klamike commited on
Commit
f5753bc
·
verified ·
1 Parent(s): b276702

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ data/SOCOPF/dual/xaa filter=lfs diff=lfs merge=lfs -text
61
+ data/SOCOPF/dual/xac filter=lfs diff=lfs merge=lfs -text
62
+ data/SOCOPF/dual/xab filter=lfs diff=lfs merge=lfs -text
PGLearn-Large-Texas7k.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from dataclasses import dataclass
3
+ from pathlib import Path
4
+ import json
5
+ import shutil
6
+
7
+ import datasets as hfd
8
+ import h5py
9
+ import pgzip as gzip
10
+ import pyarrow as pa
11
+
12
+ # ┌──────────────┐
13
+ # │ Metadata │
14
+ # └──────────────┘
15
+
16
+ @dataclass
17
+ class CaseSizes:
18
+ n_bus: int
19
+ n_load: int
20
+ n_gen: int
21
+ n_branch: int
22
+
23
+ CASENAME = "Texas7k"
24
+ SIZES = CaseSizes(n_bus=6717, n_load=4549, n_gen=637, n_branch=9140)
25
+ NUM_SAMPLES = 105237
26
+ SPLITFILES = {
27
+ "data/SOCOPF/dual.h5.gz": ["data/SOCOPF/dual/xaa", "data/SOCOPF/dual/xab", "data/SOCOPF/dual/xac"],
28
+ }
29
+
30
+ URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Large-Texas7k"
31
+ DESCRIPTION = """\
32
+ The Texas7k PGLearn optimal power flow dataset, part of the PGLearn-Large collection. \
33
+ """
34
+ VERSION = hfd.Version("1.0.0")
35
+ DEFAULT_CONFIG_DESCRIPTION="""\
36
+ This configuration contains input, primal solution, and dual solution data \
37
+ for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system. For case data, \
38
+ download the case.json.gz file from the `script` branch of the repository. \
39
+ https://huggingface.co/datasets/PGLearn/PGLearn-Large-Texas7k/blob/script/case.json.gz
40
+ """
41
+ USE_ML4OPF_WARNING = """
42
+ ================================================================================================
43
+ Loading PGLearn-Large-Texas7k through the `datasets.load_dataset` function may be slow.
44
+
45
+ Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see:
46
+ https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data
47
+
48
+ Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see:
49
+ https://huggingface.co/datasets/PGLearn/PGLearn-Large-Texas7k#downloading-individual-files
50
+ ================================================================================================
51
+ """
52
+ CITATION = """\
53
+ @article{klamkinpglearn,
54
+ title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}},
55
+ author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal},
56
+ year={2025},
57
+ }\
58
+ """
59
+
60
+ IS_COMPRESSED = True
61
+
62
+ # ┌──────────────────┐
63
+ # │ Formulations │
64
+ # └──────────────────┘
65
+
66
+ def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
67
+ features = {}
68
+ if primal: features.update(acopf_primal_features(sizes))
69
+ if dual: features.update(acopf_dual_features(sizes))
70
+ if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()})
71
+ return features
72
+
73
+ def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
74
+ features = {}
75
+ if primal: features.update(dcopf_primal_features(sizes))
76
+ if dual: features.update(dcopf_dual_features(sizes))
77
+ if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()})
78
+ return features
79
+
80
+ def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
81
+ features = {}
82
+ if primal: features.update(socopf_primal_features(sizes))
83
+ if dual: features.update(socopf_dual_features(sizes))
84
+ if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()})
85
+ return features
86
+
87
+ FORMULATIONS_TO_FEATURES = {
88
+ "ACOPF": acopf_features,
89
+ "DCOPF": dcopf_features,
90
+ "SOCOPF": socopf_features,
91
+ }
92
+
93
+ # ┌───────────────────┐
94
+ # │ BuilderConfig │
95
+ # └───────────────────┘
96
+
97
+ class PGLearnLargeTexas7kConfig(hfd.BuilderConfig):
98
+ """BuilderConfig for PGLearn-Large-Texas7k.
