Nothingger commited on
Commit
5ee72ad
·
verified ·
1 Parent(s): 8cf1d74

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -53
README.md CHANGED
@@ -1,57 +1,94 @@
1
- configs:
2
- - config_name: default
3
- data_files:
4
- - split: train
5
- path: data/train-*
6
-
7
- dataset_info:
8
- features:
9
- - name: **Language_pair**
10
- dtype: **string**
11
- - name: **X**
12
- dtype: **string**
13
- - name: **y**
14
- dtype: **string**
15
- - name: **X_lang**
16
- dtype: **string**
17
- - name: **y_lang**
18
- dtype: **string**
19
- - name: **Similarity**
20
- dtype: **float64**
21
- splits:
22
- - name: **train**
23
- num_bytes: **28847236**
24
- num_examples: **71096**
25
- download_size: **14357583**
26
- dataset_size: **28847236**
27
- license: **apache-2.0**
28
  task_categories:
29
- - **translation**
30
  language:
31
- - **kk**
32
- - **ru**
33
- - **en**
34
  tags:
35
- - **code**
36
- pretty_name: **Multilingual Literature Parallel Corpus**
37
  size_categories:
38
- - **10K<n<100K**
39
-
40
- # **Multilingual Literature Parallel Corpus Dataset Information**
41
- # **The Multilingual Literature Parallel Corpus is designed for translation tasks, containing parallel text pairs from literature in three languages: Kazakh (kaz_Cyrl), Russian (rus_Cyrl), and English (eng_Latn). It facilitates training and evaluating translation models.**
42
-
43
- ## **Features**
44
- # **Language_pair**: **The language pair in the format source_target (e.g., kaz_Cyrl_eng_Latn).**
45
- # **X**: **The source text.**
46
- # **y**: **The translated text.**
47
- # **X_lang**: **The language of the source text.**
48
- # **y_lang**: **The language of the translated text.**
49
- # **Similarity**: **The similarity score between the source and target texts.**
50
-
51
- ## **Language Pairs and Example Counts**
52
- **rus_Cyrl_eng_Latn**: **23,856 examples**
53
- **rus_Cyrl_kaz_Cyrl**: **19,832 examples**
54
- **eng_Latn_rus_Cyrl**: **15,690 examples**
55
- **eng_Latn_kaz_Cyrl**: **5,534 examples**
56
- **kaz_Cyrl_eng_Latn**: **3,884 examples**
57
- **kaz_Cyrl_rus_Cyrl**: **2,300 examples**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  task_categories:
4
+ - translation
5
  language:
6
+ - kk
7
+ - ru
8
+ - en
9
  tags:
10
+ - code
11
+ pretty_name: Multilingual Literature Parallel Corpus
12
  size_categories:
13
+ - 10K<n<100K
14
+ ---
15
+
16
+ # Dataset Card for Multilingual Literature Parallel Corpus
17
+
18
+ <!-- Provide a quick summary of the dataset. -->
19
+
20
+ The Multilingual Literature Parallel Corpus is designed for translation tasks, containing parallel text pairs from literature in three languages: Kazakh (kaz_Cyrl), Russian (rus_Cyrl), and English (eng_Latn).
21
+
22
+ ## Dataset Details
23
+
24
+ ### Dataset Description
25
+
26
+ <!-- Provide a longer summary of what this dataset is. -->
27
+
28
+ The Multilingual Literature Parallel Corpus provides parallel text pairs for translation tasks across Kazakh, Russian, and English. The dataset is curated to support the development of machine translation models by offering high-quality parallel sentences from literature.
29
+
30
+ - **Language(s) (NLP):** Kazakh, Russian, English
31
+ - **License:** Apache-2.0
32
+
33
+ ## Uses
34
+
35
+ <!-- Address questions around how the dataset is intended to be used. -->
36
+
37
+ ### Direct Use
38
+
39
+ <!-- This section describes suitable use cases for the dataset. -->
40
+
41
+ The dataset is suitable for developing and benchmarking translation models, cross-linguistic analysis, and linguistic research in the context of Kazakh, Russian, and English literature.
42
+
43
+ ### Out-of-Scope Use
44
+
45
+ <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
46
+
47
+ The dataset is not suitable for non-literary text translation tasks, real-time translation applications, or any use cases requiring domain-specific jargon outside literature.
48
+
49
+ ## Dataset Structure
50
+
51
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
52
+
53
+ - **Language_pair**: The language pair in the format source_to_target (e.g., kaz_to_eng).
54
+ - **X**: The source text.
55
+ - **y**: The translated text.
56
+ - **X_lang**: The language of the source text.
57
+ - **y_lang**: The language of the translated text.
58
+ - **Similarity**: The similarity score between the source and target texts.
59
+
60
+ ### Language Pairs and Example Counts
61
+
62
+ - **rus_Cyrl_eng_Latn**: 23,856 examples
63
+ - **rus_Cyrl_kaz_Cyrl**: 19,832 examples
64
+ - **eng_Latn_rus_Cyrl**: 15,690 examples
65
+ - **eng_Latn_kaz_Cyrl**: 5,534 examples
66
+ - **kaz_Cyrl_eng_Latn**: 3,884 examples
67
+ - **kaz_Cyrl_rus_Cyrl**: 2,300 examples
68
+
69
+ ## Dataset Creation
70
+
71
+ ### Curation Rationale
72
+
73
+ <!-- Motivation for the creation of this dataset. -->
74
+
75
+ The dataset was created to enhance the quality and accessibility of machine translation models for Kazakh, Russian, and English, specifically within the literary domain.
76
+
77
+ ### Source Data
78
+
79
+ <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
80
+
81
+ The source data consists of original literary texts in Kazakh, Russian, and English.
82
+
83
+ ### Target Data
84
+
85
+ The source data consists of translated literary texts in Kazakh, Russian, and English.
86
+
87
+ #### Data Collection and Processing
88
+
89
+ <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
90
+
91
+ The data was collected from publicly available literary sources, preprocessed to align translations accurately, and normalized to maintain consistency in formatting and structure.
92
+
93
+
94
+ <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if