc4d274c01
|
3 |
-
size 22835890
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:91e58de30d8facdccd5971c17592d054b44a32209114c948746c2f1bc8113c32
|
3 |
-
size 759351082
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:741b70b1771c78fea6fb6c5072e5761fc43ce0c667b9ecb889e984f9b2bef14a
|
3 |
-
size 11605891425
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:96a2fbff2fa7d71aa861c0afa702bd6876e08c3ee497191fd8d23bf93e0c0a6a
|
3 |
-
size 23796231
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3d8378ee17b8af37c2334a4b1a0628fa11802ef9554da6d9fa3e3f32f1725593
|
3 |
-
size 3504373882
|
|
|
|
|
|
|
|
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:89baaf18cd9eaae7e1192f4920e4cc753ecb1d11d297090ce4a87973b51467a9
|
3 |
-
size 182878048
|
|
|
|
|
|
|
|