VyoJ's picture
Update README.md
e996ed3 verified
---
task_categories:
- image-to-text
- visual-question-answering
tags:
- ocr
- document-analysis
- multilingual
- vqa
- webdataset
size_categories:
- 100K<n<1M
configs:
- config_name: ar
data_files:
- split: train
path: ar/*.tar
- config_name: de
data_files:
- split: train
path: de/*.tar
- config_name: es
data_files:
- split: train
path: es/*.tar
- config_name: fr
data_files:
- split: train
path: fr/*.tar
- config_name: it
data_files:
- split: train
path: it/*.tar
- config_name: ja
data_files:
- split: train
path: ja/*.tar
- config_name: ko
data_files:
- split: train
path: ko/*.tar
- config_name: ru
data_files:
- split: train
path: ru/*.tar
- config_name: sa
data_files:
- split: train
path: sa/*.tar
- config_name: th
data_files:
- split: train
path: th/*.tar
- config_name: zh
data_files:
- split: train
path: zh/*.tar
---
# Nayana-DocOCR Global Annotated Dataset
## Dataset Description
This is a large-scale multilingual document OCR dataset containing approximately 400GB of images with comprehensive annotations across multiple global languages and English. The dataset is stored in **WebDataset** format using TAR archives for efficient streaming and processing.
### Available Language Subsets
- **Arabic** (ar): Available
- **German** (de): Available
- **Spanish** (es): Available
- **French** (fr): Available
- **Italian** (it): Available
- **Japanese** (ja): Available
- **Korean** (ko): Available
- **Sanskrit** (sa): Available
- **Thai** (th): Available
- **Chinese** (zh): Available
### Dataset Statistics
- **Available Languages**: 1
- **Total Size**: ~400GB
- **Format**: WebDataset (TAR archives)
- **Chunk Size**: 5GB per TAR file
### Dataset Structure
This dataset uses the WebDataset format where each sample is stored as separate files within TAR archives:
- **Images**: Document images in JPG format (PNG converted to JPG for optimization)
- **Metadata Files**: Separate text/JSON files for each field:
- `XXXXXXXX.jpg`: The document image
- `XXXXXXXX.image_id.txt`: Unique identifier for the image
- `XXXXXXXX.font_used.txt`: Font information used in the document
- `XXXXXXXX.regions.json`: Text regions with bounding boxes and OCR results
- `XXXXXXXX.vqa.json`: Visual Question Answering annotations
### Usage
#### Loading with WebDataset library (Recommended for large datasets)
```python
import webdataset as wds
import json
from PIL import Image
import io
# Create a WebDataset from TAR files
dataset = wds.WebDataset("path/to/language/tarfiles/*.tar")
# Process the dataset
for sample in dataset:
# Access image
image_data = sample["jpg"] # Raw image bytes
image = Image.open(io.BytesIO(image_data))
# Access metadata
image_id = sample["image_id.txt"].decode('utf-8')
font_used = sample["font_used.txt"].decode('utf-8')
regions = json.loads(sample["regions.json"].decode('utf-8'))
vqa_data = json.loads(sample["vqa.json"].decode('utf-8'))
print(f"Image ID: {image_id}")
print(f"Font: {font_used}")
print(f"Regions: {len(regions)}")
print(f"VQA entries: {len(vqa_data)}")
```
#### Loading with HuggingFace datasets library
```python
from datasets import load_dataset
import json
# Load specific language subset
dataset = load_dataset("webdataset", data_dir="hf://datasets/Nayana-cognitivelab/NayanaDocs-Global-45k-webdataset/fr", split="train")
# Or with streaming for memory efficiency
dataset = load_dataset("webdataset", data_dir="hf://datasets/Nayana-cognitivelab/NayanaDocs-Global-45k-webdataset/fr", split="train", streaming=True)
# Access data
for sample in dataset:
image = sample["jpg"] # PIL Image
image_id = sample["image_id.txt"] # string
font_used = sample["font_used.txt"] # string
regions = json.loads(sample["regions.json"]) # parsed JSON
vqa_data = json.loads(sample["vqa.json"]) # parsed JSON
```
#### Manual download and processing
```python
from huggingface_hub import hf_hub_download
import tarfile
import webdataset as wds
# Download a specific TAR file
tar_path = hf_hub_download(
repo_id="Nayana-cognitivelab/NayanaDocs-Global-45k-webdataset",
filename="bn/bn_00000.tar",
repo_type="dataset"
)
# Process with webdataset
dataset = wds.WebDataset(tar_path)
for sample in dataset:
# Process sample
pass
```
### Performance Tips
1. **Streaming**: Use `streaming=True` for large datasets to avoid downloading everything at once
2. **WebDataset library**: Use the `webdataset` library directly for maximum performance
3. **Parallel processing**: WebDataset supports parallel processing and data pipeline optimization
4. **Selective loading**: Download only the language TAR files you need
### File Organization
```
repository/
β”œβ”€β”€ ar/
β”‚ β”œβ”€β”€ ar_00000.tar
β”‚ β”œβ”€β”€ ar_00001.tar
β”‚ └── ...
β”œβ”€β”€ fr/
β”‚ β”œβ”€β”€ fr_00000.tar
β”‚ β”œβ”€β”€ fr_00001.tar
β”‚ └── ...
└── README.md
```
### Metadata Schema
#### regions.json
```json
[
{
"bbox": {"xmin": 10, "ymin": 20, "xmax": 100, "ymax": 50},
"english_text": "Original text",
"translated_text": "Translated text",
"layout_type": "paragraph",
"region_id": 1
}
]
```
#### vqa.json
```json
{
"questions": [
{
"question": "What is the main topic?",
"answer": "Document analysis",
"type": "topic",
"options": ["Analysis", "Summary", "Review"]
}
]
}
```