reign12 commited on
Commit
e5c1bb3
Β·
verified Β·
1 Parent(s): d0a1a4d

Upload README_hf.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README_hf.md +215 -0
README_hf.md ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+
3
+ # Open Reasoner Zero
4
+
5
+ <img src="figure/logo.jpg" width="300"/>
6
+
7
+ <div>
8
+
9
+ An Open Source Approach to Scaling Up Reinforcement Learning on the Base Model
10
+ </div>
11
+ </div>
12
+
13
+ <div align="center" style="line-height: 1;">
14
+ <a href="https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero" style="margin: 2px;"><img alt="Code" src="https://img.shields.io/badge/Open%20Reasoner%20Zero-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white" style="display: inline-block; vertical-align: middle;"/></a>
15
+
16
+ <a href="https://huggingface.co/Open-Reasoner-Zero" target="_blank"><img alt="Hugging Face"
17
+ src="https://img.shields.io/badge/HuggingFace-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor"/></a>
18
+
19
+ <a href="https://yasminezhang.notion.site/Open-Reasoner-Zero-19e12cf72d418007b9cdebf44b0e7903" target="_blank">
20
+ <img alt="Notion Page"
21
+ src="https://img.shields.io/badge/Notion-%23000000.svg?style=for-the-badge&logo=notion&logoColor=white"/></a>
22
+
23
+ <br>
24
+ <a href="https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf"><b>Paper PDF Link [WIP]</b>πŸ‘οΈ</a>
25
+ </div>
26
+
27
+ <div>
28
+ <br>
29
+
30
+ </div>
31
+
32
+ ## Overview 🌊
33
+ We introduce **Open-Reasoner-Zero**, the first open source implementation of large-scale reasoning-oriented RL training focusing on scalability, simplicity and accessibility.
34
+
35
+ To enable broader participation in this pivotal moment we witnessed and accelerate research towards artificial general intelligence (AGI),
36
+ we release our source code, parameter settings, training data, and model weights.
37
+ Please refer to our [paper](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf) for more insights across various model sizes.
38
+
39
+ **Let the Reasoner-Zero tide rise!**
40
+
41
+
42
+ ## Main Results πŸ†
43
+
44
+ ![](figure/teaser.png)
45
+
46
+ *Figure 1 | Evaluation performance of Open-Reasoner-Zero-\{7B, 32B\}. Evaluation performance of Open-Reasoner-Zero-\{7B, 32B\} on benchmarks (averaged on 16 responses) during training. Using the same base model as DeepSeek-R1-Zero-Qwen-32B, Open-Reasoner-Zero-32B achieves superior performance on AIME2024, MATH500, and GPQA Diamond benchmark-requiring only a tenth of the training steps.*
47
+
48
+ ![](figure/train_curve.png)
49
+ *Figure 2 | Train-time Scale up on Train Reward and Response Length of Open-Reasoner-Zero (ORZ) - \{0.5B, 1.5B, 7B, 32B\}. Train Reward and Response Length increase steadily, demonstrating consistent scalability across model sizes. Interestingly, the ORZ-32B Response Length exhibits fluctuations without negatively impacting training stability, highlighting the robustness of our minimalist recipe.*
50
+
51
+ ## Releases πŸ“¦
52
+
53
+ <strong>[2025/03/31]</strong>
54
+ We announce a major milestone for `Open-Reasoner-Zero`:
55
+
56
+ - 🌊 [Updated Paper](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf) with new results.
57
+ - πŸ”­ [Easy-to-use Training Scripts](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/playground):
58
+ - [ORZ-1.5B training scripts](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/playground/orz_1p5b_ppo.py) and [ORZ-0.5B training scripts](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/playground/orz_0p5b_ppo.py) (main results in Figure 2).
59
+ - [Minimal resource training scripts](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/playground/orz_0p5b_ppo_1gpu.py): ORZ-0.5B can be run on a single A800/H800 gpu!
60
+ - 🀩 [Updated Curated Datasets](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/data):
61
+ - 129k data in total:
62
+ - [original 57k data](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/data/orz_math_57k_collected.json).
