Nurseiit commited on
Commit
7827bb4
·
1 Parent(s): d191049

Upload nedzhi.py

Browse files
Files changed (1) hide show
  1. nedzhi.py +124 -0
nedzhi.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import textwrap
3
+
4
+ import datasets
5
+
6
+
7
+ _CITATION = """\
8
+ @inproceedings{larson-etal-2019-evaluation,
9
+ title = "An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction",
10
+ author = "Larson, Stefan and
11
+ Mahendran, Anish and
12
+ Peper, Joseph J. and
13
+ Clarke, Christopher and
14
+ Lee, Andrew and
15
+ Hill, Parker and
16
+ Kummerfeld, Jonathan K. and
17
+ Leach, Kevin and
18
+ Laurenzano, Michael A. and
19
+ Tang, Lingjia and
20
+ Mars, Jason",
21
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
22
+ year = "2019",
23
+ url = "https://www.aclweb.org/anthology/D19-1131"
24
+ }
25
+ """
26
+
27
+ _DESCRIPTION = """\
28
+ This dataset is for evaluating the performance of intent classification systems in the
29
+ presence of "out-of-scope" queries. By "out-of-scope", we mean queries that do not fall
30
+ into any of the system-supported intent classes. Most datasets include only data that is
31
+ "in-scope". Our dataset includes both in-scope and out-of-scope data. You might also know
32
+ the term "out-of-scope" by other terms, including "out-of-domain" or "out-of-distribution".
33
+ """
34
+
35
+ _DESCRIPTIONS = {
36
+ "small": textwrap.dedent(
37
+ """\
38
+ Small, in which there are only 50 training queries per each in-scope intent
39
+ """
40
+ ),
41
+ "imbalanced": textwrap.dedent(
42
+ """\
43
+ Imbalanced, in which intents have either 25, 50, 75, or 100 training queries.
44
+ """
45
+ ),
46
+ "plus": textwrap.dedent(
47
+ """\
48
+ OOS+, in which there are 250 out-of-scope training examples, rather than 100.
49
+ """
50
+ ),
51
+ }
52
+
53
+ _URL = "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.0.tar.gz"
54
+
55
+ _DATA_URLS = {
56
+ "small": "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.0.tar.gz",
57
+ "imbalanced": "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.0.tar.gz",
58
+ "plus": "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.0.tar.gz",
59
+ }
60
+
61
+
62
+ class ClincConfig(datasets.BuilderConfig):
63
+
64
+ """BuilderConfig for CLINC150"""
65
+
66
+ def __init__(self, description, data_url, citation, url, **kwrags):
67
+ """
68
+ Args:
69
+ description: `string`, brief description of the dataset
70
+ data_url: `dictionary`, dict with url for each split of data.
71
+ citation: `string`, citation for the dataset.
72
+ url: `string`, url for information about the dataset.
73
+ **kwrags: keyword arguments frowarded to super
74
+ """
75
+ super(ClincConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwrags)
76
+ self.description = description
77
+ self.data_url = data_url
78
+ self.citation = citation
79
+ self.url = url
80
+
81
+
82
+ class ClincOos(datasets.GeneratorBasedBuilder):
83
+ BUILDER_CONFIGS = [
84
+ ClincConfig(
85
+ name=name, description=_DESCRIPTIONS[name], data_url=_DATA_URLS[name], citation=_CITATION, url=_URL
86
+ )
87
+ for name in ["small", "imbalanced", "plus"]
88
+ ]
89
+
90
+ def _info(self):
91
+ features = {}
92
+ features["text"] = datasets.Value("string")
93
+ labels_list = [
94
+ 'audio_volume_other',
95
+ 'play_music',
96
+ 'iot_hue_lighton',
97
+ 'general_greet',
98
+ 'calendar_set',
99
+ 'audio_volume_down',
100
+ 'social_query', 'audio_volume_mute', 'iot_wemo_on', 'iot_hue_lightup', 'audio_volume_up', 'iot_coffee', 'takeaway_query', 'qa_maths', 'play_game', 'cooking_query', 'iot_hue_lightdim', 'iot_wemo_off', 'music_settings', 'weather_query', 'news_query', 'alarm_remove', 'social_post', 'recommendation_events', 'transport_taxi', 'takeaway_order', 'music_query', 'calendar_query', 'lists_query', 'qa_currency', 'recommendation_movies', 'general_joke', 'recommendation_locations', 'email_querycontact', 'lists_remove', 'play_audiobook', 'email_addcontact', 'lists_createoradd', 'play_radio', 'qa_stock', 'alarm_query', 'email_sendemail', 'general_quirky', 'music_likeness', 'cooking_recipe', 'email_query', 'datetime_query', 'transport_traffic', 'play_podcasts', 'iot_hue_lightchange', 'calendar_remove', 'transport_query', 'transport_ticket', 'qa_factoid', 'iot_cleaning', 'alarm_set', 'datetime_convert', 'iot_hue_lightoff', 'qa_definition', 'music_dislikeness',
101
+ ]
102
+ features["intent"] = datasets.ClassLabel(names=labels_list)
103
+
104
+ return datasets.DatasetInfo(
105
+ description=_DESCRIPTION + "\n" + self.config.description,
106
+ features=datasets.Features(features),
107
+ homepage=self.config.url,
108
+ citation=_CITATION,
109
+ )
110
+
111
+ def _split_generators(self, dl_manager):
112
+ file_ = dl_manager.download_and_extract(self.config.data_url)
113
+
114
+ return [
115
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_, "split": "train"}),
116
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": file_, "split": "val"}),
117
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": file_, "split": "test"}),
118
+ ]
119
+
120
+ def _generate_examples(self, filepath, split):
121
+ with open(filepath, encoding="utf-8") as f:
122
+ j = json.load(f)
123
+ for id_, row in enumerate(j[split] + j["oos_" + split]):
124
+ yield id_, {"text": row[0], "intent": row[1]}