99
+ By default, primal solution data, metadata, input, casejson, are included.
100
+
101
+ To modify the default configuration, pass attributes of this class to `datasets.load_dataset`:
102
+
103
+ Attributes:
104
+ formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"]
105
+ primal (bool, optional): Include primal solution data. Defaults to True.
106
+ dual (bool, optional): Include dual solution data. Defaults to False.
107
+ meta (bool, optional): Include metadata. Defaults to True.
108
+ input (bool, optional): Include input data. Defaults to True.
109
+ casejson (bool, optional): Include case.json data. Defaults to True.
110
+ """
111
+ def __init__(self,
112
+ formulations: list[str],
113
+ primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True,
114
+ compressed: bool=IS_COMPRESSED, **kwargs
115
+ ):
116
+ super(PGLearnLargeTexas7kConfig, self).__init__(version=VERSION, **kwargs)
117
+
118
+ self.case = CASENAME
119
+ self.formulations = formulations
120
+
121
+ self.primal = primal
122
+ self.dual = dual
123
+ self.meta = meta
124
+ self.input = input
125
+ self.casejson = casejson
126
+
127
+ self.gz_ext = ".gz" if compressed else ""
128
+
129
+ @property
130
+ def size(self):
131
+ return SIZES
132
+
133
+ @property
134
+ def features(self):
135
+ features = {}
136
+ if self.casejson: features.update(case_features())
137
+ if self.input: features.update(input_features(SIZES))
138
+ for formulation in self.formulations:
139
+ features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta))
140
+ return hfd.Features(features)
141
+
142
+ @property
143
+ def splits(self):
144
+ splits: dict[hfd.Split, dict[str, str | int]] = {}
145
+ splits["data"] = {
146
+ "name": "data",
147
+ "num_examples": NUM_SAMPLES
148
+ }
149
+ return splits
150
+
151
+ @property
152
+ def urls(self):
153
+ urls: dict[str, None | str | list] = {
154
+ "case": None, "data": [],
155
+ }
156
+
157
+ if self.casejson:
158
+ urls["case"] = f"case.json" + self.gz_ext
159
+ else:
160
+ urls.pop("case")
161
+
162
+ split_names = ["data"]
163
+
164
+ for split in split_names:
165
+ if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext)
166
+ for formulation in self.formulations:
167
+ if self.primal:
168
+ filename = f"{split}/{formulation}/primal.h5" + self.gz_ext
169
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
170
+ else: urls[split].append(filename)
171
+ if self.dual:
172
+ filename = f"{split}/{formulation}/dual.h5" + self.gz_ext
173
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
174
+ else: urls[split].append(filename)
175
+ if self.meta:
176
+ filename = f"{split}/{formulation}/meta.h5" + self.gz_ext
177
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
178
+ else: urls[split].append(filename)
179
+ return urls
180
+
181
+ # ┌────────────────────┐
182
+ # │ DatasetBuilder │
183
+ # └────────────────────┘
184
+
185
+ class PGLearnLargeTexas7k(hfd.ArrowBasedBuilder):
186
+ """DatasetBuilder for PGLearn-Large-Texas7k.
187
+ The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g.
