|
from __future__ import annotations |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
import json |
|
import shutil |
|
|
|
import datasets as hfd |
|
import h5py |
|
import pgzip as gzip |
|
import pyarrow as pa |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class CaseSizes: |
|
n_bus: int |
|
n_load: int |
|
n_gen: int |
|
n_branch: int |
|
|
|
CASENAME = "2869_pegase" |
|
SIZES = CaseSizes(n_bus=2869, n_load=1491, n_gen=510, n_branch=4582) |
|
NUM_TRAIN = 188545 |
|
NUM_TEST = 47137 |
|
NUM_INFEASIBLE = 14322 |
|
SPLITFILES = { |
|
"train/SOCOPF/dual.h5.gz": ["train/SOCOPF/dual/xaa", "train/SOCOPF/dual/xab", "train/SOCOPF/dual/xac"], |
|
} |
|
|
|
URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Medium-2869_pegase" |
|
DESCRIPTION = """\ |
|
The 2869_pegase PGLearn optimal power flow dataset, part of the PGLearn-Medium collection. \ |
|
""" |
|
VERSION = hfd.Version("1.0.0") |
|
DEFAULT_CONFIG_DESCRIPTION="""\ |
|
This configuration contains feasible input, primal solution, and dual solution data \ |
|
for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system. For case data, \ |
|
download the case.json.gz file from the `script` branch of the repository. \ |
|
https://huggingface.co/datasets/PGLearn/PGLearn-Medium-2869_pegase/blob/script/case.json.gz |
|
""" |
|
USE_ML4OPF_WARNING = """ |
|
================================================================================================ |
|
Loading PGLearn-Medium-2869_pegase through the `datasets.load_dataset` function may be slow. |
|
|
|
Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see: |
|
https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data |
|
|
|
Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see: |
|
https://huggingface.co/datasets/PGLearn/PGLearn-Medium-2869_pegase#downloading-individual-files |
|
================================================================================================ |
|
""" |
|
CITATION = """\ |
|
@article{klamkinpglearn, |
|
title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}}, |
|
author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal}, |
|
year={2025}, |
|
}\ |
|
""" |
|
|
|
IS_COMPRESSED = True |
|
|
|
|
|
|
|
|
|
|
|
def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool): |
|
features = {} |
|
if primal: features.update(acopf_primal_features(sizes)) |
|
if dual: features.update(acopf_dual_features(sizes)) |
|
if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()}) |
|
return features |
|
|
|
def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool): |
|
features = {} |
|
if primal: features.update(dcopf_primal_features(sizes)) |
|
if dual: features.update(dcopf_dual_features(sizes)) |
|
if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()}) |
|
return features |
|
|
|
def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool): |
|
features = {} |
|
if primal: features.update(socopf_primal_features(sizes)) |
|
if dual: features.update(socopf_dual_features(sizes)) |
|
if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()}) |
|
return features |
|
|
|
FORMULATIONS_TO_FEATURES = { |
|
"ACOPF": acopf_features, |
|
"DCOPF": dcopf_features, |
|
"SOCOPF": socopf_features, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
class PGLearnMedium2869_pegaseConfig(hfd.BuilderConfig): |
|
"""BuilderConfig for PGLearn-Medium-2869_pegase. |
|
By default, primal solution data, metadata, input, casejson, are included for the train and test splits. |
|
|
|
To modify the default configuration, pass attributes of this class to `datasets.load_dataset`: |
|
|
|
Attributes: |
|
formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"] |
|
primal (bool, optional): Include primal solution data. Defaults to True. |
|
dual (bool, optional): Include dual solution data. Defaults to False. |
|
meta (bool, optional): Include metadata. Defaults to True. |
|
input (bool, optional): Include input data. Defaults to True. |
|
casejson (bool, optional): Include case.json data. Defaults to True. |
|
train (bool, optional): Include training samples. Defaults to True. |
|
test (bool, optional): Include testing samples. Defaults to True. |
|