63
+ - [extended 72k data](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/data/orz_math_72k_collection_extended.json).
64
+ - [13k hard data](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/data/orz_math_13k_collection_hard.json) mined from the above 129k data.
65
+ - used in the "annealing" stage of ORZ-32B training: **AIME2024 from ~41% to ~48%**!
66
+ - πŸ€— More HF Models:
67
+ - Updated HF Models: [`Open-Reasoner-Zero-7B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-7B) and [`Open-Reasoner-Zero-32B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-32B).
68
+ - Released HF Models: [`Open-Reasoner-Zero-1.5B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-1.5B) and [`Open-Reasoner-Zero-0.5B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-0.5B).
69
+ - πŸš€ Full Suite of Critic Models for in-depth research: `Open-Reasoner-Zero-Critic-`{[0.5B](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-Critic-0.5B), [1.5B](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-Critic-1.5B), [7B](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-Critic-7B), [32B](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-Critic-32B)}.
70
+
71
+ <strong>[2025/02/18]</strong>
72
+ We release `Open-Reasoner-Zero`.
73
+
74
+ As part of this release, we open-source:
75
+ - 🌊 [Paper](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf) on our comprehensive analysis and insights in Reasoner-Zero training
76
+ - πŸ€— HF Model [`Open-Reasoner-Zero-7B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-7B) and [`Open-Reasoner-Zero-32B`](https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-32B)
77
+ - 🎁 [`Our curated 57k training data`](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/data)
78
+ - πŸ“„ [Training Scripts](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/playground) to enjoy your own Reasoner-Zero journey!
79
+
80
+ ## Key Features in Codebase πŸ”‘
81
+
82
+ - Adopt single controller trainer design, flexible and researcher-friendly.
83
+ - Colocate training and generation in the same GPUs to maximize GPU utilization.
84
+
85
+ ## Getting Started πŸš€
86
+ ### Data
87
+
88
+ We release all of curated high-quality training data in the [`data`](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/data) folder:
89
+ * curated 129k data:
90
+ * [original 57k](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/data/orz_math_57k_collected.json), collected from various sources, including AIME (up to 2023), MATH, Numina-Math collection and Tulu3 MATH.
91
+ * [extended 72k](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/data/orz_math_72k_collection_extended.json), mainly cleaned from OpenR1-Math-220k.
92
+ * [hard 13k](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/data/orz_math_13k_collection_hard.json), mined from the first stage of ORZ-32B training.
93
+
94
+ The details for how to collect data are described in our [paper](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/ORZ_paper.pdf).
95
+
96
+ ### Installation & Training Scripts
97
+ We release our [Dockerfile](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/main/docker/Dockerfile) in [docker](https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/tree/main/docker) folder to facilitate the reproducibility of our training.
98
+
99
+ To install the package, run:
100
+ ```bash
101
+ pip install -e .
102
+ ```
103
+
104
+ #### Start ORZ-32B PPO Training
105
+ Here are the starting commands in 16 nodes.
106
+
107
+ First on master node, run:
108
+ ```bash
109
+ ray start --head
110
+ # you will see logging like:
111
+ # Next steps
112
+ # To add another node to this Ray cluster, run
113
+ # ray start --address='<master-node-ip>:<master-node-port>'
114
+ ```
115
+
116
+ then on all other nodes, run:
117
+ ```bash
118
+ ray start --address='<master-node-ip>:<master-node-port>' # <master-node-ip> and <master-node-port> are from above loggings!
119
+ ```
120
+
121
+ finally on master node, just run:
122
+ ```bash
123
+ python -m playground.orz_32b_ppo
124
+ ```
125
+ Your training log will be shown in the master node terminal.
126
+
127
+ ------
128
+
129
+ #### Start ORZ-0.5B PPO Training
130
+ You can start the ORZ-0.5B PPO training in single A800/H800 node:
131
+ ```bash
132
+ python -m playground.orz_0p5b_ppo
133
+ ```
134
+
135
+ You can even run in **a single A800/H800 gpu**:
136
+ ```bash
137
+ python -m playground.orz_0p5b_ppo_1gpu
138
+ ```
139
+
140
+ note: since we are not in multi-node setting, no `ray start` like logics are needed.