188
+
189
+ ```python
190
+ from datasets import load_dataset
191
+ ds = load_dataset("PGLearn/PGLearn-Large-Texas7k", trust_remote_code=True,
192
+ # modify the default configuration by passing kwargs
193
+ formulations=["DCOPF"],
194
+ dual=False,
195
+ meta=False,
196
+ )
197
+ ```
198
+ """
199
+
200
+ DEFAULT_WRITER_BATCH_SIZE = 10000
201
+ BUILDER_CONFIG_CLASS = PGLearnLargeTexas7kConfig
202
+ DEFAULT_CONFIG_NAME=CASENAME
203
+ BUILDER_CONFIGS = [
204
+ PGLearnLargeTexas7kConfig(
205
+ name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME),
206
+ formulations=list(FORMULATIONS_TO_FEATURES.keys()),
207
+ primal=True, dual=True, meta=True, input=True, casejson=False,
208
+ )
209
+ ]
210
+
211
+ def _info(self):
212
+ return hfd.DatasetInfo(
213
+ features=self.config.features, splits=self.config.splits,
214
+ description=DESCRIPTION + self.config.description,
215
+ homepage=URL, citation=CITATION,
216
+ )
217
+
218
+ def _split_generators(self, dl_manager: hfd.DownloadManager):
219
+ hfd.logging.get_logger().warning(USE_ML4OPF_WARNING)
220
+
221
+ filepaths = dl_manager.download_and_extract(self.config.urls)
222
+
223
+ splits: list[hfd.SplitGenerator] = []
224
+ splits.append(hfd.SplitGenerator(
225
+ name=hfd.Split("data"),
226
+ gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["data"]), n_samples=NUM_SAMPLES),
227
+ ))
228
+ return splits
229
+
230
+ def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str | list[hfd.utils.track.tracked_str]], n_samples: int):
231
+ case_data: str | None = json.dumps(json.load(open_maybe_gzip_cat(case_file))) if case_file is not None else None
232
+ data: dict[str, h5py.File] = {}
233
+ for file in data_files:
234
+ v = h5py.File(open_maybe_gzip_cat(file), "r")
235
+ if isinstance(file, list):
236
+ k = "/".join(Path(file[0].get_origin()).parts[-3:-1]).split(".")[0]
237
+ else:
238
+ k = "/".join(Path(file.get_origin()).parts[-2:]).split(".")[0]
239
+ data[k] = v
240
+ for k in list(data.keys()):
241
+ if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k)
242
+
243
+ batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
244
+ for i in range(0, n_samples, batch_size):
245
+ effective_batch_size = min(batch_size, n_samples - i)
246
+
247
+ sample_data = {
248
+ f"{dk}/{k}":
249
+ hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...])
250
+ for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features
251
+ }
252
+
253
+ if case_data is not None:
254
+ sample_data["case/json"] = pa.array([case_data] * effective_batch_size)
255
+
256
+ yield i, pa.Table.from_pydict(sample_data)
257
+
258
+ for f in data.values():
259
+ f.close()
260
+
261
+ # ┌──────────────┐
262
+ # │ Features │
263
+ # └──────────────┘
264
+
265
+ FLOAT_TYPE = "float32"
266
+ INT_TYPE = "int64"
267
+ BOOL_TYPE = "bool"
268
+ STRING_TYPE = "string"
269
+
270
+ def case_features():
271
+ # FIXME: better way to share schema of case data -- need to treat jagged arrays
272
+ return {
273
+ "case/json": hfd.Value(STRING_TYPE),
274
+ }
275
+
276
+ META_FEATURES = {
277
+ "meta/seed": hfd.Value(dtype=INT_TYPE),
278
+ "meta/formulation": hfd.Value(dtype=STRING_TYPE),
279
+ "meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE),
280
+ "meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE),
281
+ "meta/primal_status": hfd.Value(dtype=STRING_TYPE),
282
+ "meta/dual_status": hfd.Value(dtype=STRING_TYPE),
283
+ "meta/termination_status": hfd.Value(dtype=STRING_TYPE),
284
+ "meta/build_time": hfd.Value(dtype=FLOAT_TYPE),
285
+ "meta/extract_time": hfd.Value(dtype=FLOAT_TYPE),
286
+ "meta/solve_time": hfd.Value(dtype=FLOAT_TYPE),
287
+ }
288
+
289
+ def input_features(sizes: CaseSizes):
290
+ return {
291
+ "input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
292
+ "input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
293
+ "input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)),
294
+ "input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)),
295
+ "input/seed": hfd.Value(dtype=INT_TYPE),
296
+ }
297
+
298
+ def acopf_primal_features(sizes: CaseSizes):