infeasible (bool, optional): Include infeasible samples. Defaults to False. |
|
""" |
|
def __init__(self, |
|
formulations: list[str], |
|
primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True, |
|
train: bool=True, test: bool=True, infeasible: bool=False, |
|
compressed: bool=IS_COMPRESSED, **kwargs |
|
): |
|
super(PGLearnMedium2869_pegaseConfig, self).__init__(version=VERSION, **kwargs) |
|
|
|
self.case = CASENAME |
|
self.formulations = formulations |
|
|
|
self.primal = primal |
|
self.dual = dual |
|
self.meta = meta |
|
self.input = input |
|
self.casejson = casejson |
|
|
|
self.train = train |
|
self.test = test |
|
self.infeasible = infeasible |
|
|
|
self.gz_ext = ".gz" if compressed else "" |
|
|
|
@property |
|
def size(self): |
|
return SIZES |
|
|
|
@property |
|
def features(self): |
|
features = {} |
|
if self.casejson: features.update(case_features()) |
|
if self.input: features.update(input_features(SIZES)) |
|
for formulation in self.formulations: |
|
features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta)) |
|
return hfd.Features(features) |
|
|
|
@property |
|
def splits(self): |
|
splits: dict[hfd.Split, dict[str, str | int]] = {} |
|
if self.train: |
|
splits[hfd.Split.TRAIN] = { |
|
"name": "train", |
|
"num_examples": NUM_TRAIN |
|
} |
|
if self.test: |
|
splits[hfd.Split.TEST] = { |
|
"name": "test", |
|
"num_examples": NUM_TEST |
|
} |
|
if self.infeasible: |
|
splits[hfd.Split("infeasible")] = { |
|
"name": "infeasible", |
|
"num_examples": NUM_INFEASIBLE |
|
} |
|
return splits |
|
|
|
@property |
|
def urls(self): |
|
urls: dict[str, None | str | list] = { |
|
"case": None, "train": [], "test": [], "infeasible": [], |
|
} |
|
|
|
if self.casejson: |
|
urls["case"] = f"case.json" + self.gz_ext |
|
else: |
|
urls.pop("case") |
|
|
|
split_names = [] |
|
if self.train: split_names.append("train") |
|
if self.test: split_names.append("test") |
|
if self.infeasible: split_names.append("infeasible") |
|
|
|
for split in split_names: |
|
if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext) |
|
for formulation in self.formulations: |
|
if self.primal: |
|
filename = f"{split}/{formulation}/primal.h5" + self.gz_ext |
|
if filename in SPLITFILES: urls[split].append(SPLITFILES[filename]) |
|
else: urls[split].append(filename) |
|
if self.dual: |
|
filename = f"{split}/{formulation}/dual.h5" + self.gz_ext |
|
if filename in SPLITFILES: urls[split].append(SPLITFILES[filename]) |
|
else: urls[split].append(filename) |
|
if self.meta: |
|
filename = f"{split}/{formulation}/meta.h5" + self.gz_ext |
|
if filename in SPLITFILES: urls[split].append(SPLITFILES[filename]) |
|
else: urls[split].append(filename) |
|
return urls |
|
|
|
|
|
|
|
|
|
|
|
class PGLearnMedium2869_pegase(hfd.ArrowBasedBuilder): |
|
"""DatasetBuilder for PGLearn-Medium-2869_pegase. |
|
The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g. |
|
|
|
```python |
|
from datasets import load_dataset |
|
ds = load_dataset("PGLearn/PGLearn-Medium-2869_pegase", trust_remote_code=True, |
|
# modify the default configuration by passing kwargs |
|
formulations=["DCOPF"], |
|
dual=False, |
|
meta=False, |
|
) |
|
``` |
|
""" |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 10000 |
|
BUILDER_CONFIG_CLASS = PGLearnMedium2869_pegaseConfig |
|
DEFAULT_CONFIG_NAME=CASENAME |
|
BUILDER_CONFIGS = [ |
|
PGLearnMedium2869_pegaseConfig( |
|
name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME), |
|
formulations=list(FORMULATIONS_TO_FEATURES.keys()), |
|
primal=True, dual=True, meta=True, input=True, casejson=False, |
|
train=True, test=True, infeasible=False, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return hfd.DatasetInfo( |
|
features=self.config.features, splits=self.config.splits, |
|
description=DESCRIPTION + self.config.description, |
|
homepage=URL, citation=CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: hfd.DownloadManager): |
|
hfd.logging.get_logger().warning(USE_ML4OPF_WARNING) |
|
|
|
filepaths = dl_manager.download_and_extract(self.config.urls) |
|
|
|
splits: list[hfd.SplitGenerator] = [] |
|
if self.config.train: |
|
splits.append(hfd.SplitGenerator( |
|
name=hfd.Split.TRAIN, |
|
gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["train"]), n_samples=NUM_TRAIN), |
|
)) |
|
if self.config.test: |
|
splits.append(hfd.SplitGenerator( |
|
name=hfd.Split.TEST, |
|
gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["test"]), n_samples=NUM_TEST), |
|
)) |
|
if self.config.infeasible: |
|
splits.append(hfd.SplitGenerator( |
|
name=hfd.Split("infeasible"), |
|
gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["infeasible"]), n_samples=NUM_INFEASIBLE), |
|
)) |
|
return splits |
|
|
|
def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str | list[hfd.utils.track.tracked_str]], n_samples: int): |
|
case_data: str | None = json.dumps(json.load(open_maybe_gzip_cat(case_file))) if case_file is not None else None |
|
data: dict[str, h5py.File] = {} |
|
for file in data_files: |
|
v = h5py.File(open_maybe_gzip_cat(file), "r") |
|
if isinstance(file, list): |
|
k = "/".join(Path(file[0].get_origin()).parts[-3:-1]).split(".")[0] |
|
else: |
|
k = "/".join(Path(file.get_origin()).parts[-2:]).split(".")[0] |
|
data[k] = v |
|
for k in list(data.keys()): |
|
if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k) |
|
|
|
batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE |
|
for i in range(0, n_samples, batch_size): |
|
effective_batch_size = min(batch_size, n_samples - i) |
|
|
|
sample_data = { |
|
f"{dk}/{k}": |
|
hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...]) |
|
for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features |
|
} |
|
|
|
if case_data is not None: |
|
sample_data["case/json"] = pa.array([case_data] * effective_batch_size) |
|
|
|
yield i, pa.Table.from_pydict(sample_data) |
|
|
|
for f in data.values(): |
|
f.close() |
|
|
|
|
|
|
|
|
|
|
|
FLOAT_TYPE = "float32" |
|
INT_TYPE = "int64" |
|
BOOL_TYPE = "bool" |
|
STRING_TYPE = "string" |
|
|
|
def case_features(): |
|
|
|
return { |
|
"case/json": hfd.Value(STRING_TYPE), |
|
} |
|
|
|
META_FEATURES = { |
|
"meta/seed": hfd.Value(dtype=INT_TYPE), |
|
"meta/formulation": hfd.Value(dtype=STRING_TYPE), |
|
"meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE), |
|
"meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE), |
|
"meta/primal_status": hfd.Value(dtype=STRING_TYPE), |
|
"meta/dual_status": hfd.Value(dtype=STRING_TYPE), |
|
"meta/termination_status": hfd.Value(dtype=STRING_TYPE), |
|
"meta/build_time": hfd.Value(dtype=FLOAT_TYPE), |
|
"meta/extract_time": hfd.Value(dtype=FLOAT_TYPE), |
|
"meta/solve_time": hfd.Value(dtype=FLOAT_TYPE), |
|
} |
|
|
|
def input_features(sizes: CaseSizes): |
|
return { |
|
"input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)), |
|
"input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)), |
|
"input/seed": hfd.Value(dtype=INT_TYPE), |
|
} |
|
|
|
def acopf_primal_features(sizes: CaseSizes): |
|
return { |
|
"ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
} |
|
def acopf_dual_features(sizes: CaseSizes): |
|
return { |
|
"ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE), |
|
} |
|
def dcopf_primal_features(sizes: CaseSizes): |
|
return { |
|
"DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
} |
|
def dcopf_dual_features(sizes: CaseSizes): |
|
return { |
|
"DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE), |
|
} |
|
def socopf_primal_features(sizes: CaseSizes): |
|
return { |
|
"SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
} |
|
def socopf_dual_features(sizes: CaseSizes): |
|
return { |
|
"SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE), |
|
"SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE), |
|
"SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE), |
|
"SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
"SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def open_maybe_gzip_cat(path: str | list): |
|
if isinstance(path, list): |
|
dest = Path(path[0]).parent.with_suffix(".h5") |
|
if not dest.exists(): |
|
with open(dest, "wb") as dest_f: |
|
for piece in path: |
|
with open(piece, "rb") as piece_f: |
|
shutil.copyfileobj(piece_f, dest_f) |
|
shutil.rmtree(Path(piece).parent) |
|
path = dest.as_posix() |
|
return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb") |
|
|