141
+
142
+ ------
143
+
144
+ #### Start ORZ-7B PPO Training
145
+
146
+ Multi-node Training on 4 nodes:
147
+ ```bash
148
+ # set up for multi-node training
149
+ ray start --head # on master node
150
+ ray start --address='<master-node-ip>:<master-node-port>' # then on other nodes
151
+
152
+ # then on master node, run:
153
+ python -m playground.orz_7b_ppo
154
+ ```
155
+
156
+ Your training log will be shown in the master node terminal.
157
+
158
+ -----
159
+
160
+ #### Start ORZ-1.5B PPO Training
161
+
162
+ Multi-node Training on 2 nodes:
163
+ ```bash
164
+ # set up for multi-node training
165
+ ray start --head # on master node
166
+ ray start --address='<master-node-ip>:<master-node-port>' # then on other nodes
167
+ # then on master node, run:
168
+ python -m playground.orz_1p5b_ppo
169
+ ```
170
+
171
+ ----
172
+
173
+ #### Debug Settings
174
+ In the code, we leave an environment variable `DEBUG_MODE` to run in debug setting for researcher to iterate. (Thought for now, we recommend using `python -m playground.orz_0p5b_ppo_1gpu` for debugging.)
175
+
176
+ The debug running command examples:
177
+ ```bash
178
+ # NOTE: just for debug, not final setting!
179
+
180
+ ## Debug command in a single GPU with `EleutherAI/pythia-14m`
181
+ DEBUG_MODE=True python -m playground.orz_14m_ppo_mini
182
+ ## Debug command in a single node (8 GPUs) with `Qwen/Qwen2.5-7B`
183
+ DEBUG_MODE=True python -m playground.orz_7b_ppo
184
+ ```
185
+
186
+ ## Acknowledgements πŸ’–
187
+
188
+ - This work was supported by computing resources and valuable feedback provided by [StepFun](https://www.stepfun.com/) and Tsinghua University.
189
+ - Our training framework is built on [OpenRLHF](https://github.com/OpenRLHF/OpenRLHF), [vllm](https://github.com/vllm-project/vllm), [DeepSpeed](https://github.com/deepspeedai/DeepSpeed) and [ray](https://github.com/ray-project/ray).
190
+ - Our model is based on [Qwen2.5 Series](https://qwenlm.github.io/blog/qwen2.5-llm/) of **base models**, including [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B), [Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B), [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) and [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B).
191
+ - We thank [Project Numina](https://projectnumina.ai/), [Tulu3](https://allenai.org/blog/tulu-3-technical) and [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) for their collected open sourced data.
192
+
193
+ ## Advertisement Time πŸ“£
194
+
195
+ We are hiring talented researchers and engineers to join our team. If you are interested in our project and would like to contribute to the reasoner scale-up all the way to AGI, please feel free to reach out to us at [email protected]
196
+
197
+
198
+ [![Star History Chart](https://api.star-history.com/svg?repos=Open-Reasoner-Zero/Open-Reasoner-Zero&type=Timeline)](https://star-history.com/#Open-Reasoner-Zero/Open-Reasoner-Zero&Timeline)
199
+
200
+ ## Community Discussions 🍺
201
+
202
+ We have several wechat groups to help discussions and sharing, you can scan the QR code below to join the latest group.
203
+
204
+ <img src="figure/WeChatGroup.png" width="300" style="display: block; margin: 0 auto;"/>
205
+
206
+ ## Citation
207
+
208
+ ```bibtex
209
+ @misc{OpenReasonerZero2025,
210
+ title={Open-Reasoner-Zero: An Open Source Approach to Scaling Reinforcement Learning on the Base Model},
211
+ author={Jingcheng Hu and Yinmin Zhang and Qi Han and Daxin Jiang and Xiangyu Zhang, Heung-Yeung Shum},
212
+ year={2025},
213
+ howpublished={\url{https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero}},
214
+ }
215
+ ```