299
+ return {
300
+ "ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
301
+ "ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
302
+ "ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
303
+ "ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
304
+ "ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
305
+ "ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
306
+ "ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
307
+ "ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
308
+ }
309
+ def acopf_dual_features(sizes: CaseSizes):
310
+ return {
311
+ "ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
312
+ "ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
313
+ "ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
314
+ "ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
315
+ "ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
316
+ "ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
317
+ "ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
318
+ "ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
319
+ "ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
320
+ "ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
321
+ "ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
322
+ "ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
323
+ "ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
324
+ "ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
325
+ "ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
326
+ "ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
327
+ "ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
328
+ }
329
+ def dcopf_primal_features(sizes: CaseSizes):
330
+ return {
331
+ "DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
332
+ "DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
333
+ "DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
334
+ }
335
+ def dcopf_dual_features(sizes: CaseSizes):
336
+ return {
337
+ "DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
338
+ "DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
339
+ "DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
340
+ "DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
341
+ "DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
342
+ "DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
343
+ }
344
+ def socopf_primal_features(sizes: CaseSizes):
345
+ return {
346
+ "SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
347
+ "SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
348
+ "SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
349
+ "SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
350
+ "SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
351
+ "SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
352
+ "SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
353
+ "SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
354
+ "SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
355
+ }
356
+ def socopf_dual_features(sizes: CaseSizes):
357
+ return {
358
+ "SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
359
+ "SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
360
+ "SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
361
+ "SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
362
+ "SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
363
+ "SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
364
+ "SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
365
+ "SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
366
+ "SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
367
+ "SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE),
368
+ "SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
369
+ "SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
370
+ "SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
371
+ "SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
372
+ "SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
373
+ "SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
374
+ "SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
375
+ "SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
376
+ "SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
377
+ }
378
+
379
+ # ┌───────────────┐
380
+ # │ Utilities │
381
+ # └───────────────┘
382
+
383
+ def open_maybe_gzip_cat(path: str | list):
384
+ if isinstance(path, list):
385
+ dest = Path(path[0]).parent.with_suffix(".h5")
386
+ if not dest.exists():
387
+ with open(dest, "wb") as dest_f:
388
+ for piece in path:
389
+ with open(piece, "rb") as piece_f:
390
+ shutil.copyfileobj(piece_f, dest_f)
391
+ shutil.rmtree(Path(piece).parent)
392
+ path = dest.as_posix()
393
+ return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb")
README.md ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - energy
5
+ - optimization
6
+ - optimal_power_flow
7
+ - power_grid
8
+ pretty_name: PGLearn Optimal Power Flow (Texas7k)
9
+ task_categories:
10
+ - tabular-regression
11
+ dataset_info:
12
+ config_name: Texas7k
13
+ features:
14
+ - name: input/pd
15
+ sequence: float32
16
+ length: 4549
17
+ - name: input/qd
18
+ sequence: float32
19
+ length: 4549
20
+ - name: input/gen_status
21
+ sequence: bool
22
+ length: 637
23
+ - name: input/branch_status
24
+ sequence: bool
25
+ length: 9140
26
+ - name: input/seed
27
+ dtype: int64
28
+ - name: ACOPF/primal/vm
29
+ sequence: float32
30
+ length: 6717
31
+ - name: ACOPF/primal/va
32
+ sequence: float32
33
+ length: 6717
34
+ - name: ACOPF/primal/pg
35
+ sequence: float32
36
+ length: 637
37
+ - name: ACOPF/primal/qg
38
+ sequence: float32
39
+ length: 637
40
+ - name: ACOPF/primal/pf
41
+ sequence: float32
42
+ length: 9140
43
+ - name: ACOPF/primal/pt
44
+ sequence: float32
45
+ length: 9140
46
+ - name: ACOPF/primal/qf
47
+ sequence: float32
48
+ length: 9140
49
+ - name: ACOPF/primal/qt
50
+ sequence: float32
51
+ length: 9140
52
+ - name: ACOPF/dual/kcl_p
53
+ sequence: float32
54
+ length: 6717
55
+ - name: ACOPF/dual/kcl_q
56
+ sequence: float32
57
+ length: 6717
58
+ - name: ACOPF/dual/vm
59
+ sequence: float32
60
+ length: 6717
61
+ - name: ACOPF/dual/pg
62
+ sequence: float32
63
+ length: 637
64
+ - name: ACOPF/dual/qg
65
+ sequence: float32
66
+ length: 637
67
+ - name: ACOPF/dual/ohm_pf
68
+ sequence: float32
69
+ length: 9140
70
+ - name: ACOPF/dual/ohm_pt
71
+ sequence: float32
72
+ length: 9140
73
+ - name: ACOPF/dual/ohm_qf
74
+ sequence: float32
75
+ length: 9140
76
+ - name: ACOPF/dual/ohm_qt
77
+ sequence: float32
78
+ length: 9140
79
+ - name: ACOPF/dual/pf
80
+ sequence: float32
81
+ length: 9140
82
+ - name: ACOPF/dual/pt
83
+ sequence: float32
84
+ length: 9140
85
+ - name: ACOPF/dual/qf
86
+ sequence: float32
87
+ length: 9140
88
+ - name: ACOPF/dual/qt
89
+ sequence: float32
90
+ length: 9140
91
+ - name: ACOPF/dual/va_diff
92
+ sequence: float32
93
+ length: 9140
94
+ - name: ACOPF/dual/sm_fr
95
+ sequence: float32
96
+ length: 9140
97
+ - name: ACOPF/dual/sm_to
98
+ sequence: float32
99
+ length: 9140
100
+ - name: ACOPF/dual/slack_bus
101
+ dtype: float32
102
+ - name: ACOPF/meta/seed
103
+ dtype: int64
104
+ - name: ACOPF/meta/formulation
105
+ dtype: string
106
+ - name: ACOPF/meta/primal_objective_value
107
+ dtype: float32
108
+ - name: ACOPF/meta/dual_objective_value
109
+ dtype: float32
110
+ - name: ACOPF/meta/primal_status
111
+ dtype: string
112
+ - name: ACOPF/meta/dual_status
113
+ dtype: string
114
+ - name: ACOPF/meta/termination_status
115
+ dtype: string
116
+ - name: ACOPF/meta/build_time
117
+ dtype: float32
118
+ - name: ACOPF/meta/extract_time
119
+ dtype: float32
120
+ - name: ACOPF/meta/solve_time
121
+ dtype: float32
122
+ - name: DCOPF/primal/va
123
+ sequence: float32
124
+ length: 6717
125
+ - name: DCOPF/primal/pg
126
+ sequence: float32
127
+ length: 637
128
+ - name: DCOPF/primal/pf
129
+ sequence: float32
130
+ length: 9140
131
+ - name: DCOPF/dual/kcl_p
132
+ sequence: float32
133
+ length: 6717
134
+ - name: DCOPF/dual/pg
135
+ sequence: float32
136
+ length: 637
137
+ - name: DCOPF/dual/ohm_pf
138
+ sequence: float32
139
+ length: 9140
140
+ - name: DCOPF/dual/pf
141
+ sequence: float32
142
+ length: 9140
143
+ - name: DCOPF/dual/va_diff
144
+ sequence: float32
145
+ length: 9140
146
+ - name: DCOPF/dual/slack_bus
147
+ dtype: float32
148
+ - name: DCOPF/meta/seed
149
+ dtype: int64
150
+ - name: DCOPF/meta/formulation
151
+ dtype: string
152
+ - name: DCOPF/meta/primal_objective_value
153
+ dtype: float32
154
+ - name: DCOPF/meta/dual_objective_value
155
+ dtype: float32
156
+ - name: DCOPF/meta/primal_status
157
+ dtype: string
158
+ - name: DCOPF/meta/dual_status
159
+ dtype: string
160
+ - name: DCOPF/meta/termination_status
161
+ dtype: string
162
+ - name: DCOPF/meta/build_time
163
+ dtype: float32
164
+ - name: DCOPF/meta/extract_time
165
+ dtype: float32
166
+ - name: DCOPF/meta/solve_time
167
+ dtype: float32
168
+ - name: SOCOPF/primal/w
169
+ sequence: float32
170
+ length: 6717
171
+ - name: SOCOPF/primal/pg
172
+ sequence: float32
173
+ length: 637
174
+ - name: SOCOPF/primal/qg
175
+ sequence: float32
176
+ length: 637
177
+ - name: SOCOPF/primal/pf
178
+ sequence: float32
179
+ length: 9140
180
+ - name: SOCOPF/primal/pt
181
+ sequence: float32
182
+ length: 9140
183
+ - name: SOCOPF/primal/qf
184
+ sequence: float32
185
+ length: 9140
186
+ - name: SOCOPF/primal/qt
187
+ sequence: float32
188
+ length: 9140
189
+ - name: SOCOPF/primal/wr
190
+ sequence: float32
191
+ length: 9140
192
+ - name: SOCOPF/primal/wi
193
+ sequence: float32
194
+ length: 9140
195
+ - name: SOCOPF/dual/kcl_p
196
+ sequence: float32
197
+ length: 6717
198
+ - name: SOCOPF/dual/kcl_q
199
+ sequence: float32
200
+ length: 6717
201
+ - name: SOCOPF/dual/w
202
+ sequence: float32
203
+ length: 6717
204
+ - name: SOCOPF/dual/pg
205
+ sequence: float32
206
+ length: 637
207
+ - name: SOCOPF/dual/qg
208
+ sequence: float32
209
+ length: 637
210
+ - name: SOCOPF/dual/ohm_pf
211
+ sequence: float32
212
+ length: 9140
213
+ - name: SOCOPF/dual/ohm_pt
214
+ sequence: float32
215
+ length: 9140
216
+ - name: SOCOPF/dual/ohm_qf
217
+ sequence: float32
218
+ length: 9140
219
+ - name: SOCOPF/dual/ohm_qt
220
+ sequence: float32
221
+ length: 9140
222
+ - name: SOCOPF/dual/jabr
223
+ dtype:
224
+ array2_d:
225
+ shape:
226
+ - 9140
227
+ - 4
228
+ dtype: float32
229
+ - name: SOCOPF/dual/sm_fr
230
+ dtype:
231
+ array2_d:
232
+ shape:
233
+ - 9140
234
+ - 3
235
+ dtype: float32
236
+ - name: SOCOPF/dual/sm_to
237
+ dtype:
238
+ array2_d:
239
+ shape:
240
+ - 9140
241
+ - 3
242
+ dtype: float32
243
+ - name: SOCOPF/dual/va_diff
244
+ sequence: float32
245
+ length: 9140
246
+ - name: SOCOPF/dual/wr
247
+ sequence: float32
248
+ length: 9140
249
+ - name: SOCOPF/dual/wi
250
+ sequence: float32
251
+ length: 9140
252
+ - name: SOCOPF/dual/pf
253
+ sequence: float32
254
+ length: 9140
255
+ - name: SOCOPF/dual/pt
256
+ sequence: float32
257
+ length: 9140
258
+ - name: SOCOPF/dual/qf
259
+ sequence: float32
260
+ length: 9140
261
+ - name: SOCOPF/dual/qt
262
+ sequence: float32
263
+ length: 9140
264
+ - name: SOCOPF/meta/seed
265
+ dtype: int64
266
+ - name: SOCOPF/meta/formulation
267
+ dtype: string
268
+ - name: SOCOPF/meta/primal_objective_value
269
+ dtype: float32
270
+ - name: SOCOPF/meta/dual_objective_value
271
+ dtype: float32
272
+ - name: SOCOPF/meta/primal_status
273
+ dtype: string
274
+ - name: SOCOPF/meta/dual_status
275
+ dtype: string
276
+ - name: SOCOPF/meta/termination_status
277
+ dtype: string
278
+ - name: SOCOPF/meta/build_time
279
+ dtype: float32
280
+ - name: SOCOPF/meta/extract_time
281
+ dtype: float32
282
+ - name: SOCOPF/meta/solve_time
283
+ dtype: float32
284
+ splits:
285
+ - name: data
286
+ num_bytes: 214763157127
287
+ num_examples: 105237
288
+ download_size: 186617660003
289
+ dataset_size: 214763157127
290
+ ---
case.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f97409987c316d69447827c3458824dbaeac150a0c25ef28d79791780b01a80d
3
+ size 5242746
config.toml ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Name of the reference PGLib case. Must be a valid PGLib case name.
2
+ case_file = "texas7k_case.json"
3
+ floating_point_type = "Float32"
4
+
5
+ [sampler]
6
+ type = "TimeSeries"
7
+ h5_path = "texas7k_demand_2020_5min.h5"
8
+
9
+ [OPF]
10
+
11
+ [OPF.ACOPF]
12
+ type = "ACOPF"
13
+ solver.name = "Ipopt"
14
+ solver.attributes.tol = 1e-6
15
+ solver.attributes.linear_solver = "ma27"
16
+
17
+ [OPF.DCOPF]
18
+ # Formulation/solver options
19
+ type = "DCOPF"
20
+ solver.name = "HiGHS"
21
+
22
+ [OPF.SOCOPF]
23
+ type = "SOCOPF"
24
+ solver.name = "Clarabel"
25
+ # Tight tolerances
26
+ solver.attributes.tol_gap_abs = 1e-6
27
+ solver.attributes.tol_gap_rel = 1e-6
28
+ solver.attributes.tol_feas = 1e-6
29
+ solver.attributes.tol_infeas_rel = 1e-6
30
+ solver.attributes.tol_ktratio = 1e-6
31
+ # Reduced accuracy settings
32
+ solver.attributes.reduced_tol_gap_abs = 1e-6
33
+ solver.attributes.reduced_tol_gap_rel = 1e-6
34
+ solver.attributes.reduced_tol_feas = 1e-6
35
+ solver.attributes.reduced_tol_infeas_abs = 1e-6
36
+ solver.attributes.reduced_tol_infeas_rel = 1e-6
37
+ solver.attributes.reduced_tol_ktratio = 1e-6
data/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:231290c2ac472f64e12535430e2fdaae791f47096d199c927f1ac06fa8d4a9c3
3
+ size 42196194529
data/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e03ec04620157f6582847d6a988fc0360fac5dc522452aa0f9382fa109b740b
3
+ size 3601548
data/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27de6cc6f06429bb71235c9428456815e7a7238eaaf33ba01736aae4e6b3f61d
3
+ size 18503121017
data/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75749365c55cf1f3bfe90002e7fb80439074fa9f1e6f54f15dbdda654088ffa4
3
+ size 4171132625
data/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:572b3116e196c05ee343ca8682421286ab8acc80c8fad64705dca4543e4a153d
3
+ size 3601826
data/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3337739353eea477d9953cd38b43d1590efd559f9e8a0fe8f296b5b8da9526b
3
+ size 5718185811
data/SOCOPF/dual/xaa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35cd860ab19d5cebdd3472f9ea405b313901c6d187374749fde7f73221ee135d
3
+ size 32212254720
data/SOCOPF/dual/xab ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd5a5c8587c91cc0f96a24492cd23e096e9fd258ef5840a1fe3c009c857a8590
3
+ size 32212254720
data/SOCOPF/dual/xac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad980ecbb46791ce64edcb9754656646fdd597850b4920257a0c8cbe48de144
3
+ size 25391068036
data/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3bd71dbeeb7ef71a4fac2f24cec0b1fe04acac57f08434e00c81b496fdbf4c
3
+ size 3725353
data/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07d8a19cdfedfe59cbdaf67ea45da05f49efcd7dfe314d0042b7d9f2ed76d60f
3
+ size 22702542416
data/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b56929a6dcba6b5f86871385d96793891152d11710e243b6179a866f30294a11
3
+ size 3